УДК 621.314

У. Дзелендзя κ^1 , В. Самотий^{1,2}

¹Національний університет "Львівська політехніка", кафедра комп'ютеризованих систем автоматики ²Politechnika Krakowska im. Tadeusza Kościuszki, katedra Automatyki i Technik Informacyjnych

ДИСКРЕТНА МОДЕЛЬ СИСТЕМИ КЕРУВАННЯ МОТОРОМ ПОСТІЙНОГО СТРУМУ ІЗ ПАРАЛЕЛЬНИМ ЗБУДЖЕННЯМ

© Дзелендзяк У., Самотий В., 2013

Наведено математичну модель системи: однофазний мостовий випрямляч – мотор постійного струму з паралельним збудженням, орієнтовану на неявні методи числового інтегрування, а також запропоновано метод аналізу перехідних режимів її роботи.

Ключові слова: однофазний мостовий випрямляч, мотор постійного струму з паралельним збудженням, перехідні процеси, неявний метод Ейлера, додаткові логічні змінні.

Mathematical model of the system is the single-phase bridge rectifier and motor of direct-current with parallel excitation, which is directed on implicit methods of numerical integration is resulted and method of analysis of transient operational modes is suggested.

Key words: single-phase bridge rectifier, motor of direct-current with parallel excitation, transient operational modes, implicit Euler's method, additional logic variables.

Вступ

Аналізуючи режими роботи систем керування електричними моторами, необхідно враховувати нелінійності їх характеристик, які обумовлені кривими намаґнечення, насиченням маґнетних матеріалів, втратами в сталі і комутацією обмоток. Враховуючи ці фактори, необхідно забезпечити максимальну стійкість системи до дії різноманітних збурень і можливість адаптації до зміни зовнішніх впливів. Цього можна досягти лише завдяки адекватній математичній моделі системи, тому тема статті є актуальною.

Електричний мотор необхідно розглядати у зв'язку з навантаженням, яке під'єднане до його якоря. Система керування за допомогою тиристорного перетворювача здійснює керування електричним мотором, навантаженим тахогенератором та моментом опору на валу якоря мотора. Вихідна напруга тахогенератора порівнюється з вихідною напругою тиристорного перетворювача, а їх різниця подається на обмотку якоря мотора.

Досліджено систему, в якій однофазний мостовий випрямляч живить обмотки мотора постійного струму з паралельним збудженням. Вал мотора сполучений з тахогенератором, який стоїть в колі зворотного зв'язку. Розроблено алгоритм аналізу перехідних режимів роботи такої системи на основі неявних методів числового інтегрування, здійснено його програмну реалізацію, виконано розрахунки та наведено їх результати.

1. Аналіз публікацій

Досліджувана система керування містить два типи елементів: електромагнетний пристрій зі змінною структурою електричного кола, а саме однофазний мостовий випрямляч, та електромеханічний об'єкт керування, яким є мотор постійного струму з паралельним збудженням. Щоб дослідити перехідні процеси цієї системи, скористаємось методами аналізу нелінійних електромагнетних кіл.

Для числового розрахунку перехідних процесів у нелінійних електричних колах у роботі [3] використовується диференційний гармонічний метод, який дав змогу істотно зменшити необхідну кількість кроків інтегрування і, відповідно, збільшити довжину кроку. В [4] запропоновано застосування діакоптичного підходу до аналізу перехідних процесів у різнорідних електричних колах, які складаються з нелінійних динамічних підсхем, поданих дискретними макромоделями, і

підсхем з компонентами із зосередженими параметрами. Розрахунок перехідних процесів для однофазного мостового випрямляча неявними методами наведено в роботі [1]. Саме такою методикою скористаємося для розрахунку перехідних процесів досліджуваної системи керування.

У [2] запропоновано модель асинхронного двигуна, яка грунтується на розрахунку одновимірного маґнетного поля з урахуванням вищих просторових гармонік маґнеторушійних сил та насичення основного магнетного кола, алгебризації диференційних рівнянь методом ФДН g-го порядку та розв'язуванні нелінійної системи алгебричних рівнянь методом Ньютона. Математичні моделі систем керування мотором постійного струму, які базуються на застосуванні явних методів числового інтегрування, наведено в роботах [5, 6].

2. Дискретні рівняння динаміки системи керування мотором постійного струму із паралельним збудженням

На рис. 1 подано принципову схему системи "мостовий випрямляч – мотор постійного струму", принцип роботи якої зводиться до наступного. Випрямлена напруга живлення u_1 паралельно подається через ємнісний фільтр C – як на обмотку збудження, так і на обмотку якоря. В результаті в обмотках збудження і якоря виникають струми, які створюють крутний електромаґнетний момент. Він, своєю чергою, приводить до обертання якоря мотора.

Якір мотора сполучений з тахогенератором $T\Gamma$, що генерує постійну напругу $u_{T\Gamma}$, яка є прямо пропорційною швидкості обертання якоря мотора ω . Вона віднімається від напруги u_C і дана різниця подається на якір мотора. За певної швидкості обертання якоря мотора ω настає динамічна рівновага, і тоді швидкість ω залишається постійною.

