Chem. Chem. Technol., 2023, Vol. 17, No. 4, pp. 929–935 Chemical Technology

COPOLYMERIZATION OF INDUSTRIAL ORGANOCHLORINE WASTE WITH WOOD PYROLYSIS PRODUCTS FOR BITUMEN COMPOSITIONS

Sergiy Kurta^{1,⊠}, Volodymyr Riy¹, Volodymyr Gunka², Olga Shevchenko³, Mykyta Lykhomanov⁴

https://doi.org/10.23939/chcht17.04.929

Abstract. The work presents a new approach to the copolymerization and co-processing of industrial organochlorine waste (OCW) resulted in the production of vinyl chloride at Karpatnaftochim LLC, Kalush, Ukraine, and liquid wood pyrolysis products (LWPP) generated by the activated charcoal production at Perechyn Forestry and Chemical Plant, LLC. Kalush, Ukraine. This article highlights studies of the composition of the raw materials and the properties of the resulting products. Through the use of infrared spectroscopy and DTA analysis, the primary structure and properties of copolymers, oligomers, asphalt and bitumen products obtained from OCW and LWPP were determined. It describes the trial of the liquid products of wood pyrolysis in bitumen compositions with OCW.

Keywords: organochlorine, waste, product, pyrolysis wood, vinyl chloride, 1,2-dichloroethane, bitumen, asphalt, compositions, formaldehyde, composites.

1. Introduction

Over the past 10-15 years, the industry has expanded its sales markets of polyethylene (PE) and polyvinyl chloride (PVC) polymers up to 15 million tons. These polymers have replaced metal and wood products used for packaging, pipes, various coatings, furniture, profile windows, doors, and other structures. The increase of the production capacity of organochlorine monomers and polymers causes the increase of the amount of industrial organochlorine waste (OCW). The production of vinyl chloride and its derivatives generates up to 1.5 million

tons of OCW per year, and this index is growing worldwide. The authors of the article proposed a new method of integrated processing and utilization of OCWs by copolymerizing them with a heavy fraction of liquid wood pyrolysis products (LWPP (production name "pulp"). The purpose of our work is to improve the existing methods and develop new ways of processing and utilization of liquid industrial organic (LWPP) at the Perechyn Forestry and Chemical Plant with organochlorine waste (OCW) of Karpatnaftochim LLC, Kalush, Ukraine. The results of the study can be used for production of cheap and non-toxic polymer that can be applied as a component of waterproofing, asphalt, and anti-corrosion coatings in bitumen compositions.

The industrial process of oxidative chlorination of ethylene (OCE) is the most efficient in the industrial production of 1,2-dichloroethane (1,2-DCE) and vinyl chloride monomer (VCM) at Karpatnaftochim LLC in Kalush, as it allows to achieve 99% conversion of raw materials and 98.8% selectivity in terms of 1,2-dichloroethane yield.¹ At the same time, in addition to 1,2-DCHE, a number of organochlorine wastes are formed.² The reactions of ethylene oxidation to 1,2-DCE ($C_2H_4Cl_2$) and ethylene oxidation (combustion) proceed according to the following chemical equations:²

$$C_2H_4 + 2HCl + 0.5O_2 \to C_2H_4Cl_2 + H_2O + Q \tag{1}$$

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \tag{2}$$

$$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O \tag{3}$$

In this case, side reactions can occur, which form the following OCWs products:

1. Carbon tetrachloride:

$$C_2H_4 + 8HCl + 3O_2 \rightarrow 2CCl_4 + 6H_2O$$
 (4)

2. Chloral:

$$C_2H_4 + 3HCl + 2O_2 \rightarrow 2C_2HCl_3O + 3H_2O \tag{5}$$

3. 11,2-Trichloroethane:

$$C_2H_4 + 3HCl + O_2 \rightarrow 2C_2H_3Cl_3 + 2H_2O \tag{6}$$

and other impurities -1-2% of the obtained DCE.

¹ V. Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine;

² Lviv Polytechnic National University, 12, S. Bandery St., Lviv, 79000, Ukraine;

³ I.I. Mechnikov Odesa National University, 2 Dvoryanska St., Odesa, 65026, Ukraine;

⁴ Perechyn Timber and Chemical Plant, 25 Uzhanska St., Perechyn, 89200, Ukraine

[™] kca2014@ukr.net

[©] Kurta S., Riy V., Gunka V., Shevchenko O., Lykhomanov M., 2023

2. Experimental

The approximate chemical composition of OCWs (gaseous, liquid and solid organochlorine wastes) at the Karpatnaftochim production facility in Kalush, Ukraine, determined by chromatographic method, is shown in Table 1. OCWs contain more than > 30% of the total a residue of unidentified polychlorinated OCWs. These OCWs also contain small amounts of hydrogen chloride and chlorine (in the range of millionth of a percent). The amount of moisture in the OCWs does not exceed 20-200 ppm.³

 Table 1. Procedure for the yield of CWA components

 in a chromatographic analysis

№	Component	Time, min
1	ethylene	0.95
2	vinyl chloride	1.4
3	ethyl chloride	1.8
4	trans-1,2-dichloroethylene	3.45
5	carbon tetrachloride + 1,1-dichloroethane	4.0
6	methylene chloride	4.65
7	benzene	5.15
8	1,1,2-trichloroethylene + cis-1,2- dichloroethylene	6.35
9	chloroform	7.05
10	perchloroethylene	8.2
11	1,2-dichloroethane	10.0
12	chlorobenzene	15.45
13	1,1,2-trichloroethane + 1,1,1,2- tetrachloropropane	16.5
14	1,2,3-trichloropropane	26.75
15	1,1,2,2-tetrachloroethane	29.6
16	1,2-dichlorobenzene	31.2
17	chlorex	34.0
18	Σ ΗΟΥ	>35.0

2.1. Methods of analysis

Gas-liquid chromatography was the main means of analyzing OCW compounds. The analysis of OCWs in the study of OCW chlorination was performed on a chromatograph of the "Tsvet" type with a flame ionization detector under the following conditions of analysis: (1) length of the working column 3 m; column diameter 3 mm; sorbent – 12% PEG 1500 on 3 K color chromium; working column temperature – 373 K and 423 K, set 1.25 min after the peak of 1,2-DCE; evaporator temperature – 463 K; analysis time – 50 min; helium was used as a carrier gas; chromatograms were calculated by the method of internal normalization.

The order and time of the components on the OCW chromatogram are shown in Table. 1. The change in the composition of OCW during the study of alkaline dehy-drochlorination and polycondensation of OCW with polysulfides (PSF) of alkali metals was analyzed according to TUU-24.1.-31256759-005-2004, on a gas-liquid chromatograph Carlo Erba GC 8000 series with a flame ionization detector (steel column d = 3 mm, 1 = 3 m, filled with a phase of 25% emulsogen on the chromosorb). The temperature of the thermostat is in the range from 55 to 413 K. Detector temperature is 473 K, injector (evaporator) temperature = 423 K. Carrier gas consumption: helium - 135 KPa, air - 130 KPa, hydrogen - 75 KPa. The sample volume was 0.8 μ L. Peak areas were calculated automatically.⁴

2.2. Determination of polymer resin curing time with OCW and LWPP on the Vick device

The OGTs-1 device is designed to determine the normal density and setting time of cement dough (including asphalt) in accordance with GOST 310.3-76. For the test, a free movement of the dough and the permissible zero deviation are checked first. The test surface is cleaned and checked for curvature. The needle of the device is immersed in the test sample of the product of a given density several times, clensing the needle after each immersion.

Oxidized bitumen of the BND 70/100 brand according to DSTU 4044:2019, selected at PJSC "UKRTATNAFTA" (Kremenchuk, Ukraine), was used for the study.⁵ Bitumen-polymer mixtures were prepared using a Daihan Scientific HT-50 DX mixer (Daihan Scientific Co., Ltd, Korea) equipped with an impeller in the form of a six-blade turbine. A sample of the initial bitumen (650 g) was placed in a metal container and heated with stirring on an electric stove to the required temperature. After reaching the temperature with constant stirring of the sample, the modifier was gradually added in the required amount.

