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In this paper, we evaluate the QMLKF algorithm, designed in the previous paper [Ben-
moumen M. Numerical optimization of the likelihood function based on Kalman Filter in
the GARCH models. Mathematical Modeling and Computing. 9 (3), 599–606 (2022)] for
parameter estimation of GARCH models, by transposing it to real data and then present
our machine learning for forecasting the returns of some stock indices.
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1. Introduction

Advanced analysis used by the financial industry has given increasing importance to time series mod-
eling. In particular, nonlinear time series have attracted the widest attention [1]. Numerous financial
series, such as stock index, stock and exchange rate returns, exhibit leptokurtosis and time-varying
volatility. Both of these features have been studied extensively since Nicholls and Quinn and Engle
reported on them. The autoregressive conditional heteroscedastic (ARCH) models [2], and their gen-
eralization, the GARCH model [3], provide in fact a convenient framework for studying time varying
volatility in financial markets. For instance, financial time series models for stock market index are
typical examples of GARCH models.

In this paper, we were concerned with modeling the main index of the Casablanca Stock Exchange,
created in 2002, MASI (Moroccan All Shares Index). The main idea was to adopt the machine learning
principle into the statistical modeling process, i.e. learn and improve from previous exposures. The
statistical learning phase is performed by the QMLKF algorithm [4] then by an existing algorithm in
the R software for comparison purpose [5]. According to the study results, the new approach was found
to be effective in modeling MASI. This work is part of a series of papers that focus on investigating
QMLKF algorithm in the case of GARCH, ARCH and RCA models [4, 6, 7].

The remaining parts of the paper are organized as follows, in section 2, we set out the basic elements
used in MASI returns modeling. Finally, the findings from our study are presented and analyzed in
section 3.

2. Framework

The singularity of GARCH model lies in its capacity to restore the stylized facts characterizing financial
series, i.e. the statistical and empirical properties frequently observed in the usual conditions of a
financial market, thanks to the concept of the conditional variance which is expressed as a linear
function of the square of the past values of the series. Formally the strong class of the GARCH(p, q)
model for a time series yt, is given by

{

εt = σtηt,

σ2
t = ω +

∑q
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j=1
βjσ

2

t−j,
(1)

where (ηt) is a sequence of independent and identically distributed (i.i.d.) random variables such that
E(ηt) = 0, E(η2t ) = 1 and ω > 0, αi > 0 (i = 1, . . . , q), βj > 0 (j = 1, . . . , p).
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The modeling by GARCH is performed by minimizing the following cost function

Ln(θ) = n−1

n
∑

t=1

{

ε2t
σ2

t (θ)
+ log σ2

t (θ)

}

. (2)

In the practical case, the process σt(θ) represents the assets volatility. Since this process is not ob-
servable, the idea was to generate it via the Kalman filter. The use of this filter is motivated by its
principle, which is to sequentially estimate the states of a dynamic system from a series of incomplete
or perturbed measurements, while minimizing the mean square error. This procedure gives the best
linear estimates.

The estimation phase is carried out by the QMLKF algorithm. This algorithm is characterized by
three main phases. The first phase consists of checking data stationarity. The cost function is then
deduced using the Kalman filter in the second phase. Finally, the algorithm is completed by applying
an optimization method, we recommend to use a method capable of finding the global minimum in
the presence of a very large number of local minima. In this case-study simulated annealing (SA) [8]
method performed well.

This approach is compared to the existing algorithm in rugarch package of R software. The rugarch
is a powerful package that provides a set of methods for modeling univariate GARCH processes,
including fitting, filtering, forecasting, simulation, as well as diagnostic tools including graphics and
various tests.

3. MASI stock index modeling

3.1. Pre-processing

In this study, we expect to achieve a double objective. At first, we aim to evaluate the QMLKF
estimation algorithm by applying it to real data and the second, we plan to model the MASI stock
index data by GARCH(1,1). This series, like all other financial series, shows statistical regularities.
These properties are difficult to reproduce artificially using linear stochastic models such as ARMA
models. Indeed, the price of this asset is non-stationary in the sense of the second-order stationarity,
whereas after logarithmic differentiation, it seems to become stationary, this new process is referred to
as return, (see Figures 1 and 2). In other words, if (pt) is the stochastic process associated with the
price of a given financial asset, the return (rt) between the dates t−1 and t would be log(pt)−log(pt−1).
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Fig. 1. MASI Daily Adjusted Close Price Index. Fig. 2. Daily adjusted MASI closing price returns.

