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A Lévy process approach coupled to
the stochastic Leslie–Gower model

Ben Said M.1, Aghoutane N.2, Azrar L.3

1MMA, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
2Mathematical Modeling and Scientific Computing (M2CS),

Department of Applied Mathematics and Informatics, ENSIAS,
Mohammed V University in Rabat, Morocco

3Research Center ST2I, M2CS, Department of Applied Mathematics and Informatics, ENSAM,
Mohammed V University in Rabat, Morocco

(Received 26 June 2023; Revised 25 January 2024; Accepted 19 February 2024)

This paper focuses on a two-dimensional Leslie–Grower continuous-time stochastic
predator–prey system with Lévy jumps. Firstly, we prove that there exists a unique
positive solution of the system with a positive initial value. Then, we establish sufficient
conditions for the mean stability and extinction of the considered system. Numerical
algorithms of higher order are elaborated. The obtained results show that Lévy jumps
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1. Introduction

The predator–prey interaction is one of the basic relationships in ecological models and is also a basic
building block of the more complex food chain, food web and biochemical web structure [1]. In 1926,
Volterra [2] proposed a differential equation model to explain the oscillatory levels of some fish catches
in the Adriatic. Lotka [3] also derived the model to describe a hypothetical chemical reaction in which
chemical concentrations oscillate in 1925. Inspired by the Lotka–Volterra equations, several ecologists
and mathematicians elaborated important models in [4, 5], Leslie introduced a predator–prey model
where the carrying capacity of the predator environment is proportional to the number of prey. Leslie
points out that there are upper bounds on the rates of increase of prey and predators that are not
recognized in the Lotka–Volterra model and presented the following predator–prey model:















dHt

dt
= Ht (r1 − a1P − b1Ht) ,

dPt

dt
= Pt

(

r2 −
a2Pt

Ht

)

,
(1)

where Ht and Pt represent the densities of prey and predator populations at time t respectively, r1 is
the intrinsic growth rate of the prey, b1 represents the effect of interspecific prey competition in the
absence of a predator, a1HP is the functional response of the predator to the prey, r2 is the intrinsic
growth rate of the predator, a2 is a measure of the amount of food the prey provides for conversion to
a predator birth. The term a2Pt

Ht
called Leslie-Gowere term.

The deterministic model (1) is studied by Korobeinikov [6]. In [5], Leslie and Gower considered a
stochastic model of the prey–predator system and examined its properties in a constrained environment
where the assumption of sufficient food supply for the prey is taken into account. In the article [7]
Lahrouz et al. studied the random extension of the predator–prey model (1). This paper focuses on
the stochastic effects of noise associated with a population environment acting on prey and predator
crossover rates, respectively. These perturbations are modeled using independent white Gaussian
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noise. Lahrouz et al. [7] studied the system (1) with an impulse, taking into account the white noise,
by considering the following stochastic model







dHt = Ht (r1 − a1Pt − b1Ht) dt+ σ1Ht dB1(t),

dPt = Pt

(

r2 −
a2Pt

Ht

)

dt+ σ2Pt dB2(t).
(2)

Where (B1(t), B2(t)) are mutually independent Brownian motions defined on a complete probability
space (Ω,F ,P) with a filtration {Ft}t∈R+

satisfying the usual conditions (i.e., it is right continuous
and increasing while F0 contains all P-null sets), the parameters (σ1, σ2) represent the intensity of
the perturbation. Actually, population systems may suffer sudden environmental perturbations, such
as epidemics, earthquakes, hurricanes, etc. These phenomena cannot be modeled by the stochastic
system (2). Bao et al. [8] suggested that these phenomena can be described by a Lévy jump process and
they considered stochastic Lotka–Volterra population systems with jumps for the first time. Motivated
by these, we consider in this paper the following more general stochastic model:















dHt = Ht (r1 − a1Pt − b1Ht) dt+ σ1Ht dB1 +

∫

Z

Ht−γ1(u) Ñ (dt, du),

dPt = Pt

(

r2 −
a2Pt

Ht

)

dt+ σ2Pt dB2 +

∫

Z

Pt−γ2(u) Ñ (dt, du)
(3)

where Ht− and Pt− are the left limit of Ht and Pt respectively, N is a Poisson counting measure with
characteristic λ on a measurable subset Z of (0,+∞) with λ(Z) < +∞, Ñ(dt, du) = N(dt, du) −
λ(du)dt, γi : Z × Ω → R is bounded and continuous with respect to λ, and is B(Z) × Ft-measurable,
i = 1, 2.