3. Results and Discussion

3.1. General characteristics of liquid wood pyrolysis products (LWPP)

Of all the thermal methods of wood processing, high-temperature wood pyrolysis is the most important. Wood pyrolysis involves the decomposition of wood through heating to 723 K in the absence of air, resulting in the production of gaseous and liquid products, including wood resin, along with a solid residue known as charcoal. Wood pyrolysis is typically conducted without air access at temperatures up to 723 K in large-scale facilities, such as the Perechyn Forest and Chemical Plant. This plant primarily produces charcoal, acetic acid, and their derivatives, also generating liquid wood pyrolysis products (pulp) as a byproduct.Solid products of wood pyrolysis consist of cellulose residues, $-(C_6H_{10}O_5)_x$ natural polymer, and oxygen-containing hydrocarbons-polysaccharides; they also contain a small amount of nitrogencontaining substances.⁶ When birch wood is pyrolyzed to a moisture content of 8-10%, the yield of solid wood is 280-295 kg/m³ of wood, and 350-380 kg/m³ of solid wood is obtained from air-dry wood. The volume of wellcooked charcoal decreases and is approximately 60% of the volume of the initial wood fed for pyrolysis.⁷ To extract acetic acid, LWPP is usually de-alcoholized and desaturated. Depending on the method used, the following useful products can be extracted from 350-380 kg of "pulp", in kg: 1) Polymer resin 22-29 kg: 2) Acetic acid 18-22 kg; 3) Alcohol-containing products 7-10 kg. Based on 1 m³ of pyrolyzed wood, the recovery rate for all acids can be 66-75% and for the sum of alcohol products - 60-70%. But mostly at most enterprises, LWPP is burned in the same furnaces that heat wood and produce charcoal.

The liquid products of wood pyrolysis were obtained from Perechyn Chemical Plant, which serves as a supplier to the largest activated carbon plants in Europe. Perechyn Chemical Plant products are regularly stocked by renowned European manufacturers such as LIDL, Kaufland, Carrefour, EDEKA, and TESCO. The plant holds impressive certifications that would be envied by many industrial enterprises in Ukraine, operating in accordance with BSCI, PEFCTM, and ISO standards. The characteristics of the produced charcoal include a carbon content of up to 93% C, humidity ranging from 3% to 8% H₂O, ash content ranging from 2% to 15%, and a particle size fraction of 0-80 mm.⁷

3.2. The process of wood pyrolysis with separation into fractions and chromatographic composition of LWPP

Wood pyrolysis is conducted by heating wood to a temperature of 723 K, leading to its decomposition. The process of wood pyrolysis relies on free radical reactions that involve the thermal breakdown of hemicellulose, cellulose, and lignin. These reactions occur within specific temperature ranges: hemicellulose at 473-533 K, cellulose at 513-623 K, and lignin at 523-673 K. At a temperature

of 593 K, the ratio of rate constants for these reactions is approximately 10:1:0.25. The composition of charcoal obtained from wood pyrolysis typically includes 80-92% of carbon (C), 4.0-4.8% of hydrogen (H), and 5-15% of oxygen (O). The pyrolysis process can be described by the following reactions.⁸

$$C H O_{6105} \rightarrow 3.75 CH_{0.6} O_{0.13} + 2.88H_2 O + + 0.5CO_2 + 0.25CO + C H O_{1.51.250.38}$$
(7)
$$C H O_{6105} \rightarrow 3.74C + 2.65H_2 O + + 1.17CO_2 + 1.08CH_4$$
(8)

The pyrolysis of wood is an exothermic process that releases a large amount of heat (1150 kJ/kg). The raw material chosen for the synthesis was LWPP from Perechyn Forestry and Chemical Plant LLC, the largest Ukrainian and leading European producer of charcoal products with more than a century of production history. At the end of 2019, the monthly production volume was up to 4000 tons of charcoal. The raw material is 100% hardwood from Ukrainian forests. As a result of wood pyrolysis, the following 3 fractions are formed: 1) density at 293 K 1,23 kg/dm³; 2) pH 4.5; 3) Brookfield viscosity at 293 K (LV-3, 60 RPM): 377 mPa-s; 4) Water content 6.2%.⁹ Determination of heavy resin parameters was carried out for density according to the method of DSTU ISO 2811-1:2019, pH indicator of hydrogen ion activity according to DSTU EN 12850:2020, dynamic viscosity was determined according to DSTU EN 13302:2019, determination of water content according to DSTU ISO 3733:2017, Table. 2.

Fraction No2 (383-393 K), resin from wood pyrolysis to charcoal of GOST 7657-84, obtained after vacuum distillation of water and other substances at 393 K from heavy wood pyrolysis resin has the composition 1) Boiling point \geq 393 K; 2) Density at 293 K, 1.320 kg/dm³; 3) Hydrogen index, pH 5.1; 4) Brookfield viscosity at 293 K (LV-4, 20 rpm): 1314 mPa-s.

Fraction N_{23} . The hydrophobic part had a light yellow color, which eventually changed to red-brown, indicating that the reaction was underway. Thus, these may be light and oxidation-sensitive aromatic hydrocarbons.

Water and light fractions were extracted through a vacuum process. A vacuum compressor was utilized to reduce the pressure to 30 kPa, while a water bath maintained a temperature of 341-344 K.The following results were obtained for the composition of fraction No. 3: 1) 4.78-5.1% water and water-soluble compounds of the distillation; 2) 1.75-2.2% hydrophobic part of the distillation - a mixture of benzene, phenols and their homologues; 3) 89.1-90.6% residue of dehydrated organic compounds; 4) distillation losses of 2.2-2.5%.

No. p/n	HARDWOOD	Oak, hornbeam, birch.	Dimensionality
1		Water Content	4.1
		dry: wt. % based on oil weight without water content (Anhydrous Mass
	CAS-No.	<u>Compound</u>	wt.% wet
1.		Acids	4.182
2.	64-19-7	Acetic acid	4.182
3.		Nonaromatic Esters	1.409
4.		Nonaromatic Ketones	1.842
5.		Furans	1.045
6.		Benzenes	11.721
7.	108-88-3	Toluene	0.157
8.		Aromatic Ketones	0.106
9.	98-86-2	Acetophenone	0.106
10.		Lignin derived Phenols	8.505
11.	108-95-2	Phenol	1.472
12.	95-48-7	Cresol, o-	1.517
13.		Guaiacols (Methoxy phenols)	2.888
14.	5932-68-3	Guaiacol, 4-propenyl-(trans) (Isoeugenol)	1.603
15.		Syringols (Dimethoxy phenols)	5.906

Table 2. Chromatographic composition of LWPP, Perechyn Timber and Chemical Plant

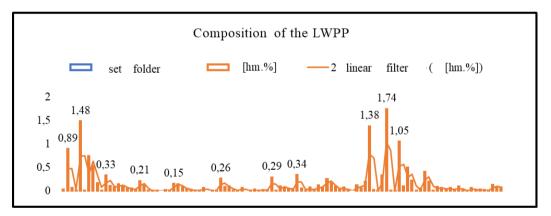


Fig. 1. Chromatogram of a sample of liquid wood pyrolysis products (LWPP) from Perechyn Forestry and Chemical Plant

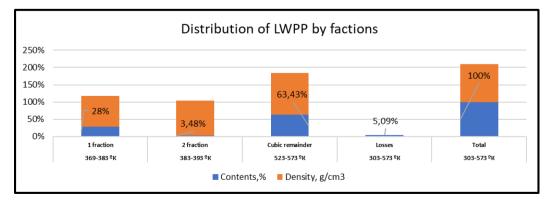


Fig. 2. Fractional distribution of LWPP according to a boiling point

932

Table 3. Com	position of	f the copo	lymer resin	OCW and LWPP

Component	V, mL	% wt.
OCW	10	47.62
LWPP	10	47.62
Catalyst and or initiator	1	4.76

Table 4. Physical and mechanical properties of oxidized bitumen with a copolymer of OCW and LWPP

Indicator	BND 70/100	Bitumen + 3 % by weight. Sopolim. OCWand LWPP	Bitumen + 6 % wt. of a copolymer of OCW and LWPP
Softening point, K	320.35	321.35	320.55
Penetration at 298 K, 0.1 mm	82	85	75
Ductility at 298 K, cm	>150	>150	117
Adhesion to the glass surface, %.	29	60	77
Adhesion to the surface of crushed stone, %.	3.0	4.0	4.5

3.3. Copolymerization of OCW with the LWPP fraction

For the copolymerization of organochlorine waste (OCW) with the LWPP fraction, a dedicated laboratory setup was utilized, employing a 1-liter autoclave reactor constructed from stainless steel. The schematic diagram of this installation can be found in the referenced literature.⁴ Using the data acquired, the optimal parameters for synthesizing a copolymer of OCWs and LWPPs were determined.

3.4. Results of the catalytic copolymerization of LWPP and OCW

The polymerization was conducted using a 1:1 ratio of the components of organochlorine waste (OCW) and the dehydrated fraction of liquid wood pyrolysis products (LWPP). The polymerization reaction duration was 2 hours. After that, a resinous product is formed. As a result of studying almost all the operating parameters, the following optimal conditions for the process were established, which are summarized in Table 3. The volume ratio of pyrolysis resin and OCW is 1:1; The content of titanium tetrachloride is 4.5-5% by weight of OCW with LWPP. The temperature of the copolymerization process is \geq 393 K.