Moreover, the evolution of returns over time brings out another property, which is the accumulation
of strong variations in packages, which refutes the hypothesis of constant conditional variance, thus
making GARCH and ARCH models suitable candidates for modeling MASI stock index returns. In
terms of autocorrelations, returns are uncorrelated, making the hypothesis of weak white noise plau-
sible. In contrast, the autocorrelations of the square returns are strong: we are in the presence of the
long memory phenomenon, (see Figures 3 and 4).
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Fig. 3. Autocorrelograms of returns-MASI. Fig. 4. Autocorrelograms of square returns-MASI.

Another important stylized fact to note concerns the distribution of returns, which is generally
asymmetric and leptokurtic, i.e. pointed at its mean and with thick tails, (see Figure 5). All these
characteristics support the choice of GARCH models.

3.2. Modeling and validation phase
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Fig. 5. Distribution of MASI returns.

In the following, we present an attempt to model
the returns of the MASI index over the period
from 01/01/2010 to 31/12/2021. For this pur-
pose, we operate in two phases, one of construc-
tion and the other of validation, by creating two
samples: a training sample where model param-
eters are estimated and a test sample on which
the model is assessed.

Parameter estimation is performed using
two tools: at first by the R package “rugarch”
and then by the QMLKF algorithm. The re-
sulting models are called Model 1 and Model 2,
respectively. Models identification and valida-
tion are based on the analysis of the residuals.

At the end of the training phase, analysis
of the autocorrelogram of the residuals and the

squared residuals in two models revealed that the autocorrelations are generally insignificant, that
means that both residuals are white noise and besides the models best explain the correlations between
the observations.

Table 1. Summary of the two models GARCH(1,1).

Model 1 (rugarch) Model 2 (QMLKF)
ω̂ 0.00009 0.000622
α̂ 0.039221 0.003012

β̂ 0.940192 0.477476

Kurtosis 3.772746 5.46538
Skewness 0.975702 -0.2168179

Akaike -5.28560 -5.755973

MSE 0.116857 0.001119

A summary of the resulting models is given
in the table below (see Table 1). Note that the
distribution of the (ηt)t process used in the def-
inition of the GARCH model in this treatment
is an asymmetric Student (Skew Student). This
choice takes into account the characteristics of
the distribution of the observed data (see Fig-
ure 5). The parameters Kurtosis and Skewness
indicate in the table respectively the skewness
and kurtosis coefficients of (ηt) in each model.

Having applied both models to the test sam-
ple, we extracted the residuals from the predictions. In Figures 10–13, we notice that the residuals
take the structure of white noise. A comparative analysis based on the Akaike criterion reveals no
great difference between two models, but in terms of MSE Model 2 is significantly more accurate than
Model 1, (see Table 1).
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Fig. 6. Autocorrelogram of residuals Model 1. Fig. 7. Autocorrelogram of squared residuals Model 1.
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Fig. 8. Autocorrelogram of residuals Model 2. Fig. 9. Autocorrelogram of squared residuals Model 2
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Fig. 10. Autocorrelogram of residuals of forecasts
by Model 1.

Fig. 11. Autocorrelogram of squared residuals of
forecasts by Model 1.
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Fig. 12. Autocorrelogram of the residuals of the
forecasts by Model 2.

Fig. 13. Autocorrelogram of squared residuals of
forecasts by Model 2.
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Fig. 14. Returns-MASI observed and predicted.

Graphically, by plotting the pre-
dictions and observations (see Figu-
re 14), we can say that the predictions
of model 1 show strong and more
frequent fluctuations, thereby mak-
ing the prediction far from the ob-
servations, unlike the predictions of
model 2. Hence, for all the above rea-
sons, we opt for Model 2 instead of
Model 1 to fit the MASI returns.

4. Conclusion

In this paper, we developed a model for MASI stock index returns. The novelty we have proposed
consists in using the QMLKF algorithm. This practical application provided positive feedback that,
on the one hand, confirmed the simulation results of a previous study. On the other hand, this result
revealed the competitiveness of the algorithm compared to the rugarch package algorithm.
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Машинне навчання для прогнозування
деяких iндексiв фондового ринку

Бенмумен М., Салхi I.

LaMSD, кафедра математики, природничий факультет,

Прем’єрський унiверситет Мохаммеда, Уджда, Марокко

У цiй статтi оцiнюється алгоритм QMLKF, розроблений у попереднiй статтi
[Benmoumen M. Numerical optimization of the likelihood function based on Kalman Filter
in the GARCH models. Mathematical Modeling and Computing. 9 (3), 599–606 (2022)]
для оцiнки параметрiв моделей GARCH, шляхом перенесення його на реальнi данi,
а потiм представляємо наше машинне навчання для прогнозування прибутковостi
деяких фондових iндексiв.

Ключовi слова: машинне навчання; статистичне навчання; модель GARCH;

фiльтр Калмана; iндекс фондового ринку.
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