
MATHEMATICAL MODELING AND COMPUTING, Vol. 11, No. 2, pp. 421–429 (2024)
Mathematical

M
odeling

Computing

Solving non-linear functional equations
by relaxed new iterative method

Rhofir K.1, Radid A.2

1LASTI-ENSA Khouribga, Sultan Moulay Slimane University, Morocco
2LMFA-FSAC Casablanca, Hassan II University, Morocco

(Received 18 December 2023; Revised 16 May 2024; Accepted 20 May 2024)

For solving various equations of the form v = f + N(v), the new iterative method and
the new algorithm proposed by V. Daftardar–Gejji et al. [Daftardar–Gejji V., Jafari H. J.
Math. Anal. Appl. 316 (2), 753–763 (2006); Kumar M., Jhinga A., Daftardar–Gejji V.
Int. J. Appl. Comp. Math. 6 (2), 26 (2020)] are been employed successfully and accu-
rately. Our aim in this paper is to present a relaxed new iterative method by introducing
a controlled parameter ω in order to extend these methods. According to the values of the
parameter ω, we discuss and provide the convergence analysis. The proposed algorithm
is fast, effective and simple to implement as compared to the existing one. Numerous
non-linear equations are solved to show the applicability and efficiency of the algorithm
compared to the other methods.
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1. Introduction

A variety of problems in biology, chemistry, physics, and engineering can be modeled and formulated
in terms of nonlinear functional equations as:

L(v)−R(v)−N(v) = g, (1)

where g is the source term, N(v) represents the nonlinear terms, L is the highest order derivative which
is assumed to be easily invertible, R is a linear differential operator of order less than L, and v is the
unknown function.

We can write (1) as follow, without loss of generality

v = f + L−1(g +R(v) +N(v)) = f + F (v), (2)

where F the nonlinear operator and f is a given function.
These nonlinear functional equations model many complex phenomena encountered in various

branches of Science. Most of these equations do not have exact solutions, hence iterative/numerical
methods have to be explored. Generally, equations (1) or (2) represent non-linear functional system
of equations, linear/non-linear differential equations, ordinary differential equations ODEs, integral
equations IEs, partial differential equations PDEs, differential algebraic equations DAEs, differential
equations involving fractional order, systems of ODE/PDE/DAE, and so on.

To find the exact solution of the problem (1) or (2) is not easy and becomes complicated when the
functional operator involves nonlinear partial differential equations and fractional derivatives. Hence,
several analytical and approximate method have to be explored. In this exploration, various decomposi-
tion methods are proposed such as Adomian decomposition method (ADM) [1], homotopy perturbation
method (HPM) [2], variational iterative method (VIM) [3], new iterative method (NIM), called also
Daftardar–Gejji and Jafari method (DGJ) [4], and so on.

Initially proposed by Daftardar–Gejji and Jafari in [4], the NIM (or DGJ) method has been used
by several authors to obtain an approximation of the solution of their problems. A recent overview
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of the method is given in [5]. Many research studies have been carried out to solve a nonlinear
functional problem using the NIM method. The authors use and implement the method, to solve
linear/nonlinear partial differential equations of integer and fractional order [6], to solve fractional
differential equations [7], and to solve linear/nonlinear fractional diffusion-wave equations on finite
domains with Dirichlet boundary conditions [8]. In [9], the authors explore the utility of the DGJ
method to obtain approximate solution of the hyperbolic telegraph equation. In [10,11], the authors use
the NIM method for solving fractional physical differential equations and fractional version of logistic
equation. In [12], the author use the method to present a new finite-difference predictor–corrector
method to solve nonlinear fractional differential equations along with its error and stability. In [13],
the convergence of the NIM method has been studied and sufficiency conditions for its convergence
towards the exact solution have been presented.

In [14], Radid et al., propose a SOR-like new iterative method to improve NIM and solve the spread
of a nonfatal disease problem as well as the prey and predator problem.

Recently Manoj Kumar et al. [15] have proposed a new algorithm (NA) for solving a variety of
non-linear functional equations problems as a simple reformulation of the NIM method which reduces
a computation and is easily implemented.

Our aim in this paper is to present a relaxed new iterative method RNIM by introducing a relaxation
parameter ω in order to extend and improve the NIM method as well as the New Algorithm (NA).
According to the values of the parameter ω, we discuss and provide the convergence analysis.

