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1. Introduction

Let us consider the well-known Black–Scholes market model of financial derivatives (contracts) [1] and
some of its generalizations.

Bonds and stocks are usually called primary financial assets. The simplest stochastic model of the
price St of securities (stocks) on the asset market is the following one:

St = S0 + µt+ σWt, (1)

where S0 is the price of the asset at the time moment t = 0, the values µ and σ are called trend and
volatility coefficients, and Wt is the Wiener process (or Brownian motion process).

Recall, if (Ω,F , P ) is a probability space then real-valued stochastic Wiener process Wt = {Wt, t >
0} in this space satisfies the following conditions:

1) W0 = 0;
2) the process Wt has independent increments;
3) increments Wt−Ws for an arbitrary 0 6 s 6 t have normal distribution law with zero mean and

variance t− s (that is, Wt −Ws ∼ N(0, t − s)).
The model (1) has essential disadvantages: the price can have negative values, and the dispersion

of St on the segment [t, t+∆t] is equal to σ2∆t, thus, it does not depend on the values of St, that is
contrary to reality.

These disadvantages of the model (1) are eliminated in the exponential model or in the model of
geometric Brownian motion. We assume St to be a solution of the stochastic differential equation [2,
p. 388]:

dSt = µSt dt+ σSt dWt. (2)

It follows from (2) that the mathematical expectation ESt = eµtES0, then the value µ can be
interpreted as the growth rate of the stock price or as the risk-free interest rate (that is, the percentage
that the owner of the stock is guaranteed to receive). The volatility σ has the sense of a measure
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of stock “mobility”. As a rule, it is measured as a percentage of change over an annual period. The
volatility can also be understood as the dispersion of relative increments due to the approximate

equality D

(

St+∆t−St

St

)

≈ σ2∆t.

In the market of secondary securities (derivatives), we consider payment obligations. They are
instruments with a time of execution T (“expiry time”), for which a certain reward is paid [3, p. 356].
When building models, payment obligations are equated with their payments.

From a point of view of stochastic modeling, the payment obligation C is a non-negative FT -
dimensional stochastic variable in the probability space (Ω,Ft, P ), t > 0; it models the derivative of
the primary assets, i.e. it determines the amount of payments that depends on these primary assets.
The European payment obligation or European option is a derivative that depends only on the basic
prices at the moment T , i.e. C = f(ST ), f is called payout function of the option.

European call option with the strike price K and with an execution date T for a unit stock St is a
contract that gives its buyer (the option holder) the right to buy a unit of the asset St at the time T
by the agreed price K. The owner of the option decides whether to execute this right. As a rational
decision, the owner executes the option if and only if St at the time T exceeds K. His profit in this
case is the difference ST −K. Indeed, the owner can make this profit selling the asset in the market
at the current price immediately. In the general case, the profit of the owner is Ccall = (ST −K)+ :=
max{ST −K, 0}.

Similarly, European put option gives its owner the right (but not the obligation) to sell the primary
asset at time T by the strike price K. In this case, his profit (payout) is Cput = (K − ST )

+.
Note that there is also another type of option — American option, the owner of which can execute

his right at any time before the end date of the agreement.
In the basic paper [1] it was studied the problem of finding the fair price of the European option

with the variable stock price according to the model (2). If we assume that µ in the model (2) coincides
with the fixed risk-free interest rate (µ = r), then in the case of “fair play” at the moment t = T the
reasonable value C of the Call-type European option (for purchase) should be equal to

V = e−rT
Emax{0, ST −K}.

By writing the mathematical expectation, we get

V =
e−rT

√
2πT

∫ ∞

−∞
f
(

S0e
(r−σ2/2)T+σx

)

exp
(

− x2

2T

)

dx, f(x) = max{x−K, 0}.

Calculating the integral leads to the so-called Black–Scholes or Black–Scholes–Merton formula [2,
P. 423]:

V = S0Φ(d1)−Ke−rTΦ(d2),

where d1 = ln(S0/K)+(r+σ2/2)T

σ
√
T

, d2 = ln(S0/K)+(r−σ2/2)T

σ
√
T

, Φ is the distribution function of the normal

Gaussian random variable.
In [1], Black and Scholes also proved that the option price as a function of the asset price and of

time V (St, t) under some assumptions for the financial market is a solution of the following partial
differential equation

−rV (S, t) +
∂V (S, t)

∂t
+ rS

∂V (S, t)

∂S
+

1

2
σ2S2∂

2V (S, t)

∂S2
= 0, (S, t) ∈ R

+ × (0, T ), (3)

with the final condition V (ST , T ) = max{ST −K, 0}.

2. Mathematical models of Asian options

Unlike the European option, the payout of Asian derivative depends on the entire trajectory of the
price value, not the final value only. For instance, it may depend on the average price AT = 1

T

∫ T
0 Stdt

of the asset during the time interval [0, T ]. Such financial instruments are called dependent on the
trajectory. Note that we will consider only so-called “European” type of Asian option, when the date
of its execution is fixed: it coincides with the time moment T .
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Asian options were introduced in currency and product markets to avoid the problems of European
options, which can be manipulated by the price of the primary asset nearing maturity. They can
be: price-averaged call options with a payout (AT − K)+, price-averaged put options with a payout
(K −AT )

+, a strike-averaged call options with a payout (ST −AT )
+, etc.

One of the methods of researching Asian options is to include dependent on the price trajectory
variables in the state space. This way was done for the first time in the papers [4, 5].