Рис. 1. Принципова схема системи мостовий випрямляч – мотор постійного струму

Мотор постійного струму описується системою трьох диференціальних рівнянь

$$L_{\mathcal{A}}\frac{di_{\mathcal{A}}}{dt} + L_{\mathcal{A}3}\frac{di_{3\mathcal{E}}}{dt} = F_{\mathcal{A}}, \qquad (1)$$

$$L_{3\mathcal{A}} \frac{di_{\mathcal{A}}}{dt} + L_{3\mathcal{B}} \frac{di_{3\mathcal{B}}}{dt} = F_{3\mathcal{B}},$$
(2)

$$\frac{d\omega}{dt} = \frac{1}{J} \left(c \Phi i_{\mathcal{H}} - M_O(\omega) \right), \tag{3}$$

 $\exists e \ F_{\mathcal{A}} = u_{\mathcal{A}} - c\omega \Phi - r_{\mathcal{A}}i_{\mathcal{A}} - \Delta u , \ F_{3\mathcal{B}} = u_{\mathcal{C}} - r_{3\mathcal{B}}i_{3\mathcal{B}} , \ u_{\mathcal{A}} = u_{\mathcal{C}} - u_{\mathcal{T}\mathcal{T}} , \ \Phi = f(i_{3\mathcal{B}}) .$

Розв'яжемо рівняння (1), (2) відносно часових похідних струмів

$$\frac{di_{\mathcal{A}}}{dt} = \frac{L_{3\mathcal{E}}}{\Delta} F_{\mathcal{A}} - \frac{L_{\mathcal{A}3}}{\Delta} F_{3\mathcal{E}} , \qquad (4)$$

$$\frac{di_{\mathcal{A}}}{dt} = \frac{L_{3E}}{\Delta} F_{\mathcal{A}} - \frac{L_{\mathcal{A}3}}{\Delta} F_{3E} , \qquad (5)$$

де $\Delta = L_{3E}L_{\mathcal{A}} - L_{\mathcal{A}3}L_{3\mathcal{A}}$.

Залежність $\Phi = f(i_{3E})$ можна вважати лінійною $\Phi = L_{3E} / w_{3E} i_{3E} = k_{3E} i_{3E}$. Підставимо прийняті позначення $F_{\mathcal{A}}$, F_{3E} , $u_{\mathcal{A}}$ в рівняння (4), (5), враховуючи, що $u_{TT} = k_{TT} \omega$ і введемо позначення

$$m_{0} = \frac{L_{3E}}{\Delta} \Delta u, \quad m_{1} = \frac{L_{3E}}{\Delta} - \frac{L_{\Re}}{\Delta}, \quad m_{2} = \frac{L_{3E}}{\Delta} k_{TT}, \quad m_{3} = \frac{L_{3E}}{\Delta} c k_{3E},$$

$$m_{4} = \frac{L_{3E}}{\Delta} r_{\Re}, \quad m_{5} = \frac{L_{\Re}}{\Delta} r_{3E}, \quad m_{6} = \frac{L_{3\Re}}{\Delta} \Delta u, \quad m_{7} = \frac{L_{\Re}}{\Delta} - \frac{L_{3\Re}}{\Delta},$$

$$m_{8} = \frac{L_{\Re}}{\Delta} r_{3E}, \quad m_{9} = \frac{L_{3\Re}}{\Delta} k_{TT}, \quad m_{10} = \frac{L_{3\Re}}{\Delta} c k_{3E}, \quad m_{11} = \frac{L_{3\Re}}{\Delta} r_{\Re}.$$
(6)

У результаті отримаємо

$$\frac{di_{\mathcal{H}}}{dt} = -m_0 + m_1 u_C - m_2 \omega - m_3 \omega i_{3\mathcal{E}} - m_4 i_{\mathcal{H}} + m_5 i_{3\mathcal{E}},\tag{7}$$

$$\frac{di_{3E}}{dt} = m_6 + m_7 u_C - m_8 i_{3E} + m_9 \omega + m_{10} \omega i_{3E} + m_{11} i_{\mathcal{A}}, \qquad (8)$$

Якщо в рівнянні (3) прийняти, що момент опору лінійно залежить від швидкості обертання ротора мотора $M_o = a_o \omega$, тоді це рівняння набуде вигляду

$$\frac{d\omega}{dt} = m_{12}i_{\mathcal{A}} - m_{13}\omega, \qquad (9)$$

де $m_{12} = ck_{3E} / J$, $m_{13} = a_O / J$.

Якщо відкриті діоди Д₁, Д₃, тоді для трансформатора справедливими будуть рівняння

$$i_1 = \alpha_1(\Psi_1 - \psi), \ i_2 = \alpha_2(\Psi_2 - \psi), \ i_1 + i_2 = \alpha'\psi,$$
 (10)

$$\frac{d\Psi_1}{dt} = u_1 - r_1 i_1, \quad \frac{d\Psi_2}{dt} = -u_C - r_2 i_2, \quad \frac{du_C}{dt} = C^{-1} \left(i_2 - i_{3\mathcal{B}} - i_{\mathcal{A}} \right), \tag{11}$$