Our contribution here can be summarized in the following steps:

— introducing a parameter ω to define a relaxed new iterative method;
— an application to new iterative method and new algorithm are presented;
— the convergence of the proposed method is discussed according to the values of the parameter ω;
— some numerical examples are given as illustration to confirm theoretical result;
— case where our method converges when the other methods fail.

Finally the general conclusion is presented.

2. Relaxed new iterative method

In this section, based on the new iterative method proposed in [4, 5], we discuss the basic idea of
our proposed method. Then, we give a reformulation of the proposed method in order to extend and
improve the new algorithm (NA) proposed by Kumar et al. in [15].

Let consider the general functional equation (2) written in the following form:

v(t) = f(t) + F (v(t)), (3)

where f is a given function, F is a nonlinear continuous operator defined from a Banach space H → H

equipped with the operator norm ‖F‖ = max‖v‖=1 ‖F (v)‖. We are looking for a solution u of (3) in
the series form

v(t) =

∞
∑

i=0

vi(t).

2.1. Basic idea of the proposed method

The idea of the proposed method is defined by the following process: let introduce a relaxation pa-
rameter ω such that 0 < ω < 2 and present the following recurrence formula

v0 = f,

v1 = ω F (v0),
v2 = ω (F (v0 + v1)− F (v0)) + (1− ω)v1,
. . .

vi = ω (F (v0 + v1 + v2 + . . .+ vi−1)− F (v0 + v1 + v2 + . . .+ vi−2))
+(1− ω)vi−1, i = 2, 3, . . . .

(4)
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Addition of the above equations gives:

i
∑

k=0

vk = f + ω



F (v0) +

i−1
∑

k=1

{

F
(

k
∑

j=0

vj

)

− F
(

k−1
∑

j=0

vj

)

}



+ (1− ω)

i−1
∑

k=1

vk

= ω

(

f + F
(

i−1
∑

k=0

vk

)

)

+ (1− ω)
i−1
∑

k=0

vk, i = 1, 2, . . . .

As i → ∞, we get
∑∞

k=0 vk = ω
(

f + F (
∑∞

k=0 vk)
)

+ (1− ω)
∑∞

k=0 vk.
Therefore, v =

∑∞
k=0 vk is also solution of (3). Since,

v = f + F (v).

Remark 1. For ω = 1, we found the classical new iterative method defined in [4,5] and the conditions
of its convergence have been discussed in [13].

2.2. Relaxed new algorithm: SOR NA

We introduce a Relaxed New Algorithm noted SOR NA as follows: let us denote the approximate
solution of the (n+ 1)-term of (3) by SRn, i.e.

SRn =
n
∑

k=0

vk, n ∈ N.

Taking into account the recurrence relation (4), we obtain the following algorithm to calculate the
SRn’s:

{

SR0 = f,

SRn = ω(SR0 + F (SRn−1)) + (1− ω)SRn−1, n = 1, 2, 3, . . . .
(5)

where lim
n→∞

SRn = v is the required solution.

Remark 2. The relaxed new algorithm can be seen as a reformulation of the relaxed new iterative
method that considerably reduces the complexity as well as the computational cost. For ω = 1, we
found the new algorithm defined in [15] by

{

S0 = f,

Sn = S0 + F (Sn−1), n = 1, 2, 3, . . . ,
(6)

where

Sn =

n
∑

i=0

vi, n ∈ N,

and vi’s are determined by the following recurrence formula

v0 = f,

v1 = F (v0),

v2 = F (v0 + v1)− F (v0),

. . .

vk = F (v0 + v1 + . . . + vk−1)− F (v0 + v1 + . . .+ vk−2), k = 2, 3, . . . .

3. Convergence analysis

In order to study the convergence of our SOR NA, let consider

F : H → H,

u → v = F (u),

such that

v = F (u) = ω (f + F (u)) + (1− ω)u, (7)

and recall the following definition.
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Definition 1 (Ref. [16]). An operator G is said to be Fréchet differentiable at x ∈ H if there exists
a continuous linear operator A : H → H such that

G(x+ h)−G(x) = Ah+ g(x, h),

where

lim
‖h‖→0

‖g(x, h)‖

‖h‖
= 0.

A is called the Fréchet derivative of G at x and is denoted by G′(x).

The following theorem describes the convergence of the SOR NA.