Let At be an average arithmetic value of Sτ on the segment [0, t]:

At =
1

t

∫ t

0
Sτdτ, t 6 T, A0 = S0.

Then

dAt =
1

t
(St −At)dt

and the option price at time t already depends on three values V = V (St, At, t) = V (S,A, t). In this
case, repeating the assumptions and actions for obtaining the equation (3), it can be obtained for V
the following partial differential equations

∂V (S,A, t)

∂t
+ rS

∂V (S,A, t)

∂S
+

1

2
σ2S2∂

2V (S,A, t)

∂S2
− rV (S,A, t)

+
1

t
(S −A)

∂V (S,A, t)

∂A
= 0, (S,A, t) ∈ R

+ × R
+ × (0, T ), (4)

with the final condition V (ST , AT , T ) = g(ST , AT ), where g depends on the type of the option. For
example, for the Asian call option with average price and payout K: g(ST , AT ) = (AT −K)+.

The Asian option may depend on the geometric average value of the stock price exp
{

1
tMt

}

, where

Mt =
∫ t
0 log(Sτ )dτ , t 6 T . Also we state, for instance, V (ST ,MT , T ) =

(

ST −e
MT
T

)+
. Then, reasoning

similarly, the following equation [6] can be obtained for V :

∂V (S,M, t)

∂t
+

1

2
σ2S2∂

2V (S,M, t)

∂S2
+ rS

∂V (S,M, t)

∂S
+ (log S)

∂V (S,M, t)

∂M
− rV (S,M, t) = 0, (S, t) ∈ R

+ × (0, T ), M ∈ R. (5)

Note that the equation (5) by replacing the variables can be reduced (Ref. [7, p. 479]) to the
following well-known equation

∂x1x1
u+ x1∂x2

u− ∂tu = 0, (x1, x2, t) ∈ R
3, (6)

the fundamental solution of which was explicitly constructed by A. M. Kolmogorov describing the
processes of diffusion with inertia in the paper [8].

Thus, as we can see, the expansion of the state space by including of dependent on the price
trajectory variables transforms the path-dependent problem for the Asian option into an equivalent
path-independent Markov problem. However, the increasing of the dimension usually leads to partial
differential equations which are not uniformly parabolic. For example, the equations (4)–(6) contain
the second order derivatives with respect to one of two the “spatial” variables only.

Early models which generalize the Black–Scholes model assumed that the volatility σ is a constant
value. In [9] it was proposed a model for the European options with volatility depending on the
difference between current and past price of the asset. Then the price of the Asian option, depending
on time, on current price of the asset and on the geometric average value of the price for the period
[0, T ] as r = 0 satisfies the equation

1

2
σ2(S,M)

(

∂2V (S,M, t)

∂S2
− ∂V (S,M, t)

∂S

)

+ (S −M)
∂V (S,M, t)

∂M

+
∂V (S,M, t)

∂t
= 0, (S, t) ∈ R

+ × (0, T ), M ∈ R. (7)

In [10] authors used spectral analysis for calculation of option prices in the case when they depended
on stochastic volatility.
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Equations (4) and (7) are ultra-parabolic equations of the Kolmogorov type with Hölder-continuous
coefficients.

In general, mathematical models of the options are reduced to a Markov–type financial model, the
dynamics of which is determined by stochastic differential equation in the N -dimensional state space

dXt = (BXt + b(t,Xt)) dt+ σ(t,Xt) dWt, (8)

where Wt is the d-dimensional standard Wiener process, d 6 N , σ = σ(t, x) is a matrix of dimension
N × d, B = (bij) is a constant matrix of dimension N × N , the vector b = (b1, . . . , bN ) is such that
bd+1 = . . . = bN = 0.

Under certain assumptions on the matrix σ, B, b, in the paper [11] it was proved the existence
and uniqueness of a weak solution of the equation (8), and in [12] it was proved that the transition
probability density of this solution is a fundamental solution of the Cauchy problem (further we will
denote it by FSCP) for the equation

L1u :=
1

2

d
∑

i,j=1

aij(t, x)∂xi
∂xj

u(t, u) +

N
∑

i,j=1

bijxj∂xi
u(t, x) +

d
∑

i=1

bi(t, x)∂xi
u(t, x) + ∂tu(t, x) = 0, (9)

where the elements of the matrix (aij(t, x))
d
i,j=1 are determined by the elements of the matrix σ(t, x).

Note that the elements of the matrix σ and the vector b, in particular, must be bounded and satisfy the
Hölder-continuity conditions, and the conditions on the matrix B are equivalent to the fact that for the
operator L1 with fixed in each point (t, x) coefficients, the hypoellipticity condition of L.Hermander is
fulfilled.

Mathematical models of the options have been studied in many works. Equations of the type (9)
are ultra-parabolic equations of the Kolmogorov type. In the more general form

L2u :=

p0
∑

i,j=1

aij(t, x)∂xi
∂xj

u+

p0
∑

i=1

ai(t, x)∂xi
u+ c(t, x)u +

N
∑

i,j=1

bijxi∂xj
u− ∂tu = 0, (10)

where 1 6 p0 < N , the matrix A0 := (ai,j)
p0
i,j=1 is symmetric and positive definite, and the matrix

B := (bi,j)
N
i,j=1 with constant real elements has the form













∗ B1 O . . . O
∗ ∗ B2 . . . O
. . . . . . . . . . . . . . .
∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗













,

the equations were studied by a number of Italian mathematicians, in particular, in the works [13–15].
Bj are matrices of size pj−1 × pj with the rank pj, where p0, p1, . . . , pr are integer positive numbers
such that p0 > p1 > . . . > pr > 1, p0 + p1 + . . . + pr = N , O are zero-matrices of corresponding
dimensions, and ∗-blocks are arbitrary.