2. Main results

Throughout this paper, as a standing hypothesis we assume that N , B1(t) and B2(t) are independent,
we also assume that 1 + γi(u) > 0, u ∈ Z, i = 1, 2 and there is a constant c > 0 such that

∫

Z

[ln (1 + γi(u))]
2 λ(du) < c. (4)

For simplicity, we introduce the following notations,

βi = 0.5σ2i +

∫

Z

[γi(u)− ln (1 + γi(u))]λ(du), i = 1, 2

R
2
+ =

{

ξ ∈ R2 | ξi > 0, i = 1, 2
}

,

ki(t) =

∫ t

0

∫

Z

ln (1 + γi(u)) Ñ(ds, du), i = 1, 2.

Let
(

Ω,F , {Ft}t>0 ,P
)

be a complete probability space with a filtration {Ft}t>0 verifying the usual
conditions.

Firstly, let us recall two lemmas that will be used later

Lemma 1 (Ref. [1]). Suppose that z(t) ∈ C (Ω× [0,+∞),R+),

1. If there exist three positive constants T, ρ and ρ0 such that

ln z(t) 6 ρ t− ρ0

∫ t

0
z(s) ds+

2
∑

i=1

σiBi(t)

for all t > T , where both σ1 and σ2 are constants, then

〈z〉∗ = lim sup
t→+∞

t−1

∫ t

0
z(s) ds 6 ρ/ρ0 a.s.

2. If there exist three positive constants T , ρ and ρ0 such that

ln z(t) > ρ t− ρ0

∫ t

0
z(s) ds+

2
∑

i=1

σiBi(t)

for all t > T , then
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〈z〉∗ = lim inf
t→+∞

t−1

∫ t

0
z(s) ds > ρ/ρ0 a.s.

Lemma 2 (Ref. [2]). Suppose that M(t), t > 0, is a local martingale cancelling at time zero then:

lim
t→+∞

ρM (t) < +∞ ⇒ lim
t→+∞

M(t)

t
= 0 a.s.,

where

ρM (t) =

∫ t

0

d〈M,M〉(s)

(1 + s)2
, t > 0

and 〈M,M〉 is Meyer’s angle bracket process (see [9, 10]).

In order to study the properties of the solution (Ht, Pt), we must first show the global existence,
uniqueness and positivity of the solution of the stochastic model (3).

Theorem 1. For any initial value (H0, P0) ∈ R
2
+, the model (3) has a unique solution (Ht, Pt) for

t > 0 and the solution will remain in R
2
+ a.s.

Proof. We pose

Xt = lnHt and Yt = lnPt. (5)

According to Itô’s formula:

dXt = d lnHt =
∂ lnHt

∂Ht
[Ht ((r1 − a1Pt − b1Ht) dt+ σ1dB1(t))]

+

∫

Z

[ln (Ht + γ1(u)Ht)− lnHt] Ñ(dt, du)

+

∫

Z

[

ln (Ht + γ1(u)Ht)− lnHt −
∂ lnHt

∂Ht
γ1(u)Ht

]

λ(du) dt +
1

2

∂2 lnHt

∂H2
t

σ21H
2
t dt

= (r1 − a1Pt − b1Ht) dt+ σ1dB1(t) +

∫

Z

[ln (1 + γ1(u))] Ñ(dt, du)