Виключимо струми обмоток трансформатора

$$\alpha_1(\Psi_1 - \psi) + \alpha_2(\Psi_2 - \psi) = \alpha'\psi, \qquad (12)$$

$$\frac{d\Psi_1}{dt} = u_1 - r_1 \alpha_1 (\Psi_1 - \psi), \quad \frac{d\Psi_2}{dt} = -u_C - r_2 \alpha_2 (\Psi_2 - \psi)$$
(13)

$$\frac{du_{C}}{dt} = C^{-1} \left(\alpha_{2} (\Psi_{2} - \psi) - i_{3E} - i_{g} \right), \tag{14}$$

Розклавши рівняння (7), (8), (9), (13), (14) за формулою неявного методу Ейлера, отримаємо систему алгебричних рівнянь

$$i_{\mathcal{A}} = i_{\mathcal{A}}^{0} + (-m_0 + m_1 u_C - m_2 \omega - m_3 \omega i_{3\mathcal{B}} - m_4 i_{\mathcal{A}} + m_5 i_{3\mathcal{B}}) \Delta t,$$
(15)

$$i_{3\mathcal{B}} = i_{3\mathcal{B}}^0 + (m_6 + m_7 u_C - m_8 i_{3\mathcal{B}} + m_9 \omega + m_{10} \omega i_{3\mathcal{B}} + m_{11} i_{\mathcal{A}}) \Delta t,$$
(16)

$$\omega = \omega^{0} + (m_{12}i_{\mathcal{A}} - m_{13}\omega)\Delta t, \qquad (17)$$

$$\Psi_1 = \Psi_1^0 + (u_1 - r_1 \alpha_1 (\Psi_1 - \psi)) \Delta t , \qquad (18)$$

$$\Psi_2 = \Psi_2^0 + (-u_C - r_2 \alpha_2 (\Psi_2 - \psi)) \Delta t , \qquad (19)$$

$$u_{C} = u_{C}^{0} + C^{-1} \left(\alpha_{2} (\Psi_{2} - \psi) - i_{3\mathcal{B}} - i_{\mathcal{A}} \right) \Delta t, \qquad (20)$$

Розв'яжемо їх відносно ω , Ψ_1 , Ψ_2 , u_C . Введемо позначення

$$\begin{array}{l} a_{1} = \omega^{0} / (1 + m_{13}\Delta t), \quad a_{2} = m_{12}\Delta t / (1 + m_{13}\Delta t), \\ a_{3} = (\Psi_{1}^{0} + u_{1}\Delta t) / (1 + r_{1}\alpha_{1}\Delta t), \quad a_{4} = r_{1}\alpha_{1}\Delta t / (1 + r_{1}\alpha_{1}\Delta t) \\ a_{5} = \Delta t^{-1} + (r_{2} + C^{-1}\Delta t)\alpha_{2}, \quad a_{6} = (\Psi_{2}^{0}\Delta t^{-1} - u_{C}^{0}) / a_{5}, \\ a_{7} = (r_{2} + C^{-1}\Delta t)\alpha_{2} / a_{5}, \quad a_{8} = C^{-1}\Delta t / a_{5}, \quad a_{9} = u_{C}^{0} + C^{-1}\alpha_{2}a_{6}\Delta t, \\ a_{10} = C^{-1}\Delta t\alpha_{2}(a_{7} - 1), \quad a_{11} = C^{-1}\Delta t(\alpha_{2}a_{8} - 1), \quad a_{12} = C^{-1}\Delta t(\alpha_{2}a_{8} - 1) \end{array}$$

Тоді

$$\omega = a_1 + a_2 i_{\mathcal{A}} , \qquad (22)$$

$$\Psi_1 = a_3 + a_4 \psi \,, \tag{23}$$

$$\Psi_2 = a_6 + a_7 \psi + a_8 i_{35} + a_8 i_{\mathcal{A}}, \qquad (24)$$

$$u_C = a_9 + a_{10}\psi + a_{11}i_{35} + a_{12}i_{37}, \qquad (25)$$

Підставимо (25) в (15), (16) і введемо позначення

$$a_{13} = \Delta t^{-1} + m_4 - m_1 a_{12}, \quad a_{14} = m_1 a_{11} + m_5, \quad a_{15} = m_1 a_{10}, \\a_{16} = -\Delta t^{-1} i_{\mathcal{A}}^0 + m_0 - m_1 a_9, \quad a_{17} = m_7 a_{12} + m_{11}, \\a_{18} = \Delta t^{-1} - m_7 a_{11} + m_8, \quad a_{19} = m_7 a_{10}, \quad a_{20} = -\Delta t^{-1} i_{\mathcal{B}\mathcal{B}}^0 - m_6 - m_7 a_9, \\a_{21} = a_{13} + m_2 a_2, \quad a_{22} = m_3 a_1 - a_{14}, \quad a_{23} = m_3 a_2, \quad a_{24} = a_{16} + m_2 a_1, \\a_{25} = a_{17} + m_9 a_2, \quad a_{26} = a_{18} - m_{10} a_1, \quad a_{27} = m_{10} a_2, \quad a_{28} = a_{20} - m_9 a. \end{cases}$$
(26)

