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This paper focuses on a two-dimensional Leslie-Grower continuous-time stochastic
predator—prey system with Lévy jumps. Firstly, we prove that there exists a unique
positive solution of the system with a positive initial value. Then, we establish sufficient
conditions for the mean stability and extinction of the considered system. Numerical
algorithms of higher order are elaborated. The obtained results show that Lévy jumps
significantly change the properties of population systems.

Keywords: Leslie-Gower; SDEs; Ité’s formula; extinction; stochastic predator—prey
model; Taylor method.

2010 MSC: 60J25, 60J60, 60J65, 60J70, 60J75 DOI: 10.23939/mmc2024.01.178

1. Introduction

The predator—prey interaction is one of the basic relationships in ecological models and is also a basic
building block of the more complex food chain, food web and biochemical web structure [1]. In 1926,
Volterra [2| proposed a differential equation model to explain the oscillatory levels of some fish catches
in the Adriatic. Lotka [3] also derived the model to describe a hypothetical chemical reaction in which
chemical concentrations oscillate in 1925. Inspired by the Lotka—Volterra equations, several ecologists
and mathematicians elaborated important models in [4, 5], Leslie introduced a predator—prey model
where the carrying capacity of the predator environment is proportional to the number of prey. Leslie
points out that there are upper bounds on the rates of increase of prey and predators that are not
recognized in the Lotka—Volterra model and presented the following predator—prey model:

dH,
d—tt = Hy (r1 — ay P — b1 Hy),

AP, _p (. wP W
dt — 1t 2 Ht )

where H; and P; represent the densities of prey and predator populations at time t respectively, rq is
the intrinsic growth rate of the prey, b represents the effect of interspecific prey competition in the
absence of a predator, a1 H P is the functional response of the predator to the prey, ro is the intrinsic
growth rate of the predator, as is a measure of the amount of food the prey provides for conversion to
a predator birth. The term “;{13 t called Leslie-Gowere term.

The deterministic model (1) is studied by Korobeinikov [6]. In [5], Leslie and Gower considered a
stochastic model of the prey—predator system and examined its properties in a constrained environment
where the assumption of sufficient food supply for the prey is taken into account. In the article [7]
Lahrouz et al. studied the random extension of the predator—prey model (1). This paper focuses on
the stochastic effects of noise associated with a population environment acting on prey and predator
crossover rates, respectively. These perturbations are modeled using independent white Gaussian
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A Lévy process approach coupled to the stochastic Leslie-Gower model 179

noise. Lahrouz et al. 7] studied the system (1) with an impulse, taking into account the white noise,
by considering the following stochastic model

dHt = Ht (7’1 — al,Pt — blHt) dt + UlHt dBl(t),

P,
dP, = P, <7‘2 — CL;[ t) dt + o9 P; dBQ(t). (2)
t

Where (Bj(t), B2(t)) are mutually independent Brownian motions defined on a complete probability
space (2, F,P) with a filtration {]:t}teR+ satisfying the usual conditions (i.e., it is right continuous
and increasing while Fy contains all P-null sets), the parameters (o1, 02) represent the intensity of
the perturbation. Actually, population systems may suffer sudden environmental perturbations, such
as epidemics, earthquakes, hurricanes, etc. These phenomena cannot be modeled by the stochastic
system (2). Bao et al. [8] suggested that these phenomena can be described by a Lévy jump process and
they considered stochastic Lotka—Volterra population systems with jumps for the first time. Motivated
by these, we consider in this paper the following more general stochastic model:

dH, = H, (r1 — a1 P, — by Hy) dt + oy H, dBy + / Hy i (u) N (dt, du),
z

GQPt

H,

where H;- and P;- are the left limit of H; and P, respectively, IV is a Poisson counting measure with

characteristic A on a measurable subset Z of (0,+00) with A(Z) < 400, N(dt,du) = N(dt,du) —

Adu)dt, v;: Z x Q — R is bounded and continuous with respect to A, and is B(Z) x F;-measurable,
i=1,2.