+

∫

Z

[ln (1 + γ1(u))− γ1(u)]λ(du) dt −
1

2
σ21dt

= (r1 − a1Pt − b1Ht − β1) dt+ σ1dB1(t) +

∫

Z

[ln (1 + γ1(u))] Ñ(dt, du)

From (5)

Ht = expXt and Pt = expYt

Even for Yt, the equation (3) becomes:










dXt =
(

r1 − β1 − a1e
Yt − b1e

Xt
)

dt+ σ1 dB1(t) +

∫

Z

ln (1 + γ1(u)) Ñ(dt, du)

dYt =
(

r2 − β2 − a2e
Yt−Xt

)

dt+ σ2 dB2(t) +

∫

Z

ln (1 + γ2(u)) Ñ(dt, du)
(6)

with initial conditions X0 = lnH0 and Y0 = lnP0.
Clearly, the coefficients of system (6) satisfy the local Lipschitz condition, then there is a unique

local solution (Xt, Yt) on [0, τe), where τe is the explosion time (see Mao [11]). Therefore Ht = eXt ,
Pt = eYt is the unique positive local solution to system (3) with initial data (H0, P0).

To complete the proof, we have to show that τe = ∞.
Consider the following two stochastic equations

dMt =Mt (r1 − b1Mt) dt+ σ1Mt dB1(t) +

∫

Z

Mt−γ1(u)Ñ (dt, du), (7)

dψ(t) = ψ(t) (r2 − a2ψ(t)) dt+ σ2ψ(t) dB2(t) +

∫

Z

ψ
(

t−
)

γ2(u)Ñ (dt, du), (8)

dNt = Nt

(

r2 −
a2Nt

Mt

)

dt+ σ2Nt dB2(t) +

∫

Z

Nt−γ2(u)Ñ(dt, du) (9)

with initial conditions N0 = H0, ψ(0) = P0, M0 = P0.
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The logistic equations (7) and (9) admit a single continuous positive solution for any initial value
N0 = H0 > 0, M0 = P0 > 0.

By the comparison theorem for the stochastic equation [12], we get for t ∈ [0, τe)

Ht 6Mt and ψ(t) 6 Pt 6 Nt a.s. (10)

According to the Lemma:4 − 2 of [13] the equation (7) has the explicit formula:

Mt =
exp {(r1 − β1) t+ σ1B1(t) + k1(t)}

1
H0

+ b1
∫ t

0 exp {(r1 − β1) s+ σ1B1(s) + k1(s)} ds
. (11)

Similarly,

ψ(t) =
exp {(r2 − β2) t+ σ2B2(t) + k2(t)}

y−1
0 + a2

∫ t

0 exp {(r2 − β2) s+ σ2B2(s) + k2(s)} ds
, (12)

Nt =
exp {(r2 − β2) t+ σ2B2(t) + k2(t)}

1
P0

+ a2
∫ t

0
1
Ms

exp {(r2 − β2) s+ σ2B2(s) + k2(s)}ds
, (13)

where

ki(t) =

∫ t

0

∫

Z

ln (1 + γi(u)) N̄(ds, du), i = 1, 2.

Now, suppose that τe < ∞, then there exists T > 0 such that P (τe < T ) > 0 and let w ∈ (τe < T ).
According to the theorem A.2 of [14],

lim
t→τe

sup ‖(Hτe , Pτe)‖ = ∞

with (10) this implies that

∞ = lim sup
t→τe

‖(Hτe , Pτe)‖ 6 ‖(Mτe , Nτe)‖ <∞,

which is a contradiction. Finally, we have τe = ∞ a.s. �

Theorem 2. Let (Ht, Pt) be the solution of the SDE (3) of initial value (H0, P0) ∈ R
2
+. Then for all

m > 0, there exists C(m) ∈ (0,∞) such that

sup
t>0

E (Hm
t + Pm

t ) 6 C(m).

Proof. Since Ht, Nt are now defined on [0,∞), we can write from (10) that

Ht 6 Nt for all t > 0. (14)

On the other hand, we know that the solutions of the stochastic logistic equation (7) verify for any
m > 0

sup
t>0

ENm
t <∞. (15)

From (14) and (15) we get

sup
t>0

EHm
t 6 sup

t>0
ENm

t <∞.