In the equation (10), under the specified conditions on the matrix B, the operator L2 is hypo-
elliptic, as well as it is invariant with respect to some group of extensions. With respect to this group,
in the [13] it was introduced a special B-Hölder condition imposed on the coefficients aij , ai, and c.

The main challenges in the study of the Asian options models while reducing them to ultra-parabolic
equations of the Kolmogorov type are the following: the construction, researching of the existence,
uniqueness and properties (for instance, such as non-negativity, normality, convolution formula) of the
FSCP as the probability density of the transition between the states of the stochastic process, described
by the corresponding stochastic differential equation of the form (8).

The following parts of this paper are devoted to this issue.

3. Equations with three groups of spatial variables

In the case of three groups of spatial variables, the equation (10) can be written in the following form:

(SB −A(t, x, ∂x1
))u(t, x) = 0, (t, x) ∈ Π(0,T ], (11)
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where n1, n2, n3 are integer non-negative numbers such that n3 6 n2 6 n1, n := n1 + n2 + n3;
x := (x1, x2, x3), xi := (xi1, . . . , xini

), i ∈ {1, 2, 3}; Π(0,T ] := {(t, x)|t ∈ (0, T ], x ∈ R
n},

SB := ∂t −
n2
∑

j=1

(

n1
∑

s=1

b1sjx1s

)

∂x2j
−

n3
∑

j=1

(

n2
∑

s=1

b2sjx2s

)

∂x3j
, (12)

A(t, x, ∂x1
) :=

∑n1

i,j=1 aij(t, x)∂x1i
∂x1j

+
∑n1

i=1 ai(t, x)∂x1i
+ a0(t, x).

The differential expression (12) is in matrix form

SB = ∂t − (x,BDx),

where B is a n× n-matrix:

B :=





O B1 O
O O B2

O O O



 , (13)

where B1, B2 are matrices composed of real numbers b1ij , i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2},
b2ij , i ∈ {1, . . . , n2}, j ∈ {1, . . . , n3}, O are null-matrices of corresponding dimensions, Dx :=
col(∂x11

, . . . , ∂x1n1
, ∂x21

, . . . , ∂x2n2
, ∂x31

, . . . , ∂x3n3
), (·, ·) is a scalar product in R

n.
We will use the following conditions:

A1. In the matrix (13), the blocks B1 and B2 are written in the form
(

B1
1

B1
2

)

and
(

B2
1

B2
2

)

respectively,

where dimensions of matrices B1
1 , B

1
2 , B

2
1 and B2

2 are n2×n2, (n1−n2)×n2, n3×n3 and (n2−n3)×n3

respectively, and they satisfy the condition detBi
1 6= 0, i ∈ {1, 2};

A2. There exists a constant δ > 0 such that for any point (t, x) ∈ Π[0,T ] and σ1 ∈ R
n1 the inequality

Re

n1
∑

i,j=1

aij(t, x)σ1iσ1j > δ

n1
∑

i=1

σ2
1i

holds.
S. D. Ivasyshen and V. V. Laiuk in theirs works (for example, in [16]) denoted by EB

22 the class of
equations (11) satisfying the conditions A1 and A2. This class generalizes the class of ultra-parabolic
equations of the Kolmogorov type E22 introduced in the monograph [17]. The main feature of the
research of the mentioned authors is the establishing of an one-to-one correspondence between the
classes EB

22 and E22.
We will use expressions connecting spatial variables and the elements of the matrix B:

X(h) := (X1(h),X2(h),X3(h)), Xi(h) := (Xi1(h), . . . ,Xini
(h)), i ∈ {1, 2, 3}, (14)

X1j(h) := x1j , j ∈ {1, . . . , n1}, X2j(h) := x2j + h

n1
∑

i=1

b1ijx1i, j ∈ {1, . . . , n2},

X3j(h) := x3j + h

n2
∑

i=1

b2ijx2i +
h2

2

n1
∑

i=1

n2
∑

s=1

b2sjb
1
isx1i, j ∈ {1, . . . , n3}, h ∈ R.

Statement 1. Under the condition A1 the substitution of the spatial variables

x̂1j =











∑n1

i=1

∑n2

s=1 b
2
sjb

1
isx1i, j ∈ {1, . . . , n3},

∑n1

i=1 b
1
ijx1i, j ∈ {n3 + 1, . . . , n2},

x1j , j ∈ {n2 + 1, . . . , n1};
x̂2j =

{

∑n2

i=1 b
2
ijx2i, j ∈ {1, . . . , n3},

x2j , j ∈ {n3 + 1, . . . , n2};

x̂3j = x3j , j ∈ {1, . . . , n3}
is non-degenerate.

The transformation of the variables from the Statement 1 can be written in the matrix form

x̂′ = Ux′, (15)
where the matrix U is a block-diagonal one:

U :=





U1 O O
O U2 O
O O U3



 ,
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U1 :=



































∑n2

s=1 b
2
s1b

1
1s . . .

∑n2

s=1 b
2
s1b

1
n2s

∑n2

s=1 b
2
s1b

1
n2+1,s . . .

∑n2

s=1 b
2
s1b

1
n1s

...
. . .

...
...

. . .
...

∑n2

s=1 b
2
sn3

b11s . . .
∑n2

s=1 b
2
sn3

b1n2s

∑n2

s=1 b
2
sn3

b1n2+1,s . . .
∑n2

s=1 b
2
sn3

b1n1s

b11,n3+1 . . . b1n2,n3+1 b1n2+1,n3+1 . . . b1n1,n3+1
...

. . .
...

...
. . .

...
b11n2

. . . b1n2n2
b1n2+1,n2

. . . b1n1n2

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1



































,

U2 :=





















b211 . . . b2n31 b2n3+1,1 . . . b2n21
...