Based on the copolymerization of DGC products of OCW and the dehydrated fraction of LWPP, a preliminary recipe for the production of polymer resin was developed. The main components of the resin are outlined in Table 4.

In the presented graphs No. 3 and 4, the volume ratio of OCW produced by VC and the unsaturated fraction of LWPP was maintained at 1:1; the volume ratio of OCW produced by VC and solvent was equal to 3:1; the

solvent was xylene. From the obtained dependence of the conversion of OCW and the LWPP fraction on the concentration of the cationic catalyst (Figure 4, curve 1), one can observe a regularity, with an increase in catalyst concentrations from 1 to 8%, the conversion of monomers increases from 78% to 99%, respectively. When the catalyst content is increased above 8%, the conversion of monomers (unsaturated) does not change. Provided that in the copolymerization reaction, in addition to mutually soluble polymers and oligomeric products, it is possible to form insoluble polymers in xylene and OCW. We studied the dependence of polymer yields on the amount of catalyst and temperature. The results shown in Figures 3 and 4 (curve 2) confirm this. From the results presented, it can be seen that the amount of insoluble chloropolymer does not exceed 20-25%.

In this case, an increase in temperature from 288 K to 333 K has a greater effect on the intensification of the copolymerization process, since its increase gives an increase in the yield of insoluble polymer from 1 to 11% (Fig. 4, curve 2). To further explore this, we tested the effect of temperature factors on the conversion of OCW and the LWPP fraction Cx (curve 1 of Fig. 4) and the yield of insoluble polymer Yn as a function of temperature (curve 2), as shown in Figure 4. An increase in temperature from 298 K to 341 K gives a slight acceleration to the polymerization reaction rate, which is expressed by an increase in conversion from 74% to 87% in this temperature range. This may be due to the ionic mechanism of this copolymerization reaction of the LWPP fraction and OCW. The amount of catalyst has a greater effect. At the same time, an increase in temperature from 323 K to 338 K increases the yield of insoluble polymer compounds by 6 times. The obtained oligomeric resin products were used to produce modified bitumen-asphalt road compositions.

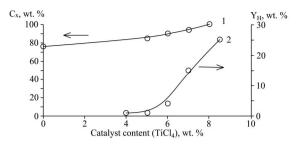


Fig. 3. Dependence of the conversion (C_x) of OCW waste and LWPP fraction (curve 1) and the yield (Y_{H}) of insoluble polymer (curve 2) on the catalyst concentration $(TiCl_4) 4 \%$ by weight, at 323 K

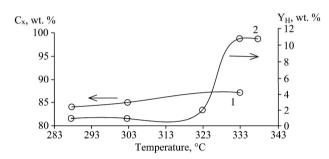


Fig. 4. Dependence of the conversion (C_x) of OCW waste and LWPP fraction (curve 1) and the yield (Y_a) of insoluble polymer (curve 2) on the temperature of the copolymerization reaction at TiCl₄

3.5. Modification of road petroleum bitumen with copolymer resin OCW and LWPP and products of polycondensation of this resin with formaldehyde

Initially, we studied the copolymer resin of OCW and LWPP as a component of road oil bitumen. The physical and mechanical properties of oxidized bitumen with different amounts of copolymer of OCW and LWPP are presented in Table 4. Based on the data in Table 4, the copolymer of OCW and LWPP can be used as a component of road bitumen, since it does not deteriorate the basic operational properties of bitumen, but at the same time improves adhesion properties (improves adhesion to glass and crushed stone surfaces). That shows that the use of such an additive will eliminate the need to add expensive adhesives to bitumen.⁵

In order to obtain a polymeric bitumen modifier and bind phenols contained in LWPP, polycondensation of a copolymer of OCW and LWPP with formaldehyde was performed. The material balance of the polycondensation of the copolymer of OCW and LWPP with formaldehyde is shown in Table 5¹⁰ The polycondensation reaction temperature is 373 K, the duration is 1 hour. The physical and mechanical properties of bitumen-polymer mixtures obtained using the synthesized polymer are given in Table 6.

Table 5. Material balance of polycondensation of a copolymer of OCW and LWPP with formaldehyde

	•		•
No. of the polymer composition (P)	№ 1	N <u>∘</u> 2	N <u></u> 23
Dov	vnloaded, g		
Copolymer of OCW and LWPP	30.24	30.17	30.2
Formalin (37% p.o. formaldehyde)	5.3	7.52	10.52
Concentrated HCl	1.45	1.52	1.57
Total	36.99	39.21	42.29
Re	eceived, g		
Polymer	18.99	19.99	20.57
Volatile components (vacuum)	18.00	19.22	21.72
Total	36.99	39.21	42.29
The yield of the copolymer of OCW and LWPP, % wt.	62.7	66.2	68.1

Table 6. Physical and mechanical properties of bitumen-polymer mixtures

Indicator	BND 70/100	BND 70/100+ 3 % wt. №1	BND 70/100+ 3 % wt. №2	BND 70/100+ 3 % wt. №3
Softening point, K	320.35	321.55	320.95	320.55
Penetration at 298 K, 0.1 mm	82	55	78	83
Ductility at 298 K, cm	>150	89	123	137
Adhesion to glass, %	29	78	72	48
Adhesion to a crushed stone, %	3.0	5.0	4.5	3.5
Homogeneity	homogeneous	homogeneous	homogeneous	heterogeneous

Based on the data presented in the Table 4-6, it is evident that a heterogeneous binder is obtained when using polymer N $ilde{3}$, i.e., the synthesis of a polymer modifier should be carried out at a mass ratio of formalin to the copolymer of OCW and LWPP of less than 1/3.

4. Conclusions

The paper provides a theoretical justification and solution of the scientific problem, to improve existing technologies, develop new ones, simpler, and more economical technologies for the integrated processing and utilization of industrial organochlorine waste and unsaturated resins from charcoal pyrolysis, namely, the liquid product of wood pyrolysis ("pulp"), which helps to preserve hydrocarbon raw materials with increased environmental safety of technological processes and reduce the amount of waste in industrial processes of producing DCE, VC, EP, and charcoal.

It has been established that liquid wood pyrolysis products (LWPP) can be used together with CWP as a component of bitumen compositions, as well as for polycondensation reactions with formaldehyde to introduce this modifier into bitumen in an amount of 1-6%, which improves the physical and mechanical properties and reduces the cost of bitumen compositions.

References

[1] Kurta, S. Catalysis of Ethylene Oxyclorination into 1,2-Diclorethane in the Presence of CuCl₂/CuCl Active Centers on the Surface of γ-Al₂O₃. *Chem. Chem. Technol.* 2012, *6*, 1–8. https://doi.org/10.23939/chcht06.01.001
[2] Kurta, S.; Zakrzhevsky, A.; Kurta, M. Utilization of Chloroorganic Waste by their Catalytic Copolymerization. *Polimery* 2007, *52*, 51–55. http://doi.org/10.14314/polimery.2007.051
[3] Starchevskyy, V.; Shparij, M.; Hrynchuk, Yu.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System or the Industrial Chlorine Processing of Ethylene in 1,2-Dichloro-Ethane. *Chem. Technol.* 2020, *14*, 394–402.

https://doi.org/10.23939/chcht14.03.394

[4] Kurta, S.A.; Zakrzhevskyi, O.Y.; Kurta, O.S. Metody utylizatsii khlororhanichnykh ta sulfidovmisnykh vidkhodiv. *Ekolohiya ta promyslovist* **2009**, *1*, 64–68.

http://nbuv.gov.ua/UJRN/ekolprom_2009_1_15

[5] Gunka, V.: Demchuk, Y.: Sidun, I.: Miroshnichenko, D.: Nvakuma, B.B., Pyshyev, S.V. Application of phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 [6] Postivny Tekhnolohichny Reglament Tsekhu Vyrobnytstva Khlorystoho Vinilkhlorydu: "Fridrikh Ude" i JSC "Khiminterengineering" V-35/95, Kalush 1991-1995. [7] WOOD PYROLYSIS (dry distillation of wood) http://greenpower.com.ua/clients/articles/2016-09-01-17-13-10 [8] Antal Jr, M.J.; Morten Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619-1640. https://doi.org/10.1021/ie0207919 [9] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 [10] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 95-102. https://doi.org/10.1007/978-3-030-57340-9 12

> Received: July 03, 2023 / Revised: August 27, 2023 / Accepted: September 14, 2023

КОПОЛІМЕРИЗАЦІЯ ПРОМИСЛОВИХ ХЛОРОРГАНІЧНИХ ВІДХОДІВ З ПРОДУКТАМИ ПІРОЛІЗУ ДЕРЕВИНИ ДЛЯ БІТУМНИХ КОМПОЗИЦІЙ

Анотація. У представленій роботі запропоновано новий підхід до проведення кополімеризації та сумісної переробки промислових хлорорганічних відходів (ХОВ) виробництва вінілхлориду ТОВ «Карпатнафтохім» м. Калуш, Україна, та рідких продуктів піролізу деревини (РППД), які утворюються при виробництві активованого вугілля з деревини на ТДВ «Перечинський лісохімічний комбінат». Вивчено склад сировини та властивості отриманих продуктів. ІЧ-спектроскопією та ДТА аналізом встановлено первинну будову та властивості одержаних із ХОВ і РППД кополімерів, олігомерів та асфальтових і бітумних виробів з них. Проведено випробування рідких продуктів піролізу деревини в складі бітумних композицій разом з ХОВ.

