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The rapid and widespread transmission of COVID-19 has necessitated the development
and implementation of effective control measures. Vaccination has emerged as a key
tool in combating the pandemic. This article introduces a novel approach to modeling
the dynamics of COVID-19 transmission by integrating vaccination strategies into the
susceptible-infected-recovered (SIR) framework using viability theory. We have defined
a set of constraints including a guaranteed level of vaccination, we analyze the impact
of different vaccination rates on curbing the spread of the virus. Our findings reveal the
significant role of vaccination in reducing transmission and offer valuable insights into op-
timizing vaccination campaigns. The viability-based SIR model provides a comprehensive
framework for policymakers and healthcare professionals to devise targeted strategies and
allocate resources effectively in the battle against COVID-19.
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1. Introduction

The ongoing COVID-19 pandemic has posed unprecedented challenges to global health systems,
economies, and societies. As the world continues to grapple with the devastating impact of the
virus, identifying effective control measures remains a top priority. Vaccination has emerged as a
critical intervention to curb the transmission of the virus and prevent severe illness and mortality.
However, optimizing vaccination strategies is crucial to ensure the maximum impact and efficient allo-
cation of limited resources. In this article, we present an innovative approach to modeling COVID-19
transmission control, integrating vaccination strategies into the classical susceptible-infected-recovered
(SIR) framework. Building upon the concept of viability theory, we consider the dynamic interactions
between the virus, the vaccinated population, and the overall population’s viability. By exploring
different vaccination rates and their effects on controlling the spread of COVID-19, this study aims to
provide valuable insights and support evidence-based decision-making for policymakers and healthcare
professionals.

In the fight against communicable diseases, it is important to understand how infectious agents
spread in the population to assess the impact of the epidemics they generate, anticipate their evolution
and the effectiveness of control measures. Mathematical models are a useful tool to describe these
complex and multifactorial epidemic dynamics, and to interpret often limited epidemiological data.
Since the start of the COVID-19 pandemic, the Mathematical Modeling of Infectious Diseases has
used these approaches to study the spread of the SARS-CoV-2 virus. These analyzes make it possible,
for example, to estimate the risks associated with SARS-CoV-2 infection, to assess the impact of control
measures, to monitor the spread of the SARS-CoV-2 virus, for example by estimating the proportion
of the population that has been infected with SARS-CoV-2, to produce projections to anticipate the
short-term hospital needs of COVID-19 patients, to determine the impact of variants and vaccination
on the dynamics of epidemic and to estimate the level of vaccination coverage allowing a return to
normal life.

c© 2024 Lviv Polytechnic National University 203



204 Abou-Nouh H., El Khomsi M.

In this paper, we focus on COVID-19 pandemic control by posing and solving a more realistic
control problem that takes into account vaccine supply and treatment. The peculiarity of our work is
that we used the viability approach to investigate the controlled dynamic of COVID-19.

The viability approach [1] pertains to dynamic systems that operate within specific state and
control constraints. Its objective is to assess the harmony between a system’s dynamics and the
imposed limitations on states or controls, with the aim of identifying the range of permissible states
and decisions that prevent the system from violating these constraints. When applied to sustainability,
viability analysis incorporates economic and environmental restrictions, making it a multi-criteria
approach that accounts for multiple factors simultaneously.

An important tool in the viability approach is provided by the mathematical concept of the viability

kernel. This kernel is the set of initial states from which viable trajectories begin. We will see that
the viability kernel provides some a posteriori constraints to satisfy. These constraints are stronger
than the initial viability constraints. They require that the constraints be satisfied not only now, but
also in the future. Such a characteristic of the approach makes it compatible with the definition of
sustainable development.

Mathematically speaking, the viability kernel can be regarded as a set that exhibits weak invariance
in the dynamical system, which is why it is referred to as weakly invariant.