. . .
...

...
. . .

...
b21n3

. . . b2n3n3
b2n3+1,n3

. . . b2n2n3

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1





















, U3 = In3
:=







1 . . . 0
...

. . .
...

0 . . . 1






.

In the formula (15) and below, the dash means the matrix transposition.
By direct calculation, we make sure that determinant of the matrix U is

|U | = |U1| · |U2| · |U3| = |B1
1 | · |B2

1 |2 6= 0.

It proves the Statement 1.
Structure and non-degeneracy of the variable substitution allow us to prove the next statement.

Statement 2. Under the condition A1 the substitution of spatial variables (15) reduces the equa-
tion (11) to the equation

(SB̂ − Â(t, x̂, ∂x̂1
))û(t, x̂) = 0, (t, x̂) ∈ Π(0,T ], (16)

where

B̂ :=





O B̂1 O

O O B̂2

O O O



 , B̂1 :=

(

In2

O

)

, B̂2 :=

(

In3

O

)

,

In2
and In3

are unit matrices of dimensions n2 and n3 respectively, O are zero-matrices of corresponding
dimensions, the differential expression Â(t, x̂, ∂x̂1

) has the same form as the expression A(t, x, ∂x1
), its

coefficients âij , âi, and â0 are expressed in terms of the coefficients aij, ai, and a0 with respect to new
variables x̂ and of the elements of the matrices B1 and B2.

Also, from the condition A2 for the equation (11) the condition Â2 for the equation (16) implies.
This new condition Â2 actually does not differ from the condition A2.

4. Equations with coefficients depending on the time variable only

First, consider the case when the coefficients of the equation (11) do not depend on the spatial variables.
That is, let us consider the equation

(SB −A0(t, ∂x1
))u(t, x) = 0, (t, x) ∈ Π(0,T ], (17)

where A0(t, ∂x1
) :=

∑n1

i,j=1 aij(t)∂x1i
∂x1j

+
∑n1

i=1 ai(t)∂x1i
+ a0(t), with condition A0

2. The coefficients
of the expression A(t, ∂x1

) are continuous functions on [0, T ] and there exists a constant δ > 0 such
that for all t ∈ [0, T ] and σ1 ∈ R

n1 the inequality

Re

n1
∑

i,j=1

aij(t)σ1iσ1j > δ

n1
∑

i=1

σ2
1i

holds.
We denote by
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M :=
3
∑

l=1

(l − 1/2)nl, Mkl :=
3
∑

r=1

(2(r − 1) + 1)(|kr |+ |lr|)/2, if {k, l} ⊂ Z
n
+, k := (k1, k2, k3),

l := (l1, l2, l3), kr := (kr1, . . . , krnr), lr := (lr1, . . . , lrnr), r ∈ {1, 2, 3};
xt := (t−1/2x1, t

−3/2x2, t−5/2x3), x := (x1, x2, x3), xr := (xr1, . . . , xrnr), r ∈ {1, 2, 3};

Ec(t, x; τ, ξ) := exp

{

−c

3
∑

l=1

(t− τ)1−2l|Xl(t− τ)− ξl|2
}

, t > τ, {x, ξ} ⊂ R
n,

where the expressions for Xl, l ∈ {1, 2, 3}, are given in (14).

Theorem 1. If the conditions A1 and A0
2 are fulfilled for the equation (17), then

1) the equation (17) has an unique FSCP G;
2) the function G and its derivatives have extensions into the complex space C

n and the following
formulas are correct for these extensions

∂k
x∂

l
ξG(t, x + iy; τ, ξ + iη) = (t− τ)−M−MklΩkl(t, τ, z)|z=(X(t−τ)−ξ)t−τ+i(Y (t−τ)−η)t−τ

,

0 6 τ < t 6 T, {x, y, ξ, η} ⊂ R
n, {k, l} ⊂ Z

n
+,

where Ωkl(t, τ, z), z := (z1, . . . , zn) ∈ C
n with fixed t and τ are entire functions with respect to

z1, . . . , zn with increasing order q = 2 and with the same decreasing order at z = x ∈ R
n;

3) the estimates

|∂k
x∂

l
ξG(t, x; τ, ξ)| 6 Ckl(t− τ)−M−MklEc(t, x; τ, ξ), 0 6 τ < t 6 T, {x, ξ} ⊂ R

n, {k, l} ⊂ Z
n
+,

hold, where Ckl and c are positive constants depending only on the following: numbers n1, n2, n3, T ,
the maxima of the modules of the coefficients of the differential expression A0, the constant δ from the
condition A0

2 and the coefficients of the matrices B1 and B2;
4) the formula

∫

Rn

G(t, x, τ, ξ) dξ = exp

{

(t− τ)

∫ 1

0
a0(τ + (t− τ)β) dβ

}

, 0 6 τ < t 6 T, x ∈ R
n

is correct;
5) for 0 6 τ < t 6 T and x ∈ R

n

∂k
x

∫

Rn

G(t, x, τ, ξ) dξ = 0, k ∈ Z
n
+ \ {0};

∂k2
x2
∂k3
x3

∫

Rn

G(t, x, τ, ξ) dξ2 dξ3 = 0, (k2, k3) ∈ Z
n2+n3

+ \ {0};

∂k3
x3

∫

Rn

G(t, x, τ, ξ) dξ3 = 0, k3 ∈ Z
n3

+ \ {0}.

The statements of the Theorem 1 are substantiated in [18] using the substitution of variables (15)
and similar results from the work [17] for the corresponding equation (16) with the differential expres-
sion Â0(t, ∂x̂1

) with the constant coefficients.

5. L-solutions

In [12], the following definitions were introduced for equations from the class EB
22.