Ключові слова: хлорорганічні, відходи, продукт, піроліз деревина, вінілхлорид, 1,2-дихлоретан, бітум, асфальт, композиції, формальдегід, композити.

CHEMISTRY & CHEMICAL TECHNOLOGY

CONTENTS OF VOLUME 17

Vol. 17, No.	1, pp.	1 - 220
--------------	--------	---------

Chemistry

2023

Valentyn Serheyev	
Densities, Excess Volumes, and Partial Molar Volumes of Butyl Methacrylate Solutions	
in Some Organic Solvents	1
Nadia Belarbi, Fayçal Dergal, Ilyas Chikhi, Djahida Lerari, Benamar Dahmani,	
Noureddine Choukchou-Braham, Khaldoun Bachari	
Synergistic Effect of BaCl ₂ on Corrosion Inhibition of Copper by Mentha Spicata Oil	
in 1M Nitric Acid: Gravimetric and Raman Spectroscopy Studies	7
Zoryana Komarenska, Lilianna Oliynyk, Oksana Makota	
Activation of Mo_2B Catalyst in the Epoxidation Reaction of α -Ethylallyl Ethyl Acrylate	
with <i>tert</i> -Butyl Hydroperoxide	18
Marta Razimowicz, Przemysław Gnatowski, Paweł Szarlej,	
Edyta Piłat, Maciej Sienkiewicz, Justyna Kucińska-Lipka	
Developing Materials for Biodegradable Otolaryngological Stents	24
Omar Mukbaniani, Jimsher Aneli, Tamara Tatrishvili, Eliza Markarashvili,	
Levan Londaridze, Nikoloz Kvinikadze, Lizi Kakalashvili	
Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane	35
Irina Savchenko, Elina Yanovska, Dariusz Sternik, Olga Kychkyruk	
Synthesis, Sorption Properties, and Evaluation of Silica Gel	
with Adsorbed Poly[8-Oxyquinoline Methacrylate] as a Sorbent for Cu(II), Cd(II),	
Pb(II) and Fe(III) Ions	45
Talkybek Jumadilov, Bakytgul Totkhuskyzy, Aldan Imangazy, Juozas Gražulevičius	
Anomalous Sorption of Yttrium Ions by the Mutual Activated Hydrogels	
in the Interpolymer System of Poly(Methacrylic Acid) and Poly(4-Vinylpyridine)	52
Nadia Embarek, Nabahat Sahli	
Green Synthesis of Functionalized Poly(3-Glycidoxypropyl-Trimethoxysilane)	
Using an Eco-Catalyst (Treated Montmorillonite)	60
Olena Astakhova, Mykhailo Bratychak Jr, Ananiy Kohut, Taras Chervinskyy	
An Oligomer with Terminal Unsaturated Double Bonds Based on Epidian 5 and Ethylacrylic Acid	70
Benmoussa Mahi Hanane, Mohammed Issam Ferrahi	
Synthesis of Copolymer from 1,3,5-Trioxane and ε-Caprolactone Catalysed	
by Treated Bentonite as Eco-Catalyst	81
Lina Sokolova, Oleksandr Daliba, Iryna Sukha, Maria Skrypkina, Valery Ovcharov	
Formation of Elastomeric Composition Properties in the Presence of Bioingredient	88
Volodymyr Levytskyi, Andrii Masyuk, Mykhailo Bratychak Jr, Nataliia Chopyk	
Regularities of Modifying, Morphology and Properties	101
of Thermoplastics Containing Polyvinylpyrrolidone	101
Bogdan Kshyvetskyy, Diana Kindzera, Yaroslav Sokolovskyy, Halyna Somar, Ihor Sokolovskyi	
Prediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives	110
Nora Ouis, Assia Belarbi, Salima Mesli, Nassira Benharrats	110
Improvement of Electrical Conductivity and Thermal Stability	
of Polyaniline-Maghnite Nanocomposites	118
or roryannine-magninite ranocomposites	110

Umarudin, Sri Rahayu, Sri Widyarti, Warsit	
Characterization, Antioxidant Activity, and In Silico Molecular Docking	
of Chitosan from Snail Shell Waste by Ultrasonic Technique	126

Nora Elizondo-Villarreal, Rubén O. Torres-Barrera, Rodrigo Arriaga-Garza,	
Luz-Hypatia Verástegui-Domínguez, Rodolfo Cortés, Víctor M. Castaño	
Ag Thin Films from Pelargonium Zonale Leaves via Green Chemistry	133
Sarra Maamri, Amrani Moussa, Moussaoui Yacine	
Development of a Statistical Model to Predict Methane Production	
from Waste Activated Sludge Co-Digested with Olive Mill Wastewater	
and Cattle Dung by Response Surface Methodology	141
Imene Djeghader, Farida Bendebane, Fadhel Ismail	
Interaction Effect of Operating Parameters during Oxidation	
of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design	154
Mani Divya Konduru, Meena Vangalapati, Feroz Shaik	
Performance of Electrocoagulation Process Using Iron and Aluminum Electrodes	
with and without Perforations	164
Myroslav Sanytsky, Tetiana Kropyvnytska, Orest Shyiko	
Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior	170
Yaktine Elyamani, Mohamed EL Guendouzi	
Identification and Quantification of the Organic Matter in the Fouling Industrial	
of Wet Phosphoric Acid Process	179
Olha Stefanyshyn, Alla Hunchak, Volodymyr Starchevskyy, Yuriy Salyha	
Disruption of Yeast Cells Xanthophyllomyces Dendrorhous (Phaffia Rhodozyma)	
by Vibration Resonant Low-Frequency Cavitator	188
Tetiana Yarmola, Petro Topilnytskyy, Victoria Romanchuk	
High-Viscosity Crude Oil. A Review	195
Daryna Popytailenko, Olena Shevchenko	
Improved Method for Determining Microbiological Contamination	
of Fatty Acid Methyl Esters and Blended Diesel Fuels	203
Volodymyr Gunka, Yurii Hrynchuk, Yuriy Demchuk, Myroslava Donchenko,	
Yuriy Prysiazhnyi, Volodymyr Reutskyy, Olena Astakhova	
Production of Bitumen Modified with Low-Molecular Organic Compounds	
from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars	211