Therefore, to complete the proof, it is sufficient to show that sup
t>0

EPm
t <∞.

Applying Itô’s formula to Pm
t we get:

dPm
t =

∂Pm
t

∂Pt

[

Pt

((

r2 −
a2Pt

Ht

)

+ σ2 dB2

)]

dt+

∫

Z

[(Pt + γ2(u)Pt)
m − Pm

t ] Ñ(dt, du)

+

∫

Z

(

(Pt + γ2(u)Pt)
m − Pm

t −
∂Pm

t

∂Pt
γ2(u)Pt

)

ν (du) dt+
1

2

∂2Pm
t

∂P 2
t

σ22P
2
t dt,

which gives

dPm
t =

[

mPm
t

(

r2 −
a2Pt

Ht

)

+
1

2
m(m− 1)σ22P

m
t

]

dt+mPm
t σ2 dB2
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+ Pm
t

∫

Z

[(1 + γ2(u))
m − 1] Ñ(dt, du) + Pm

t

∫

Z

((1 + γ2(u))
m − 1−mγ2(u))λ (du) dt.

We pose

K(m) =

∫

Z

((1 + γ2(u))
m − 1−mγ2(u)) ν (du)

and deduce that

dPm
t = Pm

t

[(

m

(

r2 −
a2Pt

Ht

)

+
1

2
m(m− 1)σ22 +K(m)

)

dt+mσ2 dB2

]

+ Pm
t

∫

Z

[(1 + γ2(u))
m − 1] Ñ(dt, du).

By introducing the expectation of two terms of this equation one gets

d

dt
EPm

t = E

[

m

(

r2 +
1

2
(m− 1)σ22 +K(m)

)

Pm
t −m

a2
Ht
Pm+1
t

]

= E

[(

mr2 +
1

2
m(m− 1)σ22 +K(m) + ε

)

Pm
t −m

a2
Ht
Pm+1
t

]

− εEPm
t , (16)

where ε > 0.
By studying the function Axm −Bxm+1 where A,B > 0, it is easy to see that

max
x>0

(

Axm −Bxm+1
)

=
mm

(m+ 1)m+1

Am+1

Bm
.

Hence
(

mr2 +
1

2
m(m− 1)σ22 +K(m) + ε

)

Pm
t −m

a2
Ht
Pm+1
t

6
mm

(m+ 1)m+1

(

mr2 +
1
2m(m− 1)σ22 +K(m) + ε

)m+1

(ma2)
m Hm

t .

Introducing the above inequality into equation (16) leads t:

d

dt
EPm

t 6

(

mr2 +
1
2m(m− 1)σ22 +K(m) + ε

)m+1

am2 (m+ 1)m+1
EHm

t − εEPm
t .

Since sup
t>0

EHm
t <∞, we deduce that

d

dt
EPm

t 6

(

mr2 +
1
2m(m− 1)σ22 +K(m) + ε

)m+1

am2 (m+ 1)m+1
sup
t>0

EHm
t − εEPm

t .

From the previous results and the comparison theorem [12], we obtain for any ε > 0:

lim sup
t→∞

EPm
t 6

(

mr2 +
1
2m(m− 1)σ22 +K(m) + ε

)m+1

am2 (m+ 1)m+1ε
sup
t>0

EHm
t

So,

lim sup
t→∞

EPm
t 6

supt>0 EH
m
t

am2 (m+ 1)m+1
inf
ε>0

(

mr2 +
1
2m(m− 1)σ22 +K(m) + ε

)m+1

ε
.

It is easy to demonstrate that

inf
ε>0

(

mr2 +
1
2m(m− 1)σ22 +K(m) + ε

)m+1

ε
= (m+ 1)

(

mr2 +
1

2
m(m− 1)σ22 +K(m)

)

.