Definition 1. The function u is called differentiable by Lie at the point (t, x) with respect to the
vector field which are given by the differential expression (12) if there is the finite limit

(SL
Bu)(t, x) := lim

h→0

1

h

(

u(γ(t, x, h)) − u(γ(t, x, 0))
)

,

where γ(t, x, h) :=
(

t − h, (ehB
′

x′)′
)

, h ∈ R, is the integral curve of the given vector field that passes
through the point (t, x). The limit (SL

Bu)(t, x) is called the Lie derivative of the function u at the point
(t, x) with respect to the given vector field.
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Considering the structure of the matrix B, one can see that the matrix exponent ehB
′

decomposes
into a finite sum, and we can receive that

(ehB
′

x′)′ = X(h), γ(t, x, h) = (t− h,X(h)),

where the expression X(h) is given by the formula (14).
Note if there exist the derivatives ∂tu, ∂x2j

u and ∂x3j
u at the point (t, x) then (SL

Bu)(t, x) =
(SBu)(t, x).

Definition 2. We will call the function u by the L-solution of the equation (11) in Π(0,T ] if there

exist in Π(0,T ] continuous Lie derivative SL
Bu and ordinary derivatives ∂x1j

u, j ∈ {1, . . . , n1}, ∂x1j
∂x1s

u,
{j, s} ⊂ {1, . . . , n1}, and at any point (t, x) ∈ Π(0,T ] the equation

(

SL
B −A(t, x, ∂x1

)
)

u(t, x) = 0, (t, x) ∈ Π(0,T ] (18)

holds.

Note if the coefficients of the expression A do not depend on the spatial variables then the L-
solutions are the ordinary classical solutions of the equation.

To formulate the theorem, we introduce the following notations and definitions:

d(x, ξ) :=

3
∑

i=1

|xi − ξi|1/(2(i−1)+1) , d(t, x; τ, ξ) := |t− τ |1/2 + d(x, ξ),

∆ξ
x := f(·, x)− f(·, ξ), ∆τ,ξ

t,x := f(t, x)− f(τ, ξ),

where {t, τ} ⊂ R, {x, ξ} ⊂ R
n, f is a some function.

Definition 3. We will call the function f(t, x), (t, x) ∈ Π[0,T ] by B-Hölder function with the exponent
α ∈ (0, 1] in Π[0,T ] if there exists a constant H > 0 such that for any {(t, x), (τ, ξ)} ⊂ Π[0,T ]

∆τ,ξ
t,xf(t, x) 6 H

(

d(t,X(t − τ); τ, ξ)
)α

.

Theorem 2. Let the coefficients of the equation (11) satisfy the conditions A1, A2 as well as the
following condition:

A3. The coefficients of the expression A(t, x, ∂x1
) are bounded and B-Hölder with exponent α ∈

(0, 1) in Π[0,T ].
Then for the equation (11) there exists a L-FSCP (there is a FSCP for the equation (18)) Z and

|∂k1
x1
Z(t, x; τ, ξ)| 6 C(t− τ)−M−|k1|/2Ec(t, x; τ, ξ), |k1| 6 2;

|SL
BZ(t, x; τ, ξ)| 6 C(t− τ)−M−1Ec(t, x; τ, ξ),

|∆x′

x ∂k1
x1
Z(t, x; τ, ξ)| 6 C(d(x, x′)α)(t− τ)−M−(|k1|+α)/2

(

Ec(t, x; τ, ξ) + Ec(t, x
′; τ, ξ)

)

, |k1| 6 2;

|∆x′

x SL
BZ(t, x; τ, ξ)| 6 C

(

d(x, x′)α
)

(t− τ)−M−1−α/2
(

Ec(t, x; τ, ξ) + Ec(t, x
′; τ, ξ)

)

;
∣

∣

∣

∣

∫

Rn

∂k1
x1
Z(t, x; τ, ξ) dξ

∣

∣

∣

∣

6 C(t− τ)−(|k1|−α)/2, 0 < |k1| 6 2;

∣

∣

∣

∣

∫

Rn

SL
BZ(t, x; τ, ξ) dξ

∣

∣

∣

∣

6 C(t− τ)−1+α/2,

0 6 τ < t 6 T, {x, x′, ξ} ⊂ R
n,

where C and c are positive constants.

Let the coefficients of the equation (11) satisfy the conditions A1–A3 as well as the next condition:
A4. The coefficients of the expression A(t, x, ∂x1

) have bounded derivatives of the same form about
which they stand and they are B-Hölder with exponent α ∈ (0, 1) in Π[0,T ].

Then there is the adjoint equation for the equation (11)

S∗
Bv(τ, ξ) −

n1
∑

i,j=1

∂ξ1i∂ξ1j (aij(τ, ξ)v(τ, ξ)) +

n1
∑

i=1

∂ξ1i(ai(τ, ξ)v(τ, ξ))

− a0(τ, ξ)v(τ, ξ) = 0, (τ, ξ) ∈ Π[0,T ), (19)
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where

S∗
B := −∂τ +

n2
∑

i=1

( n1
∑

j=1

b1jiξ1j

)

∂ξ2i +

n3
∑

i=1

( n2
∑

j=1

b2jiξ2j

)

∂ξ3i ,

and the condition A3 is fulfilled for the coefficients of this equation. Here, the dash above the coefficient
means complex conjugation.

Theorem 3. If the conditions A1–A4 are satisfied for the coefficients of the equation (11), then the
adjoint equation (19) has L-FSCP Z∗ which is related to the Z by the equality

Z∗(τ, ξ; t, x) = Z(t, x; τ, ξ), 0 6 τ < t 6 T, {x, ξ} ⊂ R
n,

and Z has the correct convolution formula

Z(t, x; τ, ξ) =

∫

Rn

Z(t, x;λ, y)Z(λ, y; τ, ξ) dy, 0 6 τ < λ < t 6 T, {x, ξ} ⊂ R
n.