2. Mathematical formulation and control problem

2.1. Mathematical formulation and description of the problem

The COVID-19 model into account in the present work describes the dynamics of a population splitted
into three categories:

• Susceptible (x1): individuals who could have the infection.
• Infected (x2): individuals who might spread the virus.
• Individuals to recover (x3): those who have recovered, or are immune.

We will assume that the whole population: N = x1 + x2 + x3.
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Fig. 1. The dynamic of the spread of COVID-
19 without control.

The model will have the following nonlinear system
of differential equations:

dx1
dt

= −a x1x2 − b x1,

dx2
dt

= a x1x2 − (c+ d+ b)x2,

dx3
dt

= c x2 − b x3

(1)

with initial conditions

x1(0) = x10 > 0, x2(0) = x20 > 0, x3(0) = x30 > 0.

With, a is contact rate, b is natural death rate, c is the
healing rate, d is death rate due to the disease.

2.2. Control problem under constraints

We present two control tactics, α1 vaccine and α2 wareness due to the media coverage strategies,
to eradicate the infection from a specific population. This controled problem is solved within the
framework of the viability approach, as indicated in Section 3, and the following modified dynamics of
the SIR model (1) with vaccination and wareness are proposed. We focus our study in the following
controlled dynamic system:

dx1t
dt

= −a x1tx2t − b x1t − α1x1t ,

dx2t
dt

= a x1tx2t − (c+ d+ b)x2t − α2x2t

(2)
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under control constraint:

0 6 αi 6 ᾱi for i = 1, 2.

The control in system (2) is represented by α = (α1, α2)
′ ∈ A.

A =

2
∏

i=1

[0, ᾱi] where ᾱi 6 1.

Let 0 < x̄2 6 N .
The main purpose is to determine the control α for each (x1t0 , x2t0 ) such that keeps the number

of infectifs below the x̄2 boundary, where the viability constraint expresses the case of a controlled
number of infection of a community. As long as the viability constraint is achieved:

x2(t) < x̄2, ∀t > t0. (3)

The presence of control essentially relies upon initial state. We will currently concentrate on these
initial states, likewise called the viability kernel [1].

3. The viability approach

Here we will relax the idea of optimality by using the viability approach [1], also called weak invari-
ance [2]. This approach does not rely on an optimality criterion, but focuses on feasible paths. It
requires the definition of a set of constraints, called viability constraints, representing certain desired
properties. This will allow us to see if the dynamics (2) are compatible with the viability constraint (3)
at any given time t.

We will write the dynamic system (2) in the form:

Ẋ(t) = F (X(t), α(t)), α(t) ∈ A, X(t) ∈ Ω, (4)

F (X(t), α(t)) =

(

−a x1tx2t − b x1t − α1x1t
a x1tx2t − (c+ d+ b)x2t − α2x2t

)

,

where X ∈ R
2
+ is the system state and α ∈ R

2
+ represents the control. The set A is the domain of

admissible controls. The set Ω corresponds to the domain of admissible states, with,

Ω = {X = (x1, x2) | x1, x2 > 0, x2 < x̄2, x1 + x2 < N}. (5)

Viability kernel is the set of initial states X0 from which a feasible path (X(·);α(·)) respecting
the constraints (stay in Ω) at any time:

Viab(F,A,Ω) = {X0 ∈ Ω \ ∃X(t) verifying (4) ∀t > 0, X(0) = X0}.

3.1. Viable or weakly invariant set

If a set Ω satisfies the condition where the viability kernel Viab(F,Ω,A) is equivalent to the set of
initial constraints A for the dynamic (F,α), it is considered viable. This implies that starting from
any state within Ω, there exists a feasible control that results in a trajectory remaining within Ω. Such
a favorable scenario occurs at a state X ∈ Ω when a control α leads to velocities Ẋ = F (X,α) that
are either tangent to or point inward the domain Ω. For closed sets Ω, under appropriate assumptions
on the dynamics (e.g., if A is convex, closed, and bounded), this condition can be expressed using a
Hamiltonian formulation. Let us consider the Hamiltonian:

H(X, p, α) =
n
∑

i=1

pi Fi(X,α).