Отримаємо

$$F_1 = a_{21}i_{\mathcal{A}} + a_{22}i_{3\mathcal{B}} + a_{23}i_{\mathcal{A}}i_{3\mathcal{B}} - a_{15}\psi + a_{24} = 0,$$
(27)

$$F_2 = -a_{25}i_{\mathcal{A}} + a_{26}i_{3\mathcal{B}} - a_{27}i_{\mathcal{A}}i_{3\mathcal{B}} - a_{19}\psi + a_{28} = 0,$$
(28)

Підставимо (23), (24) в (12) і введемо позначення

$$a_{29} = \alpha_1(a_4 - 1) + \alpha_2(a_7 - 1) - \alpha', \quad a_{30} = \alpha_2 a_8, \quad a_{31} = \alpha_1 a_3 + \alpha_2 a_6.$$
(29)

Отримаємо

$$F_3 = a_{30}i_{\mathcal{A}} + a_{30}i_{\mathcal{B}} + a_{29}\psi + a_{31} = 0.$$
(30)

Зауважимо, що коефіцієн
т $a_{29} \in функцією потокозчеплення, тому що$

$$\alpha'(\psi) = \varphi(\psi)/\psi$$

Отже, рівняння (27), (28), (30) є нелінійними. Систему цих рівнянь можна записати у вигляді

$$F(X) = 0, \tag{31}$$

де $X = (i_{\mathcal{A}}, i_{3\mathcal{B}}, \psi)^T$, $F = (F_1, F_2, F_3)^T$.

Для розв'язання (31) методом Ньютона обчислимо матрицю Якобі $F'(X^{(k)})$

$$F'(x) = \begin{bmatrix} \frac{\partial F_1}{\partial i_{\mathcal{A}}} & \frac{\partial F_1}{\partial i_{\mathcal{A}\mathcal{B}}} & \frac{\partial F_1}{\partial \psi} \\ \frac{\partial F_2}{\partial i_{\mathcal{A}}} & \frac{\partial F_2}{\partial i_{\mathcal{A}\mathcal{B}}} & \frac{\partial F_2}{\partial \psi} \\ \frac{\partial F_3}{\partial i_{\mathcal{A}}} & \frac{\partial F_3}{\partial i_{\mathcal{A}\mathcal{B}}} & \frac{\partial F_3}{\partial \psi} \end{bmatrix}$$
(32)

Для цього знайдемо часткові похідні згідно з рівняннями (27), (28), (30)

$$\frac{\partial F_{1}}{\partial i_{\mathcal{A}}} = a_{21} + a_{23}i_{3\mathcal{B}}, \quad \frac{\partial F_{1}}{\partial i_{3\mathcal{B}}} = a_{22} + a_{23}i_{\mathcal{A}}, \quad \frac{\partial F_{1}}{\partial \psi} = -a_{15},$$

$$\frac{\partial F_{2}}{\partial i_{\mathcal{A}}} = -a_{25} - a_{27}i_{3\mathcal{B}}, \quad \frac{\partial F_{2}}{\partial i_{3\mathcal{B}}} = a_{26} - a_{27}i_{\mathcal{A}}, \quad \frac{\partial F_{2}}{\partial \psi} = -a_{19},$$

$$\frac{\partial F_{3}}{\partial i_{\mathcal{A}}} = a_{30}, \quad \frac{\partial F_{3}}{\partial i_{3\mathcal{B}}} = a_{30}, \quad \frac{\partial F_{3}}{\partial \psi} = \alpha_{1}(a_{4} - 1) + \alpha_{2}(a_{7} - 1) - \alpha''.$$
(33)

Якщо відкриті діоди $Д_2$, J_4 , тоді для трансформатора рівняння (10) не зміняться, а рівняння (11) матимуть вигляд

$$\frac{d\Psi_1}{dt} = u_1 - r_1 i_1, \quad \frac{d\Psi_2}{dt} = u_C - r_2 i_2, \quad \frac{du_C}{dt} = C^{-1} \left(-i_2 - i_{35} - i_{37} \right). \tag{34}$$

Рівняння мотора (7) – (9) не зміняться. Виключимо струми обмоток трансформатора

$$\alpha_1(\Psi_1 - \psi) + \alpha_2(\Psi_2 - \psi) = \alpha'\psi, \tag{35}$$

$$\frac{d\Psi_1}{dt} = u_1 - r_1 \alpha_1 (\Psi_1 - \psi), \quad \frac{d\Psi_2}{dt} = u_C - r_2 \alpha_2 (\Psi_2 - \psi), \tag{36}$$

$$\frac{du_C}{dt} = C^{-1} \left(-\alpha_2 (\Psi_2 - \psi) - i_{35} - i_{\mathcal{H}} \right), \tag{37}$$

Розкладемо рівняння (7), (8), (9), (36), (37) за формулою неявного методу Ейлера і отримаємо систему алгебричних рівнянь, в якій рівняння (15)–(18) не зміняться, а рівняння (19), (20) матимуть вигляд

$$\Psi_2 = \Psi_2^0 + (u_C - r_2 \alpha_2 (\Psi_2 - \psi)) \Delta t, \qquad (38)$$

$$u_{C} = u_{C}^{0} + C^{-1} \left(-\alpha_{2} (\Psi_{2} - \psi) - i_{3b} - i_{\beta} \right) \Delta t,$$
(39)