The statements of the Theorems 2 and 3 are formulated in [18]. We can obtain them by using
the substitution of variables (15) and the results from the monograph [17] for the equations (16) from
the class E22. Indeed, under the conditions A3 and A4 for the coefficients of the equation (11),
the conditions Â3 and Â4 are valid, respectively, for the coefficients of the equation (16). The last
conditions Â3 and Â4 differ from the conditions A3 and A4 only that X(h) is replaced by

X̂(h) :=
(

UX ′(h)
)′
, X̂ij(h) :=

i−1
∑

s=0

1

s!
hsx̂(i−s)j , j ∈ {1, . . . , ni}, i ∈ {1, 2, 3}. (20)

6. Classic FSCP

Below, we will use the following conditions for the coefficients of the equation (11):
A5. The coefficients of the expression A(t, x, ∂x1

) (that is, the functions aij , ai, a0) are bounded,
continuous on t on the segment [0, T ] and they satisfy the Hölder condition with respect to spatial
variables in the following sense:

∃H1 > 0, ∃α1 ∈ (0, 1] ∀(t, x) ∈ Π[0,T ], ∀z1 ∈ R
n1 :

∣

∣∆z1
x1
a(t, x)

∣

∣ 6 H1|x1 − z1|α1 ,

∃H2 > 0, ∃α2 ∈ (1/3, 2/3] ∀(t, x) ∈ Π[0,T ], ∀z2 ∈ R
n2 , ∀h ∈ [0, T ] :

|∆z2
x2
a(t, x)| 6 H2(h

3α2/2 + |X2(h)− z2|α2),

∃H3 > 0, ∃α3 ∈ (3/5, 4/5] ∀(t, x) ∈ Π[0,T ], ∀z3 ∈ R
n3 , ∀h ∈ [0, T ] :

|∆z3
x3
a(t, x)| 6 H3

(

h5α3/2 + |X3(h)− z3|α3
)

.

A6. The coefficients of the expression A(t, x, ∂x1
) (that is, the functions aij , ai, a0) satisfy the

Hölder condition with respect to spatial variables in the following sense:

∃H4 > 0 ∀(t, x) ∈ Π[0,T ], ∀zi ∈ R
ni , i ∈ {1, 2}, ∀h ∈ [0, T ] :

∣

∣∆z1
x1
∆z2

x2
a(t, x)

∣

∣ 6 H4|x1 − z1|α1
(

h3α2/2 + |X2(h) − z2|α2
)

,

∃H5 > 0 ∀(t, x) ∈ Π[0,T ], ∀zi ∈ R
ni , i ∈ {1, 3}, ∀h ∈ [0, T ] :

∣

∣∆z1
x1
∆z3

x3
a(t, x)

∣

∣ 6 H5|x1 − z1|α1
(

h5α3/2 + |X3(h) − z3|α3
)

,

where the constants α1, α2 and α3 are the same as in the condition A5.
It is obvious that at h = 0 the classical Hölder conditions for groups of spatial variables follow from

the condition A5.

Theorem 4. Let the coefficients of the equation (11) satisfy the conditions A1, A2, A5, and A6.
Then there is a classical FSCP Z for the equation and

∣

∣∂k
xZ(t, x; τ, ξ)

∣

∣ 6 C(t− τ)−M−MkEc(t, x; τ, ξ), |k1|/2 + |k2|+ |k3| 6 1,

k = (k1, k2, k3) ∈ Z
n
+, 0 6 τ < t 6 T, {x, ξ} ⊂ R

n; (21)

|SBZ(t, x; τ, ξ)| 6 C(t− τ)−M−1Ec(t, x; τ, ξ), 0 6 τ < t 6 T, {x, ξ} ⊂ R
n.

Here Mk :=
∑3

i=1(2(i − 1) + 1)|ki|/2 for k ∈ Z
n
+.
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We apply the non-degenerate substitution of variables (15) to the equation (11) and the conditions
of the theorem. On the basis of the Statement 2, we obtain the equation (16) from the class E22, and
from the conditions A2, A5, and A6 we get for this equation, respectively, the conditions Â2, Â5, and
Â6, which differ from the previous ones only by fact that the expression X(h) is replaced by X̂(h)
which are defined in (20). Using the results from the papers [19, 20] for equations from the class E22

(namely, Theorem 3 from [19, p. 23]) we obtain a proof of the statement of the Theorem 4.

Theorem 5. Let the coefficients of the equation (11) satisfy the conditions of the Theorem 4 as well
as the following condition:

A7. In Π[0,T ], there are bounded derivatives ∂x1i
∂x1j

aij and ∂x1i
ai which satisfy the Hölder condition

for spatial variables in the sense of A5 and A6.
Then there is classical FSCP Z∗ for the adjoint equation (19); the function Z∗ is related to the Z

by the equality
Z∗(τ, ξ; t, x) = Z(t, x; τ, ξ), 0 6 τ < t 6 T, {x, ξ} ⊂ R

n, (22)

and for Z the convolution formula

Z(t, x; τ, ξ) =

∫

Rn

Z(t, x;λ, y)Z(λ, y; τ, ξ) dy, 0 6 τ < λ < t 6 T, {x, ξ} ⊂ R
n (23)

is correct.
Note that the equality (22) means the normality property of the FSCP. The convolution for-

mula (23) is also called the Chepmen–Kolmogorov equation. It expresses the important fact that the
corresponding stochastic process is Markov process, namely a process without an aftereffect.