In this case, the following statements are equivalent,

i. Ω is viable for (F,Ω);
ii. Viab(F,Ω,A) = Ω;
iii. inf

α∈Ω(X)
H(X, p, α) 6 0, ∀X ∈ Ω ∀p ∈ NΩ(X);
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where NΩ(X) is the normal cone to the set Ω at point X. In our case the set of constraints Ω = {X ∈
R
2
+, gj(X) 6 0, j = 1, 2} with g1(X) = x2 − x̄2 and g2(X) = x1 + x2 −N .
NΩ(X) is given by

NΩ(X) =

{

p
∣

∣

∣

2
∑

i=1

pi
∂gi
∂xi

(X) > 0 and qigj(X) = 0, j = 1, 2

}

. (6)

3.2. Viable control problem and viability kernel

The viability kernel is formally defined as follows:

Definition 1. The viability kernel Viab(x̄2) is a set of initial states (x1t0 , x2t0 ) for which a control
strategy t 7→ αt ∈ A exists so that the dynamic system (2) solution meets the viability constraint (3),

Viab(X̄2) =

{

(x10 , x20) | there exist a control α(·) so that the solution to (2)
that starts from (x10 , x20) satisfies the constraint (3)

}

. (7)

Note that the positively invariant set {(x1, x2) | 0 6 x1, 0 6 x2, x1 + x2 6 N} is our unconstrained
domain of research. Due to the necessity of fulfilling the viability constraint (3) at the initial point,
the viability kernel Viab(x̄2) must be included in the rectangle [0, N ] × [0, x̄2[.
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Fig. 2. The constraint set Ω.

The constraint set Ω (Figure 2) is the in-
tersection of the unconstrained domain of study
and the rectangle [0, N ] × [0, x̄2[. That is
Viab(X̄2) ⊂ Ω.

Definition 2. The vaccination barrier

V := {(x1, φ(x1)) | x̄1 6 x1 6 N} (8)

with x̄1 :=
N
R0

= b+c+d
a

.
The basic reproductive number R0 is

R0 :=
a

b+ c+ d
N. (9)

With φ(x1)) is is the set of applications such
as x1 the solution x1 ∈ [x̄1, N ] 7→ φ(x1) to the
differential equation:

x1(aφ(x1) + b)φ′(x1) + aφ(x1) (x1 − x̄1) = 0,

φ (x̄1) = x̄2.
(10)

We introduce and give a geometric description of viability domains for the system (2), which play a
pivotal role in characterizing the viability kernel. The viability kernel is linked to the viability domains
in the following way.

Theorem 1 (Ref. [1]). The viability kernel is the constraint set is largest viability domain.

We associate the vector field (ux1
;ux2

) produced by two components:
(

ux1

ux2

)

=

(

−a x1tx2t − b x1t − α1x1t
a x1tx2t − (c+ d+ b)x2t − α2x2t

)

with system (2).
The system (2) is equivalent to

ẋ1 = ux1
(x1(t), x2(t), α1(t)),

ẋ2 = ux2
(x1(t), x2(t), α2(t)).

(11)

Using the vector field u, we present a geometric description of the system’s viability domains with
control. To begin, we must state that the system is Marchaud.
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Theorem 2. For a Marchaud controlled system [1], a closed subset S is considered viable when the
control varies, the tangent cone at any point within S includes at least one vector from the family
generated by the vector field.

Corollary 1. Consider a closed subset S of [0;N ]. If there is a control α ∈ A such that (ux1
, ux2

)
is an inward-pointing vector, then the set S is a viability domain for the system (2) whenever (x1;x2)
varies along the frontier ∂S of the set S.

For a closed subset S with a piecewise smooth boundary δS, the scalar product between the vector
(ux1

, ux2
) and any outward-pointing normal vector (with respect to S) must be less than or equal to

zero for S to qualify as a viability domain for the system (2).