Розв'язуючи ці рівняння відносно ω , Ψ_1 , Ψ_2 , u_C , знову отримаємо вирази (22)–(25), де

$$a_{1} = \omega^{0} / (1 + m_{13}\Delta t), \quad a_{2} = m_{12}\Delta t / (1 + m_{13}\Delta t),$$

$$a_{3} = (\Psi_{1}^{0} + u_{1}\Delta t) / (1 + r_{1}\alpha_{1}\Delta t), \quad a_{4} = r_{1}\alpha_{1}\Delta t / (1 + r_{1}\alpha_{1}\Delta t),$$

$$a_{5} = \Delta t^{-1} + (r_{2} + C^{-1}\Delta t)\alpha_{2}, \quad a_{6} = (\Psi_{2}^{0}\Delta t^{-1} + u_{C}^{0}) / a_{5},$$

$$a_{7} = (r_{2} + C^{-1}\Delta t)\alpha_{2} / a_{5}, \quad a_{8} = -C^{-1}\Delta t / a_{5},$$

$$a_{9} = u_{C}^{0} - C^{-1}\alpha_{2}a_{6}\Delta t, \quad a_{10} = -C^{-1}\Delta t\alpha_{2}(a_{7} - 1),$$

$$a_{11} = C^{-1}\Delta t (-\alpha_{2}a_{8} - 1), \quad a_{12} = C^{-1}\Delta t (-\alpha_{2}a_{8} - 1).$$
(40)

Виконавши такі самі перетворення, як і у першому випадку, отримаємо нелінійні рівняння (27), (28), (30), де

$$a_{13} = \Delta t^{-1} + m_4 - m_1 a_{12}, \quad a_{14} = m_1 a_{11} + m_5, \quad a_{15} = m_1 a_{10},$$

$$a_{16} = -\Delta t^{-1} i_{\mathcal{A}}^0 + m_0 - m_1 a_9, \quad a_{17} = m_7 a_{12} + m_{11},$$

$$a_{18} = \Delta t^{-1} - m_7 a_{11} + m_8, \quad a_{19} = m_7 a_{10}, \quad a_{20} = -\Delta t^{-1} i_{\mathcal{B}}^0 - m_6 - m_7 a_9,$$

$$a_{21} = a_{13} + m_2 a_2, \quad a_{22} = m_3 a_1 - a_{14}, \quad a_{23} = m_3 a_2, \quad a_{24} = a_{16} + m_2 a,$$

$$a_{25} = a_{17} + m_9 a_2, \quad a_{26} = a_{18} - m_{10} a_1, \quad a_{27} = m_{10} a_2, \quad a_{28} = a_{20} - m_9 a_1,$$

$$a_{29} = \alpha_1 (a_4 - 1) + \alpha_2 (a_7 - 1) - \alpha', \quad a_{30} = \alpha_2 a_8, \quad a_{31} = \alpha_1 a_3 + \alpha_2 a_6.$$
(41)

Часткові похідні визначатимуться виразами (33).

Якщо закриті всі діоди, тоді для трансформатора справедливими будуть рівняння

$$i_1 = \alpha_1(\Psi_1 - \psi), \quad \Psi_2 = \psi, \quad i_1 = \alpha'\psi,$$
(42)

$$\frac{d\Psi_1}{dt} = u_1 - r_1 i_1, \quad \frac{du_C}{dt} = C^{-1} \left(-i_{3\mathcal{E}} - i_{\mathcal{A}} \right), \tag{43}$$

Рівняння мотора (7)-(9) не зміняться. Виключимо струми обмоток трансформатора

$$\alpha_1(\Psi_1 - \psi) = \alpha' \psi, \tag{44}$$

$$\frac{d\Psi_1}{dt} = u_1 - r_1 \alpha_1 (\Psi_1 - \psi), \quad \Psi_2 = \psi, \tag{45}$$

$$\frac{du_C}{dt} = C^{-1} \left(-i_{3E} - i_{\mathcal{H}} \right), \tag{46}$$

Розклавши рівняння (7)–(9), (45), (46) за формулою неявного методу Ейлера, знову отримаємо систему алгебричних рівнянь, в якій рівняння (15)–(18) не зміняться, а рівняння (20) матиме вигляд

$$u_{C} = u_{C}^{0} + C^{-1} \left(-i_{3E} - i_{\mathcal{A}} \right) \Delta t, \tag{47}$$

Розв'язуючи дані рівняння відносно ω , Ψ_1 , Ψ_2 , u_C , отримаємо вирази (22)–(25), де

$$a_{1} = \omega^{0} / (1 + m_{13}\Delta t), \quad a_{2} = m_{12}\Delta t / (1 + m_{13}\Delta t),$$

$$a_{3} = (\Psi_{1}^{0} + u_{1}\Delta t) / (1 + r_{1}\alpha_{1}\Delta t), \quad a_{4} = r_{1}\alpha_{1}\Delta t / (1 + r_{1}\alpha_{1}\Delta t),$$

$$a_{5} = 1, \quad a_{6} = 0, \quad a_{7} = 1, \quad a_{8} = 0, \quad a_{9} = u_{C}^{0},$$

$$a_{10} = 0, \quad a_{11} = -C^{-1}\Delta t, \quad a_{12} = -C^{-1}\Delta t.$$
(48)