Vol. 17, No. 2, pp. 221-468

Chemistry

Mohammed Aichi, Meriem Hafied	
Basicity and Nucleophilicity Effect in Charge Transfer of AlH ₃ -Base Adducts: Theoretical Approach	221
Olha Smirnova, Nataliia Rudachenko, Oleksij Pylypenko	
Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes	237
Abdellatif Rafik, Hafid Zouihri, Taoufiq Guedira	
Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis	
and Quantum Chemical Analysis	244
Sahan M. Godahewa, Aashani Tillekaratne	
An Insightful Approach to Understanding the Mechanism of Amino Acid Adsorption	
on Inorganic Surfaces: Glycine on Silica	253
Yana Suchikova, Sergii Kovachov, Andriy Lazarenko, Hanna Lopatina,	
Natalia Tsybuliak, Olha Hurenko, Ihor Bohdanov	
Surface Modification of Gallium Arsenide by Electrochemical Methods	
in Different Electrolyte Compositions	262
Tatyana Kiose, Tatyana Rakitskaya, Alim Ennan, Volodymyr Vasylechko, Halyna Gryshchouk	
Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material	
for Air Purification from Carbon Monoxide	272
Behzad Zeynizadeh, Masumeh Gilanizadeh	
The Immobilized Cu-Ni-Fe-Cr Layered Double Hydroxide on Silica-Layered Magnetite	
as a Reusable Mesoporous Catalyst for Convenient Conversion of Epoxides to 1,2-Diacetates	279
Lyubov Patrylak, Serhii Konovalov, Stepan Zubenko, Anzhela Yakovenko	
Transformation of Hexoses on Natural and Synthetic Zeolites	287
Dmytro Khomenko, Tetyana Shokol, Roman Doroshchuk,	
Ilona Raspertova, Rostyslav Lampeka, Yulian Volovenko	
Strategies for the Synthesis of [1,2,4]Triazolo[1,5-a]pyridine-8-carbonitriles	294
Nazariy Pokhodylo, Roman Martyak, Mykola Tupychak, Khrystyna Pitkovych,	
Vasyl Matiychuk, Mykola Obushak	
The (1H-Tetrazol-1-yl)arenediazonium Salts as Convenient Reagents for Quinones Arylation:	
Synthesis of 1,3-Benzoxathiol-2-ones and Naphtho[2,1-d][1,3]oxathiol-2-ones Bearing	
(1 <i>H</i> -Tetrazol-1-yl)phenyl Motif	304
Ewa Zaczynska, Anna Czarny, Olena Karpenko, Sofiya Vasylyuk, Nataliya Monka,	
Nataliya Stadnytska, Liubov Fizer, Olena Komarovska-Porokhnyavets,	
Maciej Jaranowski, Vira Lubenets, Michał Zimecki	
Obtaining and Determining Antiviral and Antibacterial Activity	
of S-Esters of 4-R-Aminobenzenethiosulfonic Acid	315
Omar Mukbaniani, Tamara Tatrishvili, Nikoloz Kvinikadze, Tinatin Bukia,	
Zurab Pachulia, Nana Pirtskheliani, Gia Petriashvili	
Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite	
Materials on Their Base	325
Volodymyr Gunka, Yuriy Demchuk, Iryna Drapak, Bohdan Korchak, Michael Bratychak	
Kinetic Model of the Process of Polycondensation of Concentrated Phenols	
of Coal Tar with Formaldehyde	339
Islom Turdikulov, Muhlisa Saidmuhammedova, Nurbek Ashurov,	
Muhitdin Abdurazakov, Abdumutolib Atakhanov, Sayyora Rashidova	
Functionalization of Low-Molecular-Weight Polyethylene by Melt Grafting	r
of Maleic Anhydride for Using as a Compatibilizer	347
Volodymyr Lebedev, Denis Miroshnichenko, Serhiy Pyshyev, Ananiy Kohut	
Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based	0.57
on Hydroxypropyl Methyl Cellulose	357

Karolina Gwizdała, Paweł Szarlej, Przemysław Gnatowski, Edyta Piłat,	
Maciej Sienkiewicz, Justyna Kucińska-Lipka	
Determination of Liquid Detergent Pods as a Potential Microplastic Source	365
Yuliya Voloshyna, Olexandra Pertko, Volodymyr Povazhnyi,	
Lyubov Patrylak, Angela Yakovenko	
Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia	
on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons	373
Fariba Karimian, Gholamreza Karimi, Mohammad Khorram,	
Reihaneh Daraeinejad, Mahnaz M. Abdi	
Optimized Design and Fabrication of Polyethylene Glycol 1000/Polyamide 6	
(PEG1000/PA6) Nanofibers for Phase Change Materials (PCMs) Application	386
Fettah Asma, Hachani Salah Eddine, Chennai Yassmine, Zeghdoud Hanane	
Phytochemical Screening, Antibacterial and Antioxidant Activities of Ocimum basilicum L.	
Cultivated in Biskra, Algeria	397
Fadi Alakhras, Huda Alghamdi, Rabia Rehman	
Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions	
in Aqueous Solutions	407
Saeed Hassani Sadrabadi, Hojat Naderi, Seyed Mohammad Moshtaghioun,	
Federico Aulenta, Hamid R. Zare	
Bio-Electrochemical Recovery of Copper from Dilute Acidic Solutions	100
as a Function of External Resistance, Copper and Iron Concentrations	420
Oleksii Papeikin, Larysa Bodachivska, Iryna Venger	
Waste Food Oils as Components of Eco-Friendly Grease	431
Sumit Kumar Jana, Satarupa Pattanayak, Magar Subhash Bhausaheb,	
Bidhan Chandra Ruidas, Dan Bahadur Pal	
Pyrolysis of Waste Plastic to Fuel Conversion for Utilization in Internal Combustion Engine	438
Yuriy Prysiazhnyi, Guri Isaiah Borbeyiyong, Bohdan Korchak,	
Serhiy Pyshyev, Maria Shved, Yuliia Matlakh	
Obtaining and Use of Coumarone-Indene-Carbazole Resin as a Modifier	
of Road Petroleum Bitumen. 2. Setting the Type and Amount of Catalyst	450
Taras Chervinskyy, Oleg Grynyshyn, Roman Prokop, Bohdan Korchak	10-5
Study on the Purification Process of Used Motor Oils in the Presence of Crystalline Urea	460

Vol. 17, No. 3, pp. 469-710

Chemistry

 Serhiy Gerasymchuk, Ihor Poliuzhyn, Valentyn Serheyev, Tetiana Hnativ Method for Obtaining Isothermal Diagrams of the Liquid – Vapor Equilibrium for the System as Dimethyl Zinc – Dimethyl Telluride Iryna Tsykhanovska, Mykola Riabchykov, Olexandr Alexandrov, 	469
Victoriya Evlash, Oksana Bryzytska, Sergey Gubsky, Tatyana Lazareva, Olga Blahyi	
Physico-Chemical Studies of the Interaction Mechanism of Double	
and Trivalent Iron Double Oxide Nano-Particles with Serpin Protein Ovalbumin and Water	481
Iryna Lutsyuk, Yaryna Gavryshkevych, Yaroslav Vakhula Peculiarities of Phase Formation in Sol-Gel Powders of the CaO – ZrO ₂ – Nb ₂ O ₅ – SiO ₂ System	495
Sajda .S. Affat, Saad Shahad Mohammed	490
Photocatalytic Degradation of Polyethylene Plastics Using MgAl ₂ O ₄ Nanoparticles Prepared by Solid State Method	503
Maryna Stasevych, Viktor Zvarych, Mykhailo Dronik, Martyn Sozanskyi, Semen Khomyak	
Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment	
of the Qualitative Composition of Components in a Pharmaceutical Formulation	510
Khaoula Kouchkar, Youcef Boumedjane, Salah Eddine Hachani	
$[3+2]$ Cycloaddition of N- <i>tert</i> -Butyl, α -(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation	518
Gheorghe Roman	
Salicylaldehydes Derived from 5-Chloromethyl-2-hydroxybenzaldehyde — Synthesis and Reactions	532
Nataliia Slyvka, Lesya Saliyeva, Mariia Litvinchuk, Svitlana Shishkina, Mykhailo Vovk	
Features of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents	542
Tinatin Bukia, Mariam Utiashvili, Manana Tsiskarishvili, Sopo Jalalishvili,	
Ana Gogolashvili, Tamara Tatrishvili, Gia Petriashvili	
Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine	549
Afrooz Majdi-Nasab, Fariba Heidarizadeh, Hossein Motamedi	
Synthesis and Antimicrobial Activities of Salicylaldehyde Schiff Base-Cu(II) Complex	
and Its Catalytic Activity in N-Arylation Reactions	557
Ismail A. Elhaty	
Effect of Tween 80 on the Stability and Conformation of Telomeric G-Quadruplex DNA	567
Yuriy Prysiazhnyi, Oleg Grynyshyn, Serhiy Pyshyev, Bohdan Korchak, Michael Bratychak	
Resins with Oxygen-Containing Functional Groups Obtained from Products	
of Fossil Fuels Processing: A Review of Achievements	574
Nouria Bouchikhi, Djahida Lerari, Salah Hamri, Faycal Dergal,	
Khaldoun Bachari, Lamia Bedjaoui-Alachaher	
Photopolymerization of Poly(Hydroxyethyl Acrylate) (PHEA):	500
Experimental Parameters-Viscoelastic Properties Relationship	592
Maira Umerzakova, Talkybek Jumadilov, Ruslan Kondaurov, Rakhima Sarieva	601
Compositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite	001

Yuriy Bilonoga, Volodymyr Atamanyuk,Volodymyr Stybel, Ihor Dutsyak, Uliana Drachuk	
Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking	
into Account Surface Forces of Heat Carriers	608
Zohreh Zobeidi, Roohollah Sadeghi, Mohamad-Taghi Rostami	
Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection	617
Abdulloh Abdulloh, Ulfa Rahmah, Ahmadi Jaya Permana, Achmad Affan Mahdy,	
Titah Aldila Budiastanti, Mochamad Zakki Fahmi	
Cracking Optimization of Palmitic Acid Using Fe ³⁺ Modified Natural Mordenite	
for Producing Aviation Fuel Compounds	625
	625