(3)

>dt—|—0’2Pt dBs —|—/Pt"}/2(u) N(dt,du)
VA

dPt=Pt<r2—

2. Main results

Throughout this paper, as a standing hypothesis we assume that N, By (t) and By(t) are independent,
we also assume that 1+ ~;(u) >0, u € Z, 1 = 1,2 and there is a constant ¢ > 0 such that

[ (4 @) Ad) < (1)
y/
For simplicity, we introduce the following notations,
5 = 0.507 +/[%-(u) (1 ()] Adu), i=1,2
V/
RY ={¢€eR*|&>0,i=1,2},
¢
ki(t) = / /ln(l + 7i(u)) N(ds,du), i=1,2.
0 Jz

Let (Q,]—" AF =0 ,]P’) be a complete probability space with a filtration {F;}, verifying the usual
conditions.
Firstly, let us recall two lemmas that will be used later

Lemma 1 (Ref. [1]). Suppose that z(t) € C' (2 x [0,4+0),R,),
1. If there exist three positive constants T, p and pg such that
t 2
Inz(t) < pt— po/ z(s)ds + Z 0:Bi(t)
0 i=1
for all t > T, where both o1 and o9 are constants, then

t
(z)* = limsupt_l/ z(s)ds < p/po a.s.
0

t——+o0

2. If there exist three positive constants T', p and pg such that

" 2
Inz(t) > pt — po/ z(s)ds + Z 0;B;(t)
0 i=1
for allt > T, then

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 178-188 (2024)



180 Ben Said M., Aghoutane N., Azrar L.

t
(2)s = liminft_l/ z(s)ds = p/po a.s.
0

t——+o0

Lemma 2 (Ref. [2]). Suppose that M(t), t > 0, is a local martingale cancelling at time zero then:

M{(t)

t—lgﬁloo pu(t) < 00 = t—liﬁloo — = 0 as.,
where
b d(M, M)(s)
= [ ==L >0
it = [ S

and (M, M) is Meyer’s angle bracket process (see [9,10]).
In order to study the properties of the solution (Hy, P;), we must first show the global existence,
uniqueness and positivity of the solution of the stochastic model (3).

Theorem 1. For any initial value (Hy, Py) € R%, the model (3) has a unique solution (Hy, P;) for
t > 0 and the solution will remain in ]R%r a.s.

Proof. We pose
X;=InH; and Y;=InP,. (5)

According to It6’s formula:

8lnHt
dX; =dnH; =
t t aHt

+ / [In (Hy + 71 (u)Hy) — In Hy] N(dt, du)
Z

[Ht ((7‘1 —a1 P — blHt) dt + UldBl(t))]

In H, 1071 H
+ / In (Hy + v (u)Hy) —In Hy — Oln i (w)Hy | AMduw) dt + 0" n o?HEdt
zZ OHy 2 0HZ H?

— (11— ay P, — by Hy) dt + 01d By () + /Z [In (1 + 1 (w))] N (dt, du)
4 /Z [In (1 + 71 (u)) — 71 (w)] A(du) dt — 50 2t

= (7"1 —a1 P — b1 H; — 51) dt + 01dBy (t) + /Z [ln (1 + ’71(u))] N(dt, d’LL)

From (5)
Hy=expX; and P, =expY;

Even for Y;, the equation (3) becomes:

dX; = (r1— B —aer —bleXt) dt + o1 dBy(t) + /1n(1+71(u)) N(dt, du)

z i (6)

4Y; = (ry — By — aze¥ X0 dt + 03 dBa(t) + / In (1 4+ 7 () N (dt, du)
VA

with initial conditions Xy = In Hy and Yy = In .

Clearly, the coefficients of system (6) satisfy the local Lipschitz condition, then there is a unique
local solution (Xy,Y;) on [0,7.), where 7. is the explosion time (see Mao [11]). Therefore H; = eXt,
P, = €t is the unique positive local solution to system (3) with initial data (Hg, Fp).

To complete the proof, we have to show that 7. = oo.