Виконавши такі самі перетворення, як і у попередніх випадках, отримаємо нелінійні рівняння (27), (28), (30), де

$$a_{13} = \Delta t^{-1} + m_4 - m_1 a_{12}, \quad a_{14} = m_1 a_{11} + m_5, \quad a_{15} = m_1 a_{10},$$

$$a_{16} = -\Delta t^{-1} i_{\mathcal{A}}^0 + m_0 - m_1 a_9, \quad a_{17} = m_7 a_{12} + m_{11},$$

$$a_{18} = \Delta t^{-1} - m_7 a_{11} + m_8, \quad a_{19} = m_7 a_{10}, \quad a_{20} = -\Delta t^{-1} i_{\mathcal{A}\mathcal{B}}^0 - m_6 - m_7 a_9,$$

$$a_{21} = a_{13} + m_2 a_2, \quad a_{22} = m_3 a_1 - a_{14}, \quad a_{23} = m_3 a_2, \quad a_{24} = a_{16} + m_2 a_1,$$

$$a_{25} = a_{17} + m_9 a_2, \quad a_{26} = a_{18} - m_{10} a_1, \quad a_{27} = m_{10} a_2, \quad a_{28} = a_{20} - m_9 a_1,$$

$$a_{29} = \alpha_1 (a_4 - 1) - \alpha', \quad a_{30} = 0, \quad a_{31} = \alpha_1 a_3.$$
(49)

Часткові похідні обчислюємо згідно з виразами

$$\frac{\partial F_{1}}{\partial i_{\pi}} = a_{21} + a_{23}i_{35}, \quad \frac{\partial F_{1}}{\partial i_{35}} = a_{22} + a_{23}i_{\pi}, \quad \frac{\partial F_{1}}{\partial \psi} = -a_{15}, \\
\frac{\partial F_{2}}{\partial i_{\pi}} = -a_{25} - a_{27}i_{35}, \quad \frac{\partial F_{2}}{\partial i_{35}} = a_{26} - a_{27}i_{\pi}, \quad \frac{\partial F_{2}}{\partial \psi} = -a_{19}, \\
\frac{\partial F_{3}}{\partial i_{\pi}} = a_{30}, \quad \frac{\partial F_{3}}{\partial i_{35}} = a_{30}, \quad \frac{\partial F_{3}}{\partial \psi} = \alpha_{1}(a_{4} - 1) - \alpha''.$$
(50)

Залишається узагальнити отримані вирази для трьох комбінацій. Коефіцієнти $m_0 \div m_{11}$ залишаться без змін для всіх комбінацій. Щоб узагальнити решту коефіцієнтів, введемо додаткові логічні змінні *j*, *k*. Причому для першої комбінації *j*=1, *k*=1, для другої – *j*=–1, *k*=1, для третьої – *k*=0.

$$\begin{array}{l} a_{1} = \omega^{0} / (1 + m_{13}\Delta t), \quad a_{2} = m_{12}\Delta t / (1 + m_{13}\Delta t), \\ a_{3} = (\Psi_{1}^{0} + u_{1}\Delta t) / (1 + r_{1}\alpha_{1}\Delta t), \quad a_{4} = r_{1}\alpha_{1}\Delta t / (1 + r_{1}\alpha_{1}\Delta t), \\ a_{5} = 1 - k + k(\Delta t^{-1} + (r_{2} + C^{-1}\Delta t)\alpha_{2}), \quad a_{6} = k(\Psi_{2}^{0}\Delta t^{-1} - ju_{C}^{0}) / a_{5}, \\ a_{7} = [1 - k + k(r_{2} + C^{-1}\Delta t)\alpha_{2}] / a_{5}, \qquad a_{8} = jkC^{-1}\Delta t / a_{5}, \\ a_{9} = u_{C}^{0} + jkC^{-1}\alpha_{2}a_{6}\Delta t, \quad a_{10} = jkC^{-1}\Delta t\alpha_{2}(a_{7} - 1), \\ a_{11} = C^{-1}\Delta t(jk\alpha_{2}a_{8} - 1), \quad a_{12} = C^{-1}\Delta t(jk\alpha_{2}a_{8} - 1), \\ a_{13} = \Delta t^{-1} + m_{4} - m_{1}a_{12}, \quad a_{14} = m_{1}a_{11} + m_{5}, \quad a_{15} = m_{1}a_{10}, \\ a_{16} = -\Delta t^{-1}i_{g}^{0} + m_{0} - m_{1}a_{9}, \quad a_{17} = m_{7}a_{12} + m_{11}, \\ a_{18} = \Delta t^{-1} - m_{7}a_{11} + m_{8}, \quad a_{19} = m_{7}a_{10}, \quad a_{20} = -\Delta t^{-1}i_{35}^{0} - m_{6} - m_{7}a_{9}, \\ a_{21} = a_{13} + m_{2}a_{2}, \quad a_{22} = m_{3}a_{1} - a_{14}, \quad a_{23} = m_{3}a_{2}, \quad a_{24} = a_{16} + m_{2}a_{1}, \\ a_{25} = a_{17} + m_{9}a_{2}, \quad a_{26} = a_{18} - m_{10}a_{1}, \quad a_{27} = m_{10}a_{2}, \quad a_{28} = a_{20} - m_{9}a_{1}. \end{array} \right]$$