This implies that

lim sup
t→∞

EPm
t 6

m
(

r2 +
1
2(m− 1)σ22 +K(m)

)

am2 (m+ 1)m
sup
t>0

EHm
t .

Hence the result. �
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3. Numerical simulation

3.1. Strong order 1.0 Taylor scheme

Let us consider the following system:














dHt = a(t,Ht) dt+ b(t,Ht) dB1 +

∫

Z

Ht−γ1(u)Ñ (dt, du),

dPt = e(t, Pt) dt+ f(t, Pt) dB2 +

∫

Z

Pt−γ2(u)Ñ (dt, du)
(17)

where a(t,Ht) = Ht(r1 − a1Pt − b1Ht), b(t,Ht) = σ1Ht, e(t, Pt) = Pt

(

r2 −
a2Pt

Ht

)

and f(t, Pt) = σ1Pt,

Ñ(dt, du) = N(dt, du) − λ(du) dt, γi : Z × Ω → R, with (H0, P0) ∈ R
2
+, and B = {B1(t), B2(t)},

t ∈ [0, T ], are Brownian motion F-adapted.
The first equation of system (17) can be written in an integral form as

Ht = H0 +

∫ t

0
a(s,Hs) ds+

∫ t

0
b(s,Hs) dB1(s) +

∫ t

0

∫

Z

Ht−γ1Ñ(dt, du)

= H0 +

∫ t

0
a (s,Hs) ds+

∫ t

0
b (s,Hs) dB1(s) +

Ñ
∑

j=1

Hτj−γ1(u) (18)

where
{

τj , j ∈ {1, 2 . . . , Ñ}
}

is the jump time.
Therefore, we also consider a one-dimensional SDE in integral form, of the form

Ht = H0 +

∫ t

0
a (s,Hs) ds +

∫ t

0
b (s,Hs) dB1(s) +

Ñ
∑

j=1

Hτj−γ1(u). (19)

When accuracy and efficiency are required, it is important to build numerical methods with higher
order of convergence. This can be achieved with the Taylor scheme (see e.g. [15]).

The Taylor scheme of order 1.0, which in the one-dimensional case, d = m = 1, is given by

Hn+1 = Hn + a∆n + b∆Bn +

∫ tn+1

tn

∫

Z

c(v) Ñ (dz, du) + b b′
∫ tn+1

tn

∫ z2

tn

dB1(z1) dB1(z2)

+

∫ tn+1

tn

∫

Z

∫ z2

tn

b c′(v) dB1(z1) Ñ (dz2, du)

+

∫ tn+1

tn

∫ z2

tn

∫

Z

{

b(tn,Hn + c(v)) − b
}

Ñ(du, dz1) dB1(z2)

+

∫ tn+1

tn

∫

Z

∫ z2

tn

∫

Z

{

c(tn,Hn + c(v1), v2)− c(v2)
}

Ñ(du1, dz1) Ñ (du2, dz2), (20)

where b′ = b′(t, x) = ∂b(t,x)
∂x

and c′(v) = c′(t, x, v) = ∂c(t,x,v)
∂x

.
The scheme (20) achieves strong order γ = 1.0, as we will see later. It represents a generalization

of the Milstein scheme, see Milstein (1974), to the case of jump diffusions.
By applying the Itô formula for jump diffusion processes, and the integration by parts formula, we

can simplify four double stochastic integrals appearing in (20) and rewrite the strong order 1.0 Taylor
scheme (20) as follows

Hn+1 = Yn + a∆n + b∆Bn +

Ñ(tn+1)
∑

i=Ñ(tn)+1

c(v) +
b b′

2

(

(∆Bn)
2 −∆n

)

+ b

Ñ(tn+1)
∑

i=Ñ(tn)+1

c′(v)
(

B1(τi)−B1(tn)
)

+

Ñ(tn+1)
∑

i=Ñ(tn)+1

{

b(Hn + c(v))− b
}(

B1(tn+1)−B1(τi)
)
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+

Ñ(tn+1)
∑

j=Ñ(tn)+1

Ñ(τj)
∑

i=Ñ(tn)+1

{

c(Hn + c(v)) − c(v)
}

. (21)