Consider the following two stochastic equations

th Mt (7‘1 — blMt) dt + O'1Mt dBl / Mt ’yl dt du) (7)
A1) = 9(0) (ra = a() di + 20(6) dBa(0) + [ () male) Vet ), ®)
dN; = <r2 — aj\éj > dt + o9 N} ng /Nt ’72 dt du) (9)

with initial conditions Ny = Hy, ¥(0) = Py, My = F.
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The logistic equations (7) and (9) admit a single continuous positive solution for any initial value
No=Hy >0, My=Fy > 0.
By the comparison theorem for the stochastic equation [12], we get for ¢ € [0, 7¢)
Ht < Mt and 1[)(75) g Pt < Nt a.s. (10)
According to the Lemma:4 — 2 of [13| the equation (7) has the explicit formula:
exp{(r1 — f1)t +o1Bi(t) + ki1(t)}

e HLO—I-bl foteXp{(T‘l—ﬁ1)8+0'131(8)+k‘1(8)}d8' 1
Similarly,
o(t) = exp {(r2 — f2)t + 02 Ba(t) + ka(t)} (12)
o +as [ exp{(ra — B2) s + 02 Ba(s) + ka(s)} ds’
N, = exp {(7‘2 — ,82) t+ O'QBQ(t) + kg(t)} (13)
75 + a2 Jo 7z exp{(rs — B2) s + 02 Ba(s) + ka(s) }ds’
where

ki(t) :/0 /Zln(l +7;(w)) N(ds,du), i=1,2.

Now, suppose that 7. < oo, then there exists 7" > 0 such that P (7. <T) > 0 and let w € (7. < T).
According to the theorem A.2 of [14],

Jim sup [|(Hr,, Pr)]| = o0

with (10) this implies that
oo = limsup ||(Hr,, Pr,)|| < [|(M-r,, Nz, )|| < o,
t—Te

which is a contradiction. Finally, we have 7. = co a.s. ]

Theorem 2. Let (Hy, P,) be the solution of the SDE (3) of initial value (Ho, Py) € R%. Then for all
m > 0, there exists C'(m) € (0,00) such that
supE (H" + P[™") < C(m).

t20

Proof. Since H;, Ny are now defined on [0, 00), we can write from (10) that
H, < N; forall t>0. (14)

On the other hand, we know that the solutions of the stochastic logistic equation (7) verify for any
m >0
sup EN;" < oo. (15)
t>0
From (14) and (15) we get
supEH;" < supEN" < oo.
=0 =0

Therefore, to complete the proof, it is sufficient to show that sup EP/™ < oo.
>0
Applying 1t6’s formula to P/ we get:

apm = 25 T p (g~ 2220 4 amy )| at +/ (P + 72(u)P)™ — P N(dt, du)
0P, H; z

) 1 2pm
[ ((Ptﬂz(u)Pt) -2 vz<u>a>u<du>dt+5a—P;a§azdt,

which gives

P, 1
dPtm — |:mPtm <7’2 — a;{ t> -+ §m(m — 1)0’%Ptm:| dt + mPtmag dBsy
t
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+ Ptm/ [(1+y2(u))™ = 1] N(dt, du) + PZ”/ (L4 72(w)™ =1 = my2(u)) A(du) dt.
Z Z
We pose

K(m) = /Z ((1+ 2(w)™ — 1 — mya(u)) v (du)

and deduce that

P, 1
dPtm = Ptm |:<m <7’2 — a;{ t> + §m(m — 1)0’% +K(m)> dt + moo dBQ:|
t

+ Rg"/Z (14 ~2(uw)™ — 1] N(dt, du).

By introducing the expectation of two terms of this equation one gets

d 1 a9
aEPtm =E [m (7‘2 + é(m —1)o3 + K(m)) P — mEPth}
az

1
=E [<mr2+§m(m—1)J§+K(m)—l—s> Ptm—mH
t

| e

where € > 0.
By studying the function Az™ — Bz™*! where A, B > 0, it is easy to see that

1
m m+1\ __ m™ Am+
e (42 = B = et

Hence

as
H;
< m" (mry + $m(m — 1)o3 + K(m) + 5)m+1
= (m A4 1)mH (maz)™

Introducing the above inequality into equation (16) leads ¢:

1
<m7‘g + §m(m —1)o3 + K(m) + &?) P —m—pmtt

.

d (mre + $m(m — 1)o3 + K(m) + E)m+l

—EP™ <
dt "t at(m + 1)m+1

Since sup EH{" < 0o, we deduce that
t>0

EH]" — cEP".