Елементи матриці Якобі визначаємо за формулами

$$\frac{\partial F_{1}}{\partial i_{\mathcal{A}}} = a_{21} + a_{23}i_{3\mathcal{B}}, \quad \frac{\partial F_{1}}{\partial i_{3\mathcal{B}}} = a_{22} + a_{23}i_{\mathcal{A}}, \quad \frac{\partial F_{1}}{\partial \psi} = -a_{15}, \\ \frac{\partial F_{2}}{\partial i_{\mathcal{A}}} = -a_{25} - a_{27}i_{3\mathcal{B}}, \quad \frac{\partial F_{2}}{\partial i_{3\mathcal{B}}} = a_{26} - a_{27}i_{\mathcal{A}}, \quad \frac{\partial F_{2}}{\partial \psi} = -a_{19}, \\ \frac{\partial F_{3}}{\partial i_{\mathcal{A}}} = a_{30}, \quad \frac{\partial F_{3}}{\partial i_{3\mathcal{B}}} = a_{30}, \quad \frac{\partial F_{3}}{\partial \psi} = \alpha_{1}(a_{4} - 1) + k\alpha_{2}(a_{7} - 1) - \alpha''. \end{cases}$$
(52)

Розв'язавши рівняння (31), визначаємо змінні $X = (i_g, i_{3b}, \psi)^T$. Згідно із (25) обчислюємо напругу конденсатора, згідно із (22)–(24) – швидкість обертання ротора мотора та повні потокозчеплення обмоток. Згідно із (10) обчислюємо струми обмоток i_1 , i_2 . Змінюючи поточний час та розв'язуючи (31) за формулою ітераційного методу Ньютона, отримуємо розрахунок перехідного процесу. Умови відкривання і закривання вентилів визначаються так. Якщо всі вентилі закриті k = 0, тоді необхідно обчислити напругу u_{13} на парах вентилів \mathcal{A}_1 , \mathcal{A}_3 та напругу u_{24} на парах вентилів \mathcal{A}_2 , \mathcal{A}_4

$$u_{13} = -\frac{d\psi}{dt} - u_C, \qquad u_{24} = \frac{d\psi}{dt} - u_C.$$
(53)

Якщо виконається умова $u_{13} > 0$, тоді присвоюємо j = 1, k = 1. Якщо виконається умова $u_{24} > 0$, тоді присвоюємо j = -1, k = 1.

Якщо якась пара вентилів відкрита, тоді перевіряємо умову її закривання, а саме

$$t_2(t_j) \times i_2(t_{j+1}) < 0.$$
 (54)

Це означає, що вентилі закриваємо в момент зміни знаку вихідного струму трансформатора. При виконанні умови (54) присвоюємо $i_2(t_{i+1}) = 0$, k = 0.

3. Результати комп'ютерного симулювання

На рис. 2–4 наведено результати комп'ютерного симулювання перехідного процесу системи керування, принципову схему якої подано на рис. 1. Розрахунки проводили за таких параметрів трансформатора: $r_1 = 0.2$ Ом, $r_2 = 0.36$ Ом, C = 200 мкФ, $\alpha_1 = \alpha_2 = 270$ Гн⁻¹, $\psi_1 = 0.2$ Вб, $\psi_2 = 0.9$ Вб, $\varphi(\psi_1) = 0.05$ А, $\varphi(\psi_2) = 1$ А, $\alpha''(\psi_1) = 0.25$ Гн⁻¹, $\alpha''(\psi_2) = 3.5$ Гн⁻¹; мотора: $r_g = 3.32$ Ом, $r_{3E} = 173$ Ом, $L_{33E} = L_{3EB} = 0.1$ мГн, $L_g = 4.67$ мГн, $k_{3E} = 10$ мГн, $L_{35} = 110.8$ Гн, c = 0.0002 Н·м/(А·Вб), J = 2 Н·м·с²/рад.

Момент опору на валу мотора визначався за формулою:

$$M_{O} = M_{OH} (1 - e^{-b_0 \omega}) + b_1 + b_2 \omega + b_3 \sin(\varphi)$$
(55)

Досліджувалися такі режими роботи системи:

1. Система зі зворотним зв'язком, вал мотора не навантажений:

 $k_{TT} = 10$ В·с/рад, $b_0 = b_1 = b_2 = b_3 = 0$ ($M_0 = 0$), час інтегрування $t_K = 12$ с.

2. Система зі зворотним зв'язком, момент опору на валу мотора лінійно залежить від швидкості його обертання:

$$k_{TT} = 10$$
 В·с/рад, $b_0 = b_1 = b_3 = 0$, $b_2 = 2$, $t_K = 12$ с.