3.3. Characterization of the viability kernel

If x̄1 + x̄2 < N , then

Viab (x̄2) = Ω ∩ {(x1, x2) | x̄1 6 x1 6 N and x2 < φ(x1)} . (12)
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We assume that x̄2 <
R0−1
R0

N .

Lemma 1. There is a unique solution x1 ∈ [x̄1, N ] 7→
φ(x1) of the differential equation (10). The solution φ
is decreasing and strictly positive.

Proof. We have x̄1+ x̄2 < N ⇒ x̄2 < N in the vicinity
of x̄2 > 0 and φ(x̄1) = x̄2 > 0, the expression (aφ(x1)+
b+ d)x1 is strictly positive, so we can write (10)

φ′(x1) =
φ(x1)(x1 − x̄1)

(φ(x1) + b/a)x1
< 0. (13)

By Cauchy Lipschitz theorem, there exists a local solu-
tion φ of (10) and (13) in the neighborhood of x̄1 > 0.

We will now show that φ(x1) > 0, we suppose that
there is x10 6 x̄1 such that φ(x10) = 0, in the vicinity
of x10 > 0, the expression (aφ(x1) + b)x1 > 0 so (10)
and (13) are equivalent.

We have two solutions S → φ(x1) and x1 → 0, by the Cauchy–Lipschitz theorem this cannot
happen by uniqueness, and therefore there is no x10 > x̄1 hence φ(x10) > 0 for all x1 and hence the
solution is well defined.

We have φ′(x1) < 0 so φ is decreasing.
We conclude that φ is a unique and decreasing solution and lowered by 0, so it is defined for all

x1 > x̄1. �

Lemma 2. The set Viab(x̄2) = Ω ∩ {(x1, x2) | x̄1 6 x1 6 N and x2 < φ(x1)} is a viable set.

Proof. Let ε > 0,
−ε φε(S) = x1(aφε(x1) + b)φ′

ε(x1) + aφε(x1) (x1 − x̄1) ,

φε (x̄1 − ε) = x̄2 − ε
(14)

by lemma 1 we show that the differential equation (14) has a unique solution x1 ∈ [x̄1−ε,N ] 7→ φε(x1),
strictly positive and decreasing.

Let Viab(x̄2)ε = Ω ∩ {(x1, x2) | x̄1 − ε 6 x1 6 N and x2 < φε(x1)}. by the comparison theorem,
we have φε < φ, so Viab(x̄2)ε ⊂ Viab(x̄2), by continuity Viab(x̄2) is the union of Viab(x̄2)ε for all
ε > 0.

We now show that Viab(x̄2)ε is a viable set.
Since Ω is an invariant set, we can focus on the boundary line

{(x1, x̄2 − ε) | 0 6 x1 < x̄1 − ε}

and the boundary curve {(x1, φε(x1)) | x̄1 − ε 6 x1 6 N}.
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We examine the scalar product of u with the vector normal to these two borders, we will show that
there is a control α such that the vector u is inside the domain Viab(x̄2)ε.

On the segment {(x1, φε(x1)) | x̄1 − ε 6 x1 6 N} we have H(x1, x̄2 − ε, ux1
, ux2

, α) = (−a(x̄2 −
ε)x1 + α1x1 − b x1)nx1

+ a(x̄2 − ε)x̄2(S − x̄1)nx2
the vector

( nx1
nx2

)

=
(

0
nx2

)

construct the normal cone
external to the segment with nx2

> 0.
So,

inf
α∈A

H(x1, x̄2 − ε, 0, nx1
, α) = a (x̄2 − ε) x̄2 (x1 − x̄1)nx2

6 −a ε (x̄2 − ε)nx2
< 0.

So, for the control α = 1 u is inward from Viab(x̄2)ε.