The proof of Theorem 5 is based on the Green–Ostrogradsky formula
∫ t2

t1

dθ

∫

BR

(vLu− uL∗v)(θ, y) dy =

∫

BR

(vu)(θ, y)|t2θ=t1
dy

−
∫ t2

t1

dθ

∫

ΓR

( n2
∑

j=1

( n1
∑

s=1

b1sjy1s

)

µ2j +

n3
∑

j=1

( n2
∑

s=1

b2sjy2s

)

µ3j

)

(vu)(θ, y) dSy

+

∫ t2

t1

dθ

∫

ΓR

n1
∑

j=1

Bj[v, u](θ, y)µ1jdSy, (24)

where 0 6 t1 < t2 6 T , BR is a sphere in R
n of radius R with its center at the origin, ΓR is

its boundary, (µ11, . . . , µ1n1
, µ21, . . . , µ2n2

, µ31, . . . , µ3n3
) is a unit vector of the outer normal to ΓR,

L := SB −A(θ, y, ∂y1), L
∗ := S∗

B −A∗(θ, y, ∂y1),

Bj[v, u] := −
n1
∑

l=1

(

ajl∂y1luv − u∂y1l(ajlv)
)

+ ajuv, j ∈ {1, . . . , n1},

u and v are sufficiently smooth functions. The formula (24) is also correct for functions u and v which
have continuous derivatives with respect to x1 up to the second order and have the Lie derivatives
SL
Bu and S∗L

B v. This fact is received if we consider approximated for u and v sequences of sufficiently
smooth functions, then we write for them the formula (24) and pass to the limit.

With such functions u and v, if we pass in the formula (24) to the limit as R → ∞ then in the
real-valued case we obtain the formula

∫ t2

t1

dθ

∫

Rn

(vLu− uL∗v)(θ, y) dy =

∫

Rn

(vu)(θ, y)|t2θ=t1
dy. (25)

Using the estimates from Theorem 4 and the same estimates for Z∗, in the formula (25) we can put
u(θ, y) = Z(θ, y; τ, ξ), v(θ, y) = Z∗(θ, y; t, x), t1 = τ + ε, and t2 = t − ε, where ε is a small positive
number. In the obtained equality, passing to the limit as ε → 0 we receive the formula (22).

The equality (23) is obtained in the same way, only it is necessary to take t1 = λ. We will get
equality ∫

Rn

Z∗(λ, y; t, x)Z(λ, y; τ, ξ) dy =

∫

Rn

Z∗(t− ε, y; t, x)Z(t − ε, y; τ, ξ) dy,

in which it is necessary to pass to the limit as ε → 0 and to use the formula (22).
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Theorem 6 (Uniqueness of normal classical FSCP). There is only one normal classical FSCP
for which the estimates (21) hold.

Let Z1 and Z2 be two normal classical FSCP of the equations (11) for which the estimates (21)
are true. Let us put in the formula (25) u(θ, y) = Z1(θ, y; τ, ξ), v(θ, y) = Z2(t, x; θ, y). Then we get
equality

∫

Rn

Z1(t2, y; τ, ξ)Z2(t, x; t2, y) dy =

∫

Rn

Z1(t1, y; τ, ξ)Z2(t, x; t1, y) dy (26)

for arbitrary t1 and t2 from the interval (τ, t). From the arbitrariness of t1 and t2 it follows that the
right and left parts in (26) do not depend on t1 and t2, and it is possible to pass to the limit in (26)
by tending t1 → τ , t2 → t. Doing it we get that

Z1(t, x; τ, ξ) = Z2(t, x; τ, ξ), 0 6 τ < t 6 T, {x, ξ} ⊂ R
n.

Theorem 7 (Representations of the coefficients of the equation by the FSCP). If the co-
efficients of the equation (11) satisfy the conditions of the Theorem 5 then the following formulas are
correct for the coefficients and the classical FSCP Z of this equation:

aij(t, x) = lim
τ→t

(

1

2(t− τ)

∫

Rn

(y1i − x1i)(y1j − x1j)Z(t, x; τ, y) dy

)

, {i, j} ⊂ {1, . . . , n1}, (27)

ai(t, x) = lim
τ→t

(

1

t− τ

∫

Rn

(y1i − x1i)Z(t, x; τ, y) dy

)

, i ∈ {1, . . . , n1}, (28)

a0(t, x) = lim
τ→t

(

1

t− τ

(∫ t

τ
dθ

∫

Rn

Z(t, x; θ, y) dy − 1

))

, (29)

(t, x) ∈ Π(0,T ].

We illustrate the method of proving the formulas on the example of the coefficient a11. Let us put
in the formula (25): u(θ, y) = (y11 − x11)

2, v(θ, y) = Z(t, x; θ, y). We get the equality

−
∫ t2

t1

dθ

∫

Rn

Z(t, x; θ, y)
(

2a11(θ, y) + 2a1(θ, y)(y11 − x11) + a0(θ, y)(y11 − x11)
2
)

dy

=

∫

Rn

(y11 − x11)
2Z(t, x; θ, y)|t2θ=t1

dy.

Here t1 = τ , t2 = t− ε and we pass to the limit as ε → 0 and divide the result by t− τ ,

1

t− τ

∫ t

τ
dθ

∫

Rn

Z(t, x; θ, y) a11(θ, y) dy =
1

2(t− τ)

∫

Rn

(y11 − x11)
2Z(t, x; τ, y) dy

− 1

t− τ

∫ t

τ
dθ

∫

Rn

(

a1(θ, y) (y11 − x11) + a0(θ, y)
(y11 − x11)

2

2

)

Z(t, x; θ, y) dy. (30)

The proof of the formula (27) for i = 1, j = 1 follows from the last equality (30). Indeed, the limit as
τ → t of the left part of (30) is equal to a11(t, x) in the base of the properties of the FSCP Z and of
the theorem about the average value for integrals. The second term of the right part of (30) tends to
zero under the assumptions on the function a1 and a0.