Khiouani Adel, Hachani Salah Eddine, Meklid Abdelhek	
Removal of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree	636
Zenovii Znak, Viktoria Kochubei	
Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver	
on Its Sorption Capacity	646
Oksana Savvova, Yana Pokroieva, Hennadii Voronov, Olena Babich, Yuliia Smyrnova	
Antibacterial Matte Glass – Ceramic Coatings with Satin Texture for Ceramic Tiles	655
Vitalii Orlovskyy, Volodymyr Biletskyi, Myroslav Malovanyy	
Development of Lightweight Grouting Materials Based on By-Products of Ukrainian Industry	666
Andriy Nagurskyy, Oleg Grynyshyn, Yuriy Khlibyshyn, Bohdan Korchak	
Use of Rubber Crumb Obtained from Waste Car Tires for the Production	
of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing	674
Myroslava Donchenko, Oleg Grynyshyn, Yuriy Demchuk, Petro Topilnytskyy, Yuriy Turba	
Influence of Potassium Humate on the Technological Aging Processes	
of Oxidized Petroleum Bitumen	681
Artur Onyshchenko, Roman Lisnevskyi, Ivan Viesich, Olha Poliak,	
Sergii Rybchynskyi, Eduard Shyshkin	
Study on the Effect of Butonal NX4190 Polymer Latex on the Properties	
of Bitumen Binder and Asphalt Concrete	688
Volodymyr Gunka, Myroslava Donchenko, Yuriy Demchuk, Iryna Drapak, Michael Bratychak	
Production of Bitumen Modified with Low–Molecular Organic Compounds from Petroleum Residues.	
8. Prospects of Using Formaldehyde Modified Tars in Road Construction	701

Events

Olena Shyshchak, Ananiy Kohut

In Memory of Professor Michael Bratychak (1946–2023)

Vol. 17, No. 4, pp. 711-935

Chemistry

Elena Shapakidze, Marina Avaliani, Marina Nadirashvili, Vera Maisuradze, Ioseb Gejadze, Tamar Petriashvili Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste	711
Mohammed A. B. Abdul Jabar	, 11
New Solid-Solutions of Substitution Strontium (Sr) for Lead (Pb) in Apatite Structure	719
Wissam Abbas Ali, Hayder Hamied Mihsen, Sajid H.Guzar	, 10
Synthesis, Characterization and Antibacterial Activity of Sn(II) and Sn(IV) Ions Complexes Containing	
N-Alkyl-N-Phenyl Dithiocarbamate Ligands	729
Tamar Makharadze, Giorgi Makharadze	
Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular	
Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods	740
Oleksandra Berezhnytska, Artur Horbenko, Irina Savchenko,	
Oleksandr Rohovtsov, Nataliya Rusakova, Olena Trunova	
Investigation of Coordination Compounds of Gadolinium (III) With β-Diketones	748
Gia Petriashvili, Andro Chanishvili, Nino Ponjavidze, Ketevan Chubinidze,	
Tamara Tatrishvili, Elene Kalandia, Ana Petriashvili, Tamar Makharadze	
Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation	
of Optical Information	758
Haüdar Yьksek, Hilal Medetalibeyoğlu, Mehmet Karadağ, Sevda Manap	
Synthesis, Biological and Acidic Properties of Novel 2-Methoxy-6-[(3-Alkyl/Aryl-4,5-Dihydro-1H-	
1,2,4-Triazol-5-one-4-yl)-Azomethin]-Phenyl p-Nitrobenzoate Derivatives	766
Anna Bohdan, Yanina Romanenko, Mikhail Zavhorodnii, Maryna Kornet,	
Vasyl Shupeniuk, Amaladoss Nepolraj, Olena Klimova, Oleksandr Brazhko	
Design, Synthesis and Biological Activity of the 4-Thioquinoline Derivative	774
Fidelia N. Ibeanu, Mercy A. Ezeokonkwo, Efeturi A. Onoabedje,	
Cosmas C. Eze, Evelyn U. Godwin-Nwakwasi, Uchechukwu C. Okoro	
Synthesis, Antimicrobial and Computational Studies of New Branched	
Azaphenothiazinones Derivatives	786
Witold Brostow, Haley E. Hagg Lobland, Nora A. Hamad	
Dependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility	796
Faysal Dergal, Djahida Lerari, Khaldoun Bachari	
Spontaneous Polymerization of 4-Vinylpyridine Monomer on Micron-Sized Mica Platelets	800
Omar Mukbaniani, Tamara Tatrishvili, Nikoloz Kvnikadze, Tinatini Bukia,	
Nana Pirtskheliani, Tamar Makharadze, Gia Petriashvili Durahan - Containing Compositor with Environmentally Erion day Bindows	007
Bamboo – Containing Composites with Environmentally Friendly Binders	807

Stepan Melnyk, Yurii Melnyk, Halyna Mahorivska, Olena Fuchyla Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine	820
Shiraz Mammadov, Gunel Azizova, Gunel Mammadova,	
Rana Khankishiyeva, İbrahim Movlayev, Jovdat Mammadov	
The Effect of Composition and Structure of NBR-Based Elastomer Blends	
in the Vulcanization Process and Study of Their Aging by Exposure to Heat and Radiation	829
Serhii Prystynskyi	
Adjusting the Performance Properties of Products Obtained by Injection Molding from Polyamide 12	836
Mikhaylo Milyukin, Maksym Gorban	
Investigation of the Dispersed-Phase Distribution of Organochlorine Pesticides,	
Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Natural Water Systems	846
Khoa Dang Nguyen, Anh Thi Hoang Tran , Noor Haida Mohd Kaus	
Preparation and Characterization of Red Mud-Based Geopolymer Composited	
with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution	857

Vol. 17, No. 4, pp. 711-935

Chemistry

Elena Shapakidze, Marina Avaliani, Marina Nadirashvili, Vera Maisuradze, Ioseb Gejadze, Tamar Petriashvili Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste	711
Mohammed A. B. Abdul Jabar	
New Solid-Solutions of Substitution Strontium (Sr) for Lead (Pb) in Apatite Structure	719
Wissam Abbas Ali, Hayder Hamied Mihsen, Sajid H.Guzar	
Synthesis, Characterization and Antibacterial Activity of Sn(II) and Sn(IV) Ions Complexes Containing	
N-Alkyl-N-Phenyl Dithiocarbamate Ligands	729
Tamar Makharadze, Giorgi Makharadze	
Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular	
Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods	740
Oleksandra Berezhnytska, Artur Horbenko, Irina Savchenko,	
Oleksandr Rohovtsov, Nataliya Rusakova, Olena Trunova	
Investigation of Coordination Compounds of Gadolinium (III) With β -Diketones	748
Gia Petriashvili, Andro Chanishvili, Nino Ponjavidze, Ketevan Chubinidze,	
Tamara Tatrishvili, Elene Kalandia, Ana Petriashvili, Tamar Makharadze	
Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation	
of Optical Information	758
Haydar Yüksek, Hilal Medetalibeyoğlu, Mehmet Karadağ, Sevda Manap	
Synthesis, Biological and Acidic Properties of Novel 2-Methoxy-6-[(3-Alkyl/Aryl-4,5-Dihydro-1H-	
1,2,4-Triazol-5-one-4-yl)-Azomethin]-Phenyl <i>p</i> -Nitrobenzoate Derivatives	766
Anna Bohdan, Yanina Romanenko, Mikhail Zavhorodnii, Maryna Kornet,	
Vasyl Shupeniuk, Amaladoss Nepolraj, Olena Klimova, Oleksandr Brazhko	
Design, Synthesis and Biological Activity of the 4-Thioquinoline Derivative	774
Fidelia N. Ibeanu, Mercy A. Ezeokonkwo, Efeturi A. Onoabedje,	
Cosmas C. Eze, Evelyn U. Godwin-Nwakwasi, Uchechukwu C. Okoro	
Synthesis, Antimicrobial and Computational Studies of New Branched	700
Azaphenothiazinones Derivatives	786
Witold Brostow, Haley E. Hagg Lobland, Nora A. Hamad Dependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility	796
Faysal Dergal, Djahida Lerari, Khaldoun Bachari	790
Spontaneous Polymerization of 4-Vinylpyridine Monomer on Micron-Sized Mica Platelets	800
Omar Mukbaniani, Tamara Tatrishvili, Nikoloz Kvnikadze, Tinatini Bukia,	800
Nana Pirtskheliani, Tamar Makharadze, Gia Petriashvili	
Bamboo – Containing Composites with Environmentally Friendly Binders	807
Danioto Containing Composites with Environmentally Friendly Diracis	007