On the border {(x1, φε(x1)) | x̄1 − ε 6 x1 6 N} the normal vector:
( nx1
nx2

)

=
(

−φ′

ε
(x1)
1

)

H(x1, φε(x1),−φ′
ε(x1), 1, α) = −φ′

ε(x1)(−aφε(x1)x1 +−α1x1 − b x1)

+ aφε(x1)(x1 − x̄1)

we have φ′
ε(x1) < 0. So,

inf
α∈A

H(x1, φε(x1),−φ′
ε(x1), 1, α) = −φ′

ε(x1)(−aφε(x1)x1 − b x1) + aφε(x1)(x1 − x̄1)

= −ε φ′
ε(x1) < 0

and therefore the control α = 1 on the boundary is such that u is within the domain Viab(x̄2)ε.

On the common end (x̄1−ε, x̄2−ε) the normal cone:
( nx1
nx2

)

= δ
(

−φ′

ε
(x̄1−ε)
1

)

+β ( 01 ), with δ > 0

and β > 0 and δ + β > 0. And therefore the Hamiltonian

H(x̄1 − ε, x̄2 − ε, nx1
, nx2

, α) = −αφ′
ε(x̄1 − ε)(−a(x̄2 − ε)(x̄1 − ε)

+ α1 − b (x̄1 − ε)− a ε (δ + β)(x̄2 − ε).

Since φ′
ε(x1) < 0 and δ > 0, we have

inf
α∈A

H(x̄1 − ε, x̄2 − ε, nx1
, nx2

, α) = −δ φ′
ε(x̄1 − ε)(−a(x̄2 − ε)(x̄1 − ε)

− b (x̄1 − ε)− a ε (δ + β)(x̄2 − ε) < 0

and therefore the control α = 1 on the common end is such that u is towards the interior of the domain
Viab(x̄2)ε.

On (N,φε(N)) the normal cone:
( nx1
nx2

)

= δ
(

−φ′

ε(N)
1

)

+ β ( 10 ) with δ > 0 and β > 0

inf
α∈A

H(N,φε(N), nx1
, nx2

, α) = (β δ φ′
ε(N))(−aφε(N)N − bN) + δ a φε(N)(N − x̄1)

= β (−aφε(N))N − bN) + α(N(β φε(N) + b)φ′
ε(N)

+ aφε(N)(N − x̄1))

= β (−aφε(N))N − bN)− δ ε φε(N) < 0,

φε > 0, for the control α = (1, 1), the vector u is within the domain Viab(x̄2)ε.
On conclusion Viab(x̄2)ε is a viable set. �

4. Viable decisions

From any state of the viability kernel, it is possible to define at least one viable trajectory guaranteeing
the satisfaction of the viability constraints at all times. However, the existence of a viable trajectory
from a given state does not mean that all trajectories from this state will satisfy the constraints. An
important question then is to determine the controls, or decisions, that generate viable trajectories.
At each time t, these decisions are such that:

(1) the constraints are satisfied at time t;
(2) the trajectory generated by the decisions remains in the viability kernel.
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Given a viable current state (x1, x2) ∈ Viab(x̄2), viable controls (α1, α2) ensure that the velocity
(ẋ1, ẋ2) is tangent or inward to the viability kernel. Therefore, viable controls are not necessarily
unique. From this point of view, this method provides not a single policy, but the set of all viable
policies. We will see that this flexibility allows us to consider different viable trajectories based on
different decision. But first, we describe viable controls.

Now we will compare our method with the more typical method.
For a fixed control α, the control reproduction number [3–5] is αR0. We know that,
if αR0 < 1, the equilibrium (α1, 0) is globally asymptotically stable, and the epidemic stops asymp-

totically;
if αR0 > 1, the susceptible and the infected approach constant levels [6] .
The asymptotic method operates like this [3,7]. For control α that is strictly bigger than the crucial

fraction of the population that would be vaccinated,

αx2
:= 1−

1

R0
, (15)

we have αR0 < 1. Therefore, the stationary vaccination rate αt ≡ α > αx2
guarantees that as time

progresses, the number of infected x2t will approach zero.
We are not seeking for a stationary vaccination rate policy that will lead to a stable state free of

infected asymptotically. We first set a infected threshold x̄2. Next, explore non-stationary vaccination
rate strategies that ensure the peak number of infected individuals is lower than x̄2.