The proof of the formula (27) for other values of i and j as well as the formulas (28) and (29) is
carried out similarly.
Theorem 8 (Positivity of FSCP). For the classical FSCP Z under the conditions of Theorem 5
for the coefficients of the equation (11) the inequality

Z(t, x; τ, ξ) > 0, 0 6 τ < t 6 T, {x, ξ} ⊂ R
n

is valid.
The proof of the theorem is carried out similarly to the proof of properties 3.12 in the monograph [17,

p. 213]. Namely, for a sequence of functions

vν(t, x) :=

∫

Rn

Z(t, x; τ, ξ)gν(ξ)dξ, (t, x) ∈ Π(τ,T ],
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with some sequence of delta functions gν , ν > 1, it is used the strong maximum principle and the
following statement of the maximum principle for unbounded domains.

Lemma 1. Let the coefficients of the equation (11) satisfy the conditions A1, A2 and the next
condition:

A8. The coefficients aij , ai, {i, j} ⊂ {1, . . . , n1}, and a0 are continuous functions in Π[0,T ] and for
all (t, x) ∈ Π[0,T ] the estimates

|aij(t, x)| 6 C0(|x|2 + 1), |ai(t, x)| 6 C0(|x|+ 1), |aij(t, x)| 6 C0

are valid with some constant C0 > 0; and u : (0, T ]×Ω → R is a function which is continuous together
with its Lie derivative and with its derivatives with respect to x1 from the equation (11), where
Ω = R

n \BR0
, BR0

is a sphere in R
n of radius R0 > 0 with the center at the origin, or Ω = R

n. If
1) (Lu)(t, x) > 0, (t, x) ∈ (0, T ]× Ω;
2) lim inf(t,x)→(t0,x0) u(t, x) > 0 for any point (t0, x0) ∈ ∂((0, T ] × Ω) \ {t = T};
3) uniformly with respect to t ∈ (0, T ) there exists lim inf |x|→∞ u(t, x) > 0.

Then u(t, x) > 0, (t, x) ∈ (0, T ]× Ω.

Note that the properties of classical FSCP for the equation (16) from the class E22 similar to the
statements of Theorems 5–8 were obtained in [21].

The results obtained in the paper can be used to receive the well-posedness of the Cauchy problem
for the equation (11) in the classic sense.

7. Conclusions

Asian options on financial market have variables depending on the primary assets price trajectory.
Among methods of constructing of Asian options mathematic models is to include such variables
in the state space. An equivalent path-independent Markov problem is obtained. In this case, the
price of Asian option satisfies partial differential equation of ultra-parabolic type. This equation has
degenerations of parabolicity with respect to the part of spatial variables. Appropriate non-degenerate
substitution of the spatial variables transforms such equation to ultra-parabolic Kolmogorov’s equation
with block structure. The class of such equations is denoted by EB

22. It generates the well-known class
of degenerated parabolic Kolmogorov’s equations E22. The class of equations E22 is well studied. For
equations from the class EB

22 so called L-solutions were constructed and studied previously only.
In the paper the conditions for the coefficients are formulated under which the existence of classic

fundamental solution of the Cauchy problem (further CFSCP) for parabolic Kolmogorov’s equations
with block structure from the class EB

22 is proved and their estimations are obtained. The following
properties are proved also: the normality, the convolution formula (or the Chepmen–Kolmogorov
equation), uniqueness of normal CFSCP, representations of the coefficients of the equation by the
CFSCP, positivity of CFSCP.

The CFSCP for ultra-parabolic equations of Kolmogorov type in the Asian options models have
essential values. They are the probability density of the transition between the states of the stochastic
process in the appropriate Markov problem. The obtaining of conditions of the existence and the
properties of the CFSCP has own value for the research of relevant Asian options models, for instance
Markov process. Also, the obtained results are determinative to establish well-posedness Cauchy
problem for the equations from the class EB

22.
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Про фундаментальний розв’язок задачi Кошi для
ультрапараболiчних рiвнянь в моделях азiйських опцiонiв

Дронь В. С.1, Мединський I. П.1,2

1Iнститут прикладних проблем механiка i математики НАН України,

вул. Наукова, 3-Б, 79060, Львiв, Україна
2Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Наше дослiдження присвячене ультрапараболiчним рiвнянням iз трьома групами
просторових змiнних, якi виникли у задачах азiатських опцiонiв. Клас цих рiвнянь,
якi задовольняють деякi умовам, було позначено E

B

22
. Цей клас є узагальненням вi-

домого класу вироджених параболiчних рiвнянь типу Колмогорова E22. Ранiше було
побудовано так званi фундаментальнi розв’язки L-типу для рiвнянь iз класу E

B

22
та

встановлено деякi їхнi властивостi. Головною особливiстю дослiдження було встанов-
лення взаємно-однозначної вiдповiдностi мiж класами E

B

22
та E22. У нашiй роботi

для рiвнянь iз класу E
B

22
будуємо та вивчаємо класичнi фундаментальнi розв’язки

задачi Кошi. На коефiцiєнти рiвнянь накладаються спецiальнi умови Гельдера щодо
просторових змiнних.

Ключовi слова: азiйськi опцiони; ультрапараболiчне рiвняння типу Колмогорова;

фундаментальний розв’язок задачi Кошi.
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