Stepan Melnyk, Yurii Melnyk, Halyna Mahorivska, Olena Fuchyla Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine	820
Shiraz Mammadov, Gunel Azizova, Gunel Mammadova,	
Rana Khankishiyeva, İbrahim Movlayev, Jovdat Mammadov	
The Effect of Composition and Structure of NBR-Based Elastomer Blends	
in the Vulcanization Process and Study of Their Aging by Exposure to Heat and Radiation	829
Serhii Prystynskyi	
Adjusting the Performance Properties of Products Obtained by Injection Molding from Polyamide 12	836
Mikhaylo Milyukin, Maksym Gorban	
Investigation of the Dispersed-Phase Distribution of Organochlorine Pesticides,	
Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Natural Water Systems	846
Khoa Dang Nguyen, Anh Thi Hoang Tran , Noor Haida Mohd Kaus	
Preparation and Characterization of Red Mud-Based Geopolymer Composited	
with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution	857

AUTHOR INDEX OF VOLUME 17

ABDELHEK Meklid (3) 636 ABDI Mahnaz M. (2) 386 ABDUL JABAR Mohammed A. B. (4) 719 ABDUL JABBAR Marwa F. (4) 887 ABDULLOH Abdulloh (3) 625 ABDURAZZAKOV Muhitdin (2) 347 ADEL Khiouani (3) 636 AFFAT Sajda S. (3) 503 AICHI Mohammed (2) 221 ALAKHRAS Fadi (2) 407 ALEXANDROV Olexandr (3) 481 ALGHAMDI Huda (2) 407 ALI Wissam Abbas (4) 729 ANELI Jimsher (1) 35 ARRIAGA-GARZA Rodrigo (1) 133 ASHUROV Nurbek (2) 347 ASMA Fettah (2) 397 ASTAKHOVA Olena (1) 70, 211; (4) 916 ATAKHANOV Abdumutolib (2) 347 ATAMANYUK Volodvmvr(3) 608 AULENTA Federico (2) 420 AVALIANI Marina (4) 711 AZIZOVA Gunel (4) 829

BABICH Olena (3) 655 BACHARI Khaldoun (1) 7; (3) 592; (4) 800 BEDJAOUI-ALACHAHER Lamia (3) 592 BELARBI Assia (1) 118 BELARBI Nadia (1) 7 BENDEBANE Farida (1) 154 BENHARRATS Nassira (1) 118 BEREZHNYTSKA Oleksandra (4) 748 BHAUSAHEB Magar Subhash (2) 438 BILECKYY Volodymyr (3) 666 BILONOGA Yuriy (3) 608 BLAHYI Olga (3) 481 BODACHIVSKA Larysa (2) 431 BOHDAN Anna (4) 774 BOHDANOV Ihor (2) 262 BORBEYIYONG Guri Isaiah (2) 450 BOUCHIKHI Nouria (3) 592 **BOUMEDJANE** Youcef (3) 518 BRATYCHAK Jr Mykhailo (1) 70, 101 BRATYCHAK Michael (2) 339; (3) 574, 701 BRAZHKO Oleksandr (4) 774 BROSTOW Witold (4) 796 BRYZYTSKA Oksana (3) 481 BUDIASTANTI Titah Aldila (3) 625 BUKIA Tinatin (2) 325; (3) 549; (4) 807 CASTAÑO Víctor M. (1) 133

CHANISHVILI Andro (4) 758 CHERVINSKYY Taras (1) 70; (2) 460; (4) 923 CHIKHI Iyas (1) 7 CHOPYK Nataliia (1) 101 CHOUKCHOU-BRAHAM Noureddine (1) 7 CHUBINIDZE Ketevan (4) 758 CORTÉS Rodolfo (1) 133 CZARNY Anna (2) 315

DAHMANI Benamar (1) 7 DALIBA Oleksandr (1) 88 DARAEINEJAD Reihaneh (2) 386 DEMCHUK Yuriy (1) 211; (2) 339; (3) 681, 701; (4) 916 DERGAL Fayçal (1) 7; (3) 592; (4) 800 DJEGHADER Imene (1) 154 DONCHENKO Myroslava (1) 211; (3) 681, 701 DOROSHCHUK Roman (2) 294 DRACHUK Ulyana (3) 608 DRAPAK Iryna (2) 339; (3) 701; (4) 916 DRONIK Mykhailo (3) 510 DUTSYAK Ihor (3) 608

EDDINE Hachani Salah (2) 397; (3) 636 EL GUENDOUZI Mohamed (1) 179 ELHATY Ismail A. (3) 567 ELIZONDO-VILLARREAL Nora (1) 133 ELYAMANI Yaktine (1) 179 EMBAREK Nadia (1) 60 ENNAN Alim (2) 272 EVLASH Victoriya (3) 481 EZE Cosmas C. (4) 786 EZEOKONKWO Mercy A. (4) 786

FAHMI Mochamad Zakki (3) 625 FERRAHI Mohammed Issam (1) 81 FIZER Liubov (2) 315 FUCHYLA Olena (4) 820

GAVRYSHKEVYCH Yaryna (3) 495 GEJADZE Ioseb (4) 711 GERASYMCHUK Serhiy (3) 469 GHASEMI Avat (4) 878 GHASEMI Zhila (4) 878 GILANIZADEH Masumeh (2) 279 GNATOWSKI Przemysław (1) 24; (2) 365 GODAHEWA Sahan (2) 253 GODWIN-NWAKWASI Evelyn U. (4) 786 GOGOLASHVILI Ana (3) 549 GORBAN Maksym (4) 846 *GRAŽULEVIČIUS Juozas* (1) 52 *GRYNYSHYN Oleg* (2) 460; (3) 574, 674, 681 *GRYSHCHOUK Halyna* (2) 272 *GUBSKY Sergey* (3) 481 *GUEDIRA Taoufiq* (2) 244 *GUNKA Volodymyr* (1) 211; (2) 339; (3) 701; (4) 916, 929 *GUZAR Sajid H.* (4) 729 *GWIZDAŁA Karolina* (2) 365

HACHANI Salah Eddine (3) 518 HAFIED Meriem (2) 221 HAGG LOBLAND Haley E. (4) 796 HAMAD Nora A. (4) 796 HAMRI Salah (3) 592 HANANE Benmoussa Mahi (1) 81 HANANE Zeghdoud (2) 397 HEIDARIZADEH Fariba (3) 557 HELZHYNSKYY Igor (4) 923 HNATIV Tetiana (3) 469 HORBENKO Artur (4) 748 HRYNCHUK Yurii (1) 211; (4) 916 HRYNYSHYN Ksenia (4) 923 HUNCHAK Alla (1) 188 HURENKO Olha (2) 262

IBEANU Fidelia N. (4) 786 IMANGAZY Aldan (1) 52 ISMAIL Fadhel (1) 154

JALALISHVILI Sopo(3) 549 JANA Sumit Kumar (2) 438 JARANOWSKI Maciej (2) 315 JAWAD Nizar A. (4) 894 JUMADILOV Talkybek (1) 52; (3) 601

KAKALASHVILI Lizi (1) 35 KALANDIA Elene (4) 758 KARADAĞ Mehmet (4) 766 KARIMI Gholamreza (2) 386 KARIMIAN Fariba (2) 386 KARPENKO Olena (2) 315 KAUS Noor Haida Mohd (4) 857 KHANKISHIYEVA Rana (4) 829 KHLIBYSHYN Yurii (3) 674 KHOMENKO Dmytro (2) 294 KHOMYAK Semen (3) 510 KHORRAM Mohammad (2) 386 KINDZERA Diana (1) 110 KIOSE Tatyana (2) 272 KLIMOVA Olena (4) 774 KOCHUBEI Viktoria (3) 646; (4) 870 KOHUT Ananiy (1) 70; (2) 357 KOMARENSKA Zorvana (1) 18 KOMAROVSKA-POROKHNYAVETS Olena (2) 315 KONDAUROV Ruslan (3) 601 KONDURU Mani Divva (1) 164 KONOVALOV Serhii (2) 287 KORCHAK Bohdan (2) 339, 450, 460; (3) 574, 674 KORNET Marvna (4) 774 KOUCHKAR Khaoula (3) 518 KOVACHOV Sergii (2) 262 KROPYVNYTSKA Tetiana (1) 170 KSHYVETSKYY Bogdan (1) 110 KUCIŃSKA-LIPKA Justyna (1) 24; (2) 365 KURTA Sergiy(4) 929 KVINIKADZE Nikoloz (1) 35; (2) 325; (4) 807 KYCHKYRUK Olga (1) 45

LAMPEKA Rostyslav (2) 294 LAZARENKO Andriy (2) 262 LAZAREVA Tatyana (3) 481 LEBEDEV Volodymyr (2) 357 LERARI Djahida (1) 7; (3) 592; (4) 800 LEVYTSKYI Volodymyr (1) 101 LISNEVSKYI Roman (3) 688 LITVINCHUK Mariia (3) 542 LONDARIDZE Levan (1) 35 LOPATINA Hanna (2) 262 LUBENETS Vira (2) 315 LUTSYUK Iryna (3) 495 LYKHOMANOV Mykyta (4) 929