Our analysis yields two types of data. Firstly, utilizing non-stationary control, we can ascertain
whether it is possible to maintain the number of infected individuals x2(t) below the threshold for any
initial state (x1t0 , x2t0 ). Secondly, we gain insights into the appropriate vaccination approach to adopt.

When (x1(t), x2(t)) approaches the upper limit [0, x̄1]×{x̄2}. The level of vaccination should reach
the maximum level of vaccination, α = (ᾱ1, ᾱ2).
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Fig. 4. Simulations of the COVID-19 model showing the effect of the controls α1 6= 0 and α2 6= 0.

5. Conclusion

Rather than aiming for equilibrium or optimization, our focus was on developing strategies that could
consistently keep the number of infected individuals below a specific threshold. To achieve this, we
employed time-dependent vaccination policies that aimed to minimize the susceptible population, thus
ensuring the proportion of COVID-19 infected individuals remained below the desired threshold at
all times. The viability kernel was defined as the set of initial conditions (including susceptible and
infected individuals) for which a feasible control trajectory existed.
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Initially, we determined a target infected level x̄2, and then utilized a non-stationary approach to
identify all starting states where the maximum number of infected individuals at the peak could remain
below x̄2. We presented potential solutions and provided examples of techniques to manage the peak
number of infected individuals while also reducing the overall number of infections to zero.

Our approach relied on employing a SIR model of COVID-19, with vaccination serving as the
control variable, and viability theory as a framework to address this epidemic. To make the model
more realistic and practical, we imposed an upper constraint on the vaccination control, ᾱ < 1, which
prevented full vaccination due to either infeasibility or high cost.
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House (1988).

[4] Diekmann O., Heesterbeek J. A. P. Mathematical Epidemiology of Infectious Diseases: Model Building,
Analysis and Interpretation. Vol. 5. John Wiley and Sons (2000).

[5] Hethcote H. W. Qualitative analyses of communicable disease models. Mathematical Biosciences. 28 (3–4),
335–356 (1976).

[6] Hethcote H. W., Waltman P. Optimal vaccination schedules in a deterministic epidemic model. Mathemat-
ical Biosciences. 18 (3–4), 365–381 (1973).

[7] Anderson R., May R. Infectious Diseases of Humans: Dynamics and Control. Oxford Science Publications
(1991).

Ефективне керування поширенням COVID-19
за допомогою вакцинацiї

Абу-Нух Х., Ель Хомсi М.

Унiверситет Сiдi Мохамед Бен Абделла,

кафедра моделювання та математичних структур,

факультет науки i технологiй, Фес, Марокко

Швидке та широке поширення COVID-19 зумовило необхiднiсть розроблення та впро-
вадження ефективних заходiв керування. Вакцинацiя стала ключовим iнструментом
у боротьбi з пандемiєю. У цiй статтi подано новий пiдхiд до моделювання динамiки пе-
редачi COVID-19 шляхом iнтеграцiї стратегiй вакцинацiї в структуру “сприйнятливi–
iнфiкованi–одужавшi” (SIR) з використанням теорiї життєздатностi. Визначено набiр
обмежень, включаючи гарантований рiвень вакцинацiї, проаналiзовано вплив рiзних
рiвнiв вакцинацiї на стримування поширення вiрусу. Отриманi результати показу-
ють значну роль вакцинацiї в зниженнi передачi та дають цiнну iнформацiю щодо
оптимiзацiї кампанiй вакцинацiї. Модель SIR, яка базується на життєздатностi, на-
дає полiтикам i медичним працiвникам комплексну основу для розробки цiльових
стратегiй i ефективного розподiлу ресурсiв у боротьбi з COVID-19.

Ключовi слова: теорiя керування; теорiя життєздатностi; епiдемiологiя; мо-

дель SIR; COVID-19; керування вакцинацiєю.
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