In the particular case of an independent jump coefficient, c(t, x, v) = c(t, x), the Taylor scheme of order
1.0 reduces to

Hn+1 = Hn + a∆n + b∆Bn + c∆pn + b b′I(1,1) + b c′I(1,−1)

+
{

b(tn,Hn + c)− b
}

I(−1,1) +
{

c(tn,Hn + c)− c
}

I(−1,−1),

with the following multiple stochastic integrals

I(1,1) =

∫ tn+1

tn

∫ s2

tn

dB1(s1) dB1(s2) =
1

2

{

(∆Bn)
2 −∆n

}

,

I(1,−1) =

∫ tn+1

tn

∫

Z

∫ s2

tn

dB1(s1) Ñ (du, ds2) =

Ñ(tn+1)
∑

i=Ñ(tn)+1

B1(τi)−∆pnB1(tn),

I(−1,1) =

∫ tn+1

tn

∫ s2

tn

∫

Z

Ñ(du, ds1) dB1(s2) = ∆pn∆Bn − I(1,−1),

I(−1,−1) =

∫ tn+1

tn

∫

E

∫ s2

tn

∫

Z

Ñ(du1, ds1) Ñ(du2, ds2) =
1

2

{

(∆pn)
2 −∆pn

}

.

The same procedure is followed to obtain the Taylor scheme for Pt.

3.2. Euler scheme of order 1

The simplest scheme is again the well-known Euler scheme, which, in the one-dimensional case d =
m = 1, is given by the algorithm

Hn+1 = Hn + a∆n + b∆Bn +

∫ tn+1

tn

∫

Z

Ht−γi Ñ(dt, du)

= Hn + a∆n + b∆Bn +

Ñ(tn+1)
∑

j=Ñ(tn)+1

c(v), (22)

where Ñ(dt, du) = N(dt, du) − λ(du) dt with N is again a Poisson measure F-adapted.

Note that a = a(tn,Xn), b = b(tn,Xn), c(v) = Xt−γi and c′(v) = c′(t, x, v) = ∂c(t,x,v)
∂x

∆n = tn+1 − tn = I0,n (23)

is the length of the time interval [tn, tn+1] and

∆Bn = Btn+1
−Btn (24)

is the nth Gaussian N(0,∆n) distributed increment of the Brownian motion B, n ∈ {0, 1, . . . , N − 1}.
Furthermore,

Ñ(t) = Ñ([0, t]) (25)

represents the total number of jumps of the Poisson random measure up to time t, which is a Poisson
distribution of mean λt.

The Euler scheme reduces to

Hn+1 = Hn + a∆n + b∆Bn + c∆pn, (26)

where

∆pn = Ñ(tn+1)− Ñ(tn) (27)

follows a Poisson distribution of mean λ∆n.
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4. Examples and numerical simulations

In this section, we will use the Taylor method of order 1 and Euler scheme to illustrate the analytical
results. In numerical results presented in the figure below, we choose a1 = 0.9, r1 = 2, r2 = 0.8,
b1 = 0.7, a2 = 1.6, λ = 1, Z = (0,+∞).

4.1. Taylor’s method simulation

The only difference between the conditions in these Figures is that the values of γ1, γ2 are different.
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The distribution function of           by the Taylor method