1
d (mry + $m(m — 1)o3 + K(m) + E)m+
—EP™ < 2 EH™ — cEP™.
dt ! al(m + 1)m+1 St;”é’ v e

From the previous results and the comparison theorem [12], we obtain for any £ > 0:

1 2 m+1
) mry + gm(m — 1)o3 + K(m) +¢)
1 EPm < ( 2 EH
PN ay'(m + 1)mtle Stg%) !

So,

9] RHM™ +1
lim SupEPm < su t>0 t . (mm + %m(m 1)(7% + K (m) + E)m
t

in
{00 a'(m + 1)m+l >0 €

It is easy to demonstrate that

g (mry + $m(m —1)o3 + K (m) + 5)m+1

e>0 €
This implies that

=(m+1) <m7’2 + %m(m —1)o3 + K(m)) .

m (ro + 1(m —1)o2 + K(m
limsup EP/™ < (r 25% )o> (m)) supEH;".
t—s00 al’(m+1)m >0
Hence the result. ]
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3. Numerical simulation

3.1. Strong order 1.0 Taylor scheme

Let us consider the following system:

dHt = a(t, Ht) dt + b(t, Ht) dBl + / Htf’Yl(U)N(dt, dU),

Z ] (17)

AP, = e(t, P dt + [ (t.P) dBa + [ Provalw) ¥ (dt, )
Z

where a(t, Hy) = Hy(r1 — a1 P, — b1 Hy), b(t, Hy) = o1Hy, e(t, P;) = P, (7’2 a2—];t) and f(t,P;) = o1 P,
N(dt,du) = N(dt,du) — N(du)dt, v;: Z x Q — R, with (Hop, Py)) € R2, and B = {Bi(t), Ba(t)},
t € [0,T7], are Brownian motion F-adapted.

The first equation of system (17) can be written in an integral form as

t t t
H; = Hy —|—/ a(s,Hs)ds—l—/ b(s, Hs) dB(s) —|—/ /Ht_’le(dt,du)
0 0

:H0+/Ota(s,Hs)ds—|—/0tb( 5) dBi (s Z (18)

where {Tj,j e{1,2... ,N}} is the jump time.
Therefore, we also consider a one-dimensional SDE in integral form of the form

¢
Ht:H0+/ (s, HL) ds+/bsH)d31 +Z 7 (1), (19)
0
7j=1
When accuracy and efficiency are required, it is important to build numerical methods with higher
order of convergence. This can be achieved with the Taylor scheme (see e.g. [15]).

The Taylor scheme of order 1.0, which in the one-dimensional case, d = m = 1, is given by
z2

tnt1 tn+1
H,1=H,+ al\,, +bAB,, + / / dZ du) + bb// dBl(Zl) dBy (Zg)
tn tn

tn

tn+1 -
—I—/ / bc (v) dB1(21) N(dzo,du)
tn tn
th+1 22 ~
+ / / / {b(tn, Hp + c(v)) — b} N (du,dz) dB(22)
tn tn
tn+1
/ // /{ (tn, Hp + c(v1),v2) — c(v2) }N duy,dzy) (duz,dZQ) (20)
tn tn

where b’ = V/(t,z) = 8ngx and ¢ (v) = d(t,z,v) = 60@;”).

The scheme (20) achieves strong order v = 1.0, as we will see later. It represents a generalization
of the Milstein scheme, see Milstein (1974), to the case of jump diffusions.

By applying the It6 formula for jump diffusion processes, and the integration by parts formula, we
can simplify four double stochastic integrals appearing in (20) and rewrite the strong order 1.0 Taylor

scheme (20) as follows

N(tnt1)
Hypy =Yo+al, +bAB, + > c(v)+
i=N(tn)+1

by

- ((AB.)?* - A,)

N(tn+1)
+b Y d)(Bi(r) — Biltn))
=N (tn)+1
N(tnt1)
+ Z {b(H,, + c(v)) = b} (Bi(tns1) — Bi(m))
i=N(tn)+1
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7%%1 IV(TJ)

+ Z ST {e(Ha + () — c(v)}. (21)

G=N(tn)+1i=N(tn)+1
In the particular case of an independent jump coefficient, ¢(¢, z,v) = ¢(t, z), the Taylor scheme of order
1.0 reduces to