MAAMRI Sarra (1) 141 MAHDY Achmad Affan (3) 625 MAHORIVSKA Halyna (4) 820 MAISURADZE Vera (4) 711 MAJDI-NASAB Afrooz (3) 557 MAKHARADZE Giorgi (4) 740 MAKHARADZE Tamar (4) 740, 758, 807 MAKOTA Oksana (1) 18 MALOVANYY Myroslav (3) 666; (4) 870 MAMMADOV Jovdat (4) 829 MAMMADOV Shiraz (4) 829 MAMMADOVA Gunel (4) 829 MANAP Sevda (4) 766 MARKARASHVILI Eliza (1) 35 MARTYAK Roman (2) 304 MASYUK Andrii (1) 101 MATIYCHUK Vasyl (2) 304 MATLAKH Yuliia (2) 450 MEDETALIBEYOĞLU Hilal (4) 766 MELNYK Stepan (4) 820

MELNYK Yurii (4) 820 MESLI Salima (1) 118 MIHSEN Hayder Hamied (4) 729 MILYUKIN Mikhaylo (4) 846 MIROSHNICHENKO Denis (2) 357 MOHAMMED Saad Shahad (3) 503 MONKA Nataliya (2) 315 MOSHTAGHIOUN Seyed Mohammad (2) 420 MOTAMEDI Hossein (3) 557 MOUSSA Amrani (1) 141 MOVLAYEV İbrahim (4) 829 MUKBANIANI Omar (1) 35; (2) 325; (4) 807

NADERI Hojat (2) 420 NADIRASHVILI Marina (4) 711 NAGURSKYY Andriy (3) 674 NAIFE Tariq M. (4) 887 NAIFE Tariq M. (4) 894 NEPOLRAJ Amaladoss (4) 774 NGUYEN Khoa Dang (4) 857

OBUSHAK Mykola (2) 304 OKORO Uchechukwu C. (4) 786 OLIYNYK Lilianna (1) 18 ONOABEDJE Efeturi A. (4) 786 ONYSHCHENKO Artur (3) 688 ORLOVSKYY Vitalii (3) 666 OUIS Nora (1) 118 OVCHAROV Valery (1) 88

PACHULIA Zurab (2) 325 PAL Dan Bahadur (2) 438 PAPEIKIN Oleksii (2) 431 PATRYLAK Lyubov (2) 287, 373 PATTANAYAK Satarupa (2) 438 PERERA Rajith A. (4) 903 PERERA Ruwan T. (4) 903 PERMANA Ahmadi Java(3) 625 PERTKO Olexandra (2) 373 PETRIASHVILI Ana (4) 758 PETRIASHVILI Gia (2) 325; (3) 549; (4) 758, 807 PETRIASHVILI Tamar (4) 711 PIŁAT Edyta (1) 24; (2) 365 PIRTSKHELIANI Nana (2) 325; (4) 807 PITKOVYCH Khrystyna (2) 304 POKHODYLO Nazariy (2) 304 POKROIEVA Yana (3) 655 POLIAK Olha (3) 688; (4) 916 POLIUZHYN Ihor (3) 469 PONJAVIDZE Nino (4) 758 POPYTAILENKO Daryna (1) 203

POVAZHNYI Volodymyr (2) 373 PROKOP Roman (2) 460 PRYSIAZHNYI Yuriy (1) 211; (2) 450; (3) 574; (4) 916 PRYSTYNSKYI Serhii (4) 836 PYLYPENKO Oleksij (2) 237 PYSHYEV Serhiy (2) 357, 450; (3) 574

RAFIK Abdellatif (2) 244 RAHAYU Sri (1) 126 RAHMAH Ulfa (3) 625 RAJAPAKSE Chandima, S. K. (4) 903 RAKITSKAYA Tatyana (2) 272 RASHID Sarmad A. (4) 887 RASHIDOVA Savvora (2) 347 RASPERTOVA Ilona (2) 294 RAZIMOWICZ Marta (1) 24 REHMAN Rabia (2) 407 REUTSKYY Volodymyr (1) 211 RIABCHYKOV Mykola (3) 481 RIY Volodvmvr (4) 929 ROHOVTSOV Oleksandr (4) 748 ROMAN Gheorghe (3) 532 ROMANCHUK Victoria (1) 195 ROMANENKO Yanina (4) 774 ROSTAMI Mohamad-Taghi (3) 617 RUDACHENKO Nataliia (2) 237 RUIDAS Bidhan Chandra (2) 438 RUSAKOVA Nataliya (4) 748 RYBCHYNSKYI Sergii (3) 688

SADEGHI Roohollah (3) 617 SADRABADI Saeed Hassani (2) 420 SAHLI Nabahat (1) 60 SAIDMUHAMMEDOVA Muhlisa (2) 347 SALIYEVA Lesya (3) 542 SALYHA Yuriy (1) 188 SANYTSKY Myroslav (1) 170 SARIEVA Rakhima (3) 601 SAVCHENKO Irina (1) 45; (4) 748 SAVVOVA Oksana (3) 655 SERHEYEV Valentyn (1) 1; (3) 469 SHAIK Feroz (1) 164 SHAPAKIDZE Elena (4) 711 SHEVCHENKO Olena (1) 203 SHEVCHENKO Olga (4) 929 SHISHKINA Svitlana (3) 542 SHOKOL Tetvana (2) 294 SHUPENIUK Vasyl (4) 774 SHVED Maria (2) 450 SHYIKO Orest (1) 170 SHYSHKIN Eduard (3) 688

SIDUN Iurii (4) 916 SIENKIEWICZ Maciei (1) 24: (2) 365 SKOROKHODA Volodymyr (4) 923 SKRYPKINA Maria (1) 88 SLYUZAR Andriy (4) 870 SLYVKA Nataliia (3) 542 SMIRNOVA Olha (2) 237 SMYRNOVA Yuliia (3) 655 SOKOLOVA Lina (1) 88 SOKOLOVSKYI Ihor (1) 110 SOKOLOVSKYY Yaroslav (1) 110 SOMAR Halvna (1) 110 SOZANSKYI Martyn (3) 510 STADNYTSKA Nataliva (2) 315 STARCHEVSKYY Volodvmvr (1) 188 STASEVYCH Maryna (3) 510 STEFANYSHYN Olha (1) 188 STERNIK Dariusz (1) 45 STYBEL Volodymyr (3) 608 SUCHIKOVA Yana (2) 262 SUKHA Irvna (1) 88 SZARLEJ Paweł (1) 24; (2) 365

TATRISHVILI Tamara (1) 35; (2) 325; (3) 549; (4) 758, 807 TILLEKARATNE Aashani (2) 253 TOPILNYTSKYY Petro (1) 195; (3) 681 TORRES-BARRERA Rubén O. (1) 133 TOTKHUSKYZY Bakytgul (1) 52 TRAN Anh Thi Hoang (4) 857 TRUNOVA Olena (4) 748 TSISKARISHVILI Manana (3) 549 TSYBULIAK Natalia (2) 262 TSYKHANOVSKA Iryna (3) 481 TUPYCHAK Mykola (2) 304 TURBA Yuriy (3) 681 TURDIKULOV Islom (2) 347

UMARUDIN (1) 126 UMERZAKOVA Maira (3) 601 UTIASHVILI Mariam (3) 549 VAKHULA Yaroslav (3) 495 VANGALAPATI Meena (1) 164 VASYLECHKO Volody(2) 272myr VASYLYUK Sofiya (2) 315 VENGER Iryna (2) 431 VERÁSTEGUI-DOMÍNGUEZ Luz-Hypatia (1) 133 VIESICH Ivan (3) 688 VOLOSHYNA Yuliya (2) 373 VOLOVENKO Yulian (2) 294 VORONOV Hennadii (3) 655 VOVK Mykhailo (3) 542

WARSIT (1) 126 WIDYARTI Sri (1) 126

YACINE Moussaoui (1) 141 YAHOLNYK Svitlana (4) 870 YAKOVENKO Angela (2) 373 YAKOVENKO Anzhela (2) 287 YANOVSKA Elina (1) 45 YAREMCHUK Yaroslava (4) 870 YARMOLA Tetiana (1) 195 YASSMINE Chennai (2) 397 YÜKSEK Haydar (4) 766

ZACZYNSKA Ewa (2) 315 ZARE Hamid Reza (2) 420 ZAVHORODNII Mikhail (4) 774 ZEYNIZADEH Behzad (2) 279 ZIMECKI Michał (2) 315 ZNAK Zenovii (3) 646 ZOBEIDI Zohreh (3) 617 ZOUIHRI Hafid (2) 244 ZUBENKO Stepan (2) 287 ZVARYCH Viktor (3) 510