3. Система розімкнена, момент опору на валу мотора лінійно залежить від швидкості його обертання:

 $k_{TT} = 0, \ b_0 = b_1 = b_3 = 0, \ b_2 = 2, \ t_K = 12 \text{ c.}$

4. Система розімкнена, вал мотора не навантажений:

$$k_{TT} = 0, \ b_0 = b_1 = b_2 = b_3 = 0 \ (M_0 = 0), \ t_K = 40 \text{ c.}$$

5. Система зі зворотним зв'язком, момент опору має синусоїдальний характер з постійною складовою, яка змінюється від нуля до 5 Н[.]м за експоненціальним законом:

 $k_{TT} = 10$ В·с/рад, $M_{OH} = 5$ Н·м, $b_0 = 1$, $b_1 = b_2 = 0$, $b_3 = 10$ Н·м, $t_K = 12$ с.

6. Система зі зворотним зв'язком, момент опору дорівнює нулю, а після 10 с перехідного процесу стрибком змінюється до 50 Н·м – $k_{TT} = 10$ В·с/рад, $t_K = 24$ с:

$$M_{O} = \begin{cases} 0, & \text{якщо } t < 10c \\ 50 \ H \cdot M, & \text{якщо } t \ge 10c. \end{cases}$$

На рис. 2–4 наведено розрахункові криві перехідного процесу швидкості обертання ротора мотора для всіх режимів роботи системи. Для режимів 1, 2, 3, 5 (рис. 2) криві перехідного процесу швидкості обертання ротора мотора мають експоненціальну залежність без перерегулювань. Час перехідного процесу для першого режиму приблизно становить 8 с, для другого – 5 с, для третього – 7 с, для п'ятого режиму існують незагасаючі коливання, які пов'язані з синусоїдальним характером моменту опору. Часовий інтервал інтегрування для 1, 2, 3 і 5 режимів становить 12 с, для 4 режиму – 40 с, для 6 режиму – 24 с. Для четвертого режиму роботи системи (рис. 3) крива перехідного процесу швидкості обертання ротора мотора також має експоненціальну залежність з незначним перерегулюванням. Час перехідного процесу приблизно 30 с. Як бачимо, за відсутності зворотного зв'язку та моменту опору в декілька разів зростає швидкість обертання ротора мотора та час перехідного процесу.

На рис. 4 наведено криву перехідного процесу швидкості обертання ротора мотора для шостого режиму роботи системи. Система містить зворотний зв'язок і перші 10 с працює, коли момент опору дорівнює нулю. В момент часу t = 10 с момент опору стрибком змінюється до 50 Н·м. Обидві залежності – як зростаюча, так і спадна – мають експоненціальний характер, а загальний час перехідного процесу не перевищує 20 с.

Висновок

Розроблено дискретну математичну модель системи керування швидкістю обертання ротора мотора постійного струму з тахогенератором як ланкою зворотного зв'язку, яка ґрунтується на неявних методах числового інтегрування, що дає можливість досліджувати динаміку системи за

будь-яких значень її параметрів. Ця математична модель враховує нелінійності кривих намаґнечення трансформатора, а також рівнянь стану електричного мотора постійного струму, що дає можливість врахувати вплив нелінійностей на динаміку роботи системи. З використанням моделі вентилів за схемою ідеального ключа аналіз динаміки системи звівся до розв'язування методом Ньютона системи трьох нелінійних алгебричних рівнянь. При моделюванні вентилів *RLC*-ланками зі змінними параметрами ми б отримали систему п'яти рівнянь.

1. Дзелендзяк У., Самотий В. Дискретна математична модель однофазного мостового випрямляча // Вісник Нац. ун-ту "Львівська політехніка", "Комп'ютерні науки та інформаційні технології". – 2005. – № 543. – С. 95–102. 2. Гладкий В.М. Математична модель асинхронного двигина з урахуванням ексиентриситету ротора // Вісник Нац. ун-ту "Львівська політехніка", "Електроенергетичні та електромеханічні системи". – 2010. – № 671. – С. 32–38. З. Глухівський Л.Й. Моделювання перехідних процесів у нелінійних електричних колах диференційним гармонічним методом // Вісник Нац. ун-ту "Львівська політехніка", "Електроенергетичні та електромеханічні системи". – 2012. – № 736. – С. 21–29. 4. Рендзіняк С.Й., Козак Ю.Я. Застосування дискретних макромоделей нелінійних динамічних підсистем для аналізу перехідних процесів діакоптичними методами // Вісник Нац. ун-ту "Львівська політехніка", "Електроенергетичні та електромеханічні системи". – 2011. – № 707. – С. 95–100. 5. Самотий В., Дзелендзяк У., Павельчак А. Комп'ютерна симуляція процесу керування мотором постійного струму з незалежним збудженням // Вісник Нац. ун-ту "Львівська політехніка" "Автоматика, вимірювання та керування." – 2010. – № 665. – С. 12–18. 6. Самотий В., Дзелендзяк У. Комп'ютерна симуляція системи керування мотором постійного струму з паралельним збудженням // Міжвідомчий науково-технічний збірник "Вимірювальна техніка та метрологія". – 2010. – № 71. – С. 51–58. 7. Федий В.С., Соболев В.Н. Электромагнитные процессы в многофазных электрических цепях с последовательными RLC-контурами и коммутаторами // Технічна електродинаміка. – 2001. – № 1. – С. 30–38. 8. Чабан В.И., Самотый В.В. Алгоритм расчета переходных и стационарных процессов однофазного мостового выпрямителя // Изв. вузов СССР. Радиоэлектроника. – 1987. – № 3. – С. 76–77.