Hn+1 = Hn + CLAn + bABn + CApn + bb/I(Ll) + bC,I(l’_l)
+ {b(tna Hy +¢) — b}l(—l,l) + {C(tna Hy +¢) — C}I(—l,—l)a

with the following multiple stochastic integrals

tntl 82 1 )
Iy = /t /t dB1(s1) dB1(s2) = 3 {(AB,)* — Ay},

N(tn+1)

tnt1 $2 _
I(L—l) = /t /Z ] dBl (81) N(duv d82) = Z Bl(Ti) - ApnBl(tn)a

i=N(tn)+1

tn+1 -
Iy = / / /N(dU, ds1) dBi(s2) = App,ABy, — I(1 1),
tn tn

tn+1 82 _ _ 1
Iy = /t /S/t /ZN(dul,dsl) N(dug,dss) = 3 {(Apn)2 — Apn} .

The same procedure is followed to obtain the Taylor scheme for P;.

3.2. Euler scheme of order 1

The simplest scheme is again the well-known Fuler scheme, which, in the one-dimensional case d =
m = 1, is given by the algorithm

tn+1

N(tn+1)
=Hy+al, +bAB, + Y cv), (22)
j=N(tn)+1
where N (dt,du) = N(dt,du) — \(du) dt with N is again a Poisson measure F-adapted.
Note that a = a(tn, Xy), b = b(tn, Xn), c¢(v) = Xi—v; and ¢ (v) = d (¢, x,v) = w
An =lnt1 —ln = IO,n (23)
is the length of the time interval [t,,t,+1] and
AB,, = By,,., — By, (24)

is the nth Gaussian N (0, A,,) distributed increment of the Brownian motion B, n € {0,1,..., N —1}.
Furthermore,

N(t) = N([0,2]) (25)
represents the total number of jumps of the Poisson random measure up to time ¢, which is a Poisson

distribution of mean At.
The Euler scheme reduces to

H,11 = H, + alA, + bAB,, + cApy, (26)
where
Apn = N(tni1) — N(ty) (27)
follows a Poisson distribution of mean \A,,.
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4. Examples and numerical simulations

In this section, we will use the Taylor method of order 1 and Euler scheme to illustrate the analytical
results. In numerical results presented in the figure below, we choose a1 = 0.9, 1 = 2, ro = 0.8,
by =07, a2 =16, \=1, Z = (0,4+00).

4.1. Taylor's method simulation

The only difference between the conditions in these Figures is that the values of 71, 792 are different.

351 [ The distribution function of fi(Hy) by the Taylor method

sl [ The distribution function of f2(P:) by the Taylor method

2.5
2

15

1

0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time
Fig. 1. Distribution function for stationary state fi(H;) and fo(P:) of system (3) using the Taylor method
order 1 for a3 = 0.9, 71 =0.9, 70 =08, 60 =0.7,a2 =16,01 =05,0;, =05, A=1,v=0,7%2=0,t=17,
initial value Hy = 1.5, Py = 1.5.

251 [ The solution of Hy by the Taylor method of order 1

[77] The solution of P, by the Taylor method of order 1

0 0.5 1 15 2 25 3
Time
Fig. 2. Distribution function for stationary state f1(H;) and fo(P;) of system (3) using the Euler and Taylor
method order 1 for a3 = 0.9, =0.9,72 =0.8,b1 =0.7, a2 = 16,01 =0.5,01 =05, A =1, =0.3, 72 = 0.3,
t = 7, initial value Hy = 1.5, Py = 1.5.

25 [ The solution of Hy by the Taylor method of order 1

[0 The solution of P; by the Taylor method of order 1

1.5

0.5

- L | =

0 0.5 1 15 2 25 3 3.5 4

Time

Fig. 3. Distribution function for stationary state fi(H;) and fo(P;) of system (3) using the Euler and Taylor
method order 1 for a3 = 0.9, =0.9,72 =0.8,b1 =0.7, a2 =1.6,01 =0.5,01 =05, A =1, = 0.8, 72 = 0.7,
t = 7, initial value Hy = 1.5, Py = 1.5.

0
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Figure 1 confirms that when Lévy noise is not taken into account, the system is stable in mean. In
contrast to Figures 2 and 3, we can clearly see the effect of Lévy noise, as it force a population to die.