Fig. 1. Distribution function for stationary state f1(Ht) and f2(Pt) of system (3) using the Taylor method
order 1 for a1 = 0.9, r1 = 0.9, r2 = 0.8, b1 = 0.7, a2 = 1.6, σ1 = 0.5, σ1 = 0.5, λ = 1, γ1 = 0, γ2 = 0, t = 7,

initial value H0 = 1.5, P0 = 1.5.
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Fig. 2. Distribution function for stationary state f1(Ht) and f2(Pt) of system (3) using the Euler and Taylor
method order 1 for a1 = 0.9, r1 = 0.9, r2 = 0.8, b1 = 0.7, a2 = 1.6, σ1 = 0.5, σ1 = 0.5, λ = 1, γ1 = 0.3, γ2 = 0.3,

t = 7, initial value H0 = 1.5, P0 = 1.5.
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Fig. 3. Distribution function for stationary state f1(Ht) and f2(Pt) of system (3) using the Euler and Taylor
method order 1 for a1 = 0.9, r1 = 0.9, r2 = 0.8, b1 = 0.7, a2 = 1.6, σ1 = 0.5, σ1 = 0.5, λ = 1, γ1 = 0.8, γ2 = 0.7,

t = 7, initial value H0 = 1.5, P0 = 1.5.
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Figure 1 confirms that when Lévy noise is not taken into account, the system is stable in mean. In
contrast to Figures 2 and 3, we can clearly see the effect of Lévy noise, as it force a population to die.

4.2. Euler method’s simulation
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Fig. 4. Distribution function for stationary state f1(Ht) and f2(Pt) of system (3) using the Euler method for
a1 = 0.9, r1 = 0.9, r2 = 0.8, b1 = 0.7, a2 = 1.6, σ1 = 0.5, σ1 = 0.5, λ = 1, γ1 = 0, γ2 = 0, t = 7, initial value

H0 = 1.5, P0 = 1.5.
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Fig. 5. Distribution function for stationary state f1(Ht) and f2(Pt) of system (3) using the Euler method for
a1 = 0.9, r1 = 0.9, r2 = 0.8, b1 = 0.7, a2 = 1.6, σ1 = 0.5, σ1 = 0.5, λ = 1, γ1 = 0.3, γ2 = 0.3, t = 7, initial value

H0 = 1.5, P0 = 1.5.
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Fig. 6. Distribution function for stationary state f1(Ht) and f2(Pt) of system (3) using the Euler method for
a1 = 0.9, r1 = 0.9, r2 = 0.8, b1 = 0.7, a2 = 1.6, σ1 = 0.5, σ1 = 0.5, λ = 1, γ1 = 0.8, γ2 = 0.7, t = 7, initial value

H0 = 1.5, P0 = 1.5.

It is demonstrated in these figures that Lévy noise has an interesting and important property that
can force a population to die. From a biological perspective, this is reasonable. Lévy noise is a sudden
and severe environmental disturbance. When these disturbances occur, the most sensitive factor to
population dynamics is growth rate, because the young stage is the most sensitive stage of the life
cycle.

5. Conclusion

In this paper, we studied the stochastic differential equations excited by Lévy processes. The Leslie–
Grower model with environmental perturbations that are modeled by a Lévy process was considered.
We demonstrate that the model has a unique positive solution, establish sufficient and necessary
conditions for the stability in mean and extinction of each population. Numerical algorithms of higher
order are elaborated for response simulation the result reveals that the Lévy noise can change the
properties of the population systems significantly and it can force the population to die out. This is
not the case for the deterministic model, which persists in the positive steady state for all parameter
values.
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Пiдхiд на основi процесу Левi в поєднаннi зi стохастичною
моделлю Леслi–Гауера

Бен Саїд М.1, Агутан Н.2, Азрар Л.3
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3Дослiдницький центр ST2I, M2CS, кафедра прикладної математики та iнформатики, ENSAM,
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Стаття присвячена двовимiрнiй стохастичнiй системi “хижак–жертва” Леслi–Гроуера
з неперервним часом i стрибками Левi. Спершу доведено, що iснує єдиний додатний
розв’язок системи з додатним початковим значенням. Потiм встановлено достатнi
умови середньої стiйкостi та загасання розглянутої системи. Розроблено чисельнi ал-
горитми вищого порядку. Отриманi результати показують, що стрибки Левi iстотно
змiнюють властивостi популяцiйних систем.

Ключовi слова: Леслi–Гауер; SDEs; формула Iто; загасання; стохастична модель
“хижак–жертва”; метод Тейлора.
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