4.2, Euler method’s simulation

The distribution function of fi(H;) by the Euler method

- The distribution function of f2(P;) by the Euler method
4.5 -

2.5

0 [ = S | | | I
0 0.5 1 15 2 25 3 3.5 4
Time
Fig. 4. Distribution function for stationary state f1(H:) and fo(P%) of system (3) using the Euler method for
a1 =09, =09,17=08,b; =07, a2=16,01 =05, 01 =05, A=1,71 =0, 72 =0, t =7, initial value
Hy=1.5, Py =1.5.

251
The solution of H; by the Euler method
The solution of P, by the Euler method
9L
1.5
1 4 [ H
0.5 L I
0 I: L I I 1

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

Fig. 5. Distribution function for stationary state f1(H:) and fo(P%) of system (3) using the Euler method for
a1=09,r=091,=08,0 =07, a0=16,01 =0.5,01 =05, A=1,v =0.3, 72 = 0.3, t =7, initial value
Hy=1.5, Py =1.5.
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1.6
The solution of Hy by the Euler method

The solution of P; by the Euler method

1.2 =

0.8} M

0.4} I

0.2 B

I S | |
0 0.5 1 15 2 2.5 3 3.5 4
Time
Fig. 6. Distribution function for stationary state fi1(H;) and fo(P;) of system (3) using the Euler method for
a1=09,r=091,=08,0 =07, a0=16,01 =0.5,01 =05, A=1,7 =0.8, 72 = 0.7, t =7, initial value
Hy=15, Py=1.5.

It is demonstrated in these figures that Lévy noise has an interesting and important property that
can force a population to die. From a biological perspective, this is reasonable. Lévy noise is a sudden
and severe environmental disturbance. When these disturbances occur, the most sensitive factor to
population dynamics is growth rate, because the young stage is the most sensitive stage of the life
cycle.

5. Conclusion

In this paper, we studied the stochastic differential equations excited by Lévy processes. The Leslie—
Grower model with environmental perturbations that are modeled by a Lévy process was considered.
We demonstrate that the model has a unique positive solution, establish sufficient and necessary
conditions for the stability in mean and extinction of each population. Numerical algorithms of higher
order are elaborated for response simulation the result reveals that the Lévy noise can change the
properties of the population systems significantly and it can force the population to die out. This is
not the case for the deterministic model, which persists in the positive steady state for all parameter
values.
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Miaxip Ha ocHoBi npouecy JleBi B Nno€aHAHHI 31 CTOXaCTUYHOIO
mopennto Jlecni—layepa

Ben Cain M.', Aryran H.2, Aspap JI.3

YMMA, FPL, Ynisepcumem A6desvmanexa Eccaadi, Temyan, Mapoxxo
2 Mamemamuune modearosarms ma naykosi obuucaenmns (M2CS),
rxagedpa npursadHol mamemamury ma ingopmamuru, ENSIAS,
Vuisepcumem Myzxammeda V y Pabami, Mapoxxo

3 Tlocaionuyvruti yenmp ST2I, M2CS, xagedpa npuxasadnoi mamemamuru ma indopmamuru, ENSAM,

Vuisepcumem Myzxammeda V y Pabami, Mapoxxo

CraTTst IPpUCBSIYEHa JIBOBUMIPHIi cToXacTH4Hi#i cucreMi “xuxkak—xkeprsa’ Jleciai—I poyepa
3 HelepepBHUM dacoM i crpubkamu Jlesi. Ciuepiily 10BeJIeHO, IO iCHY€E €IMHWI JI0aTHUI
PO3B’SI30K CHUCTEMHU 3 JIONATHUM IOYATKOBUM 3HAYeHHAM. [l0TIM BCTAHOBJIEHO JTOCTATHI
YMOBHU CE€PEIHBOI CTIKOCTI Ta 3aracaHHsi pO3IJISHYTOI cucremu. Po3pobiieHo gucesibHi aJ-
ropuTM# BUIIOTO HOpsiiKy. OTpruMani pe3ysibraTu MOKa3yioTh, mo crpubkn Jlesi icrorao
3MIHIOIOTH BJIACTUBOCTI MOMYJIAIIIHUX CACTEM.

Kntouosi cnosa: Jlecai—Tayep; SDEs; dopmyaa Imo; 3azacanmns; cmoracmusmha mMooeas
“ruotcax—otcepmea’; memod Tetinopa.
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