Theorem 1. If F is Fréchet differentiable and continuous then F is also Fréchet differentiable and
continuous and if ‖F ′‖ = r < 1 and 0 < ω < 2 then ‖F

′
‖ = ρ < 1 and the sequence of successive

iterations {SRn} given in (5) converges uniformly to lim
n→∞

SRn = u∗ a solution of (3) i.e. u∗ = f+F (u∗).

Proof. Suppose that F is continuous and Fréchet differentiable with bounded Fréchet derivative F ′

i.e.

lim
h→0

F (u+ h)− F (u)

h
= lim

h→0

ω (f + F (u+ h)) + (1− ω)(u+ h)− ω (f + F (u)) − (1− ω)u

h

= lim
h→0

ω (F (u+ h)− F (u)) + (1− ω)h

h

= lim
h→0

ω
F (u)− F (u)

h
+ (1− ω)I.

As F is Fréchet differentiable with bounded Fréchet derivative F ′, then

lim
h→0

F (u+ h)− F (u)

h
= ωF ′ + (1− ω)I + o(h),

where I denotes the identity operator and o is an operator such that lim
h→0

o(h) = 0. So, F is also

Fréchet differentiable with bound derivative F ′ + (1− ω)I.
From (5) and using mean value inequality for Banach spaces [16], we have

‖SRj+1 − SRj‖ =
∥

∥ω(SR0 + F (SRj) + (1− ω)SRj − ω(SR0 + F (SRj−1))− (1− ω)SRj−1

∥

∥

=
∥

∥ωF (SRj) + (1− ω)SRj − ωF (SRj−1)− (1− ω)SRj−1

∥

∥

6 |ωr + 1− ω|
∥

∥SRj − SRj−1

∥

∥

6 ρ
∥

∥SRj − SRj−1

∥

∥.

Let ρ = |ωr + 1− ω|,

• if ω = 1, then ρ = r < 1;
• if ω 6= 1, then 0 < 1− r < 1 ⇒ 0 < ω(1 − r) < ω ⇒ 1− ω < 1 − ω(1 − r) < 1. As −2 < −ω < 0

then we have: −1 < 1− ω(1− r) < 1 which implies ρ = |ωr + 1− ω| = |1− ω(1− r)| < 1.

Therefore
∥

∥SRj+1 − SRj

∥

∥ 6 ρ
∥

∥SRj − SRj−1

∥

∥ 6 ρ2
∥

∥SRj−1 − SRj−2

∥

∥

. . .

6 ρj
∥

∥SR1 − SR0

∥

∥.

Now, SRn can be written as

SRn = SR0 +

n−1
∑

j=0

(SRj+1 − SRj).

By Weierstrass M -test,
∑∞

j=0 ρ
j‖SR1 − SR0‖ converges, since {SRn} converge uniformly to a contin-

uous function u∗, which is a required solution of (3). �
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Proposition 1. Under Theorem 1 assumptions, if un and un are obtained by (5) and (6) respectively,
and both ρ and r are less than one and if 1 < ω < 1+r

1−r
, then the rate of convergence of

∑∞
n=0 un is

higher than
∑∞

n=0 un (i.e. ρ < r).

Proof. Under Theorem 1, we have ρ = |1− ω(1− r)|, r < 1 and ω > 1.
Then, ω(1− r) > 1− r which implies 1− ω(1− r) < r.
Also, from −ω > −1+r

1−r
, we obtain −r < 1− ω(1− r).

Finally, ρ = |1− ω(1− r)| < r. �

4. Illustrative examples

In this section, we will use the Relaxed New Algorithm (denoted SOR NA) established in previous
section taking into account of the previous remark (2) to solve a variety of problems.

Example 1 (Ref. [15]). Consider the following nonlinear algebraic equation

3u5 − 6u4 + 12u3 − 3u2 − 82u+ 76 = 0. (8)

Equation (8) can be written as

u =
76

82
+

1

82

[

3u5 − 6u4 + 12u3 − 3u2
]

= f + F (u),

where f = 76
82 and F (u) = 1

82

[

3u5 − 6u4 + 12u3 − 3u2
]

.
Note that ‖F ′‖ 6 0.9878 < 1.

Table 1. Comparison of approx-
imation solution for k iterations.

k Sk SRk

0 0.9268293 0.9268293
1 0.9829411 0.9997747
2 0.995726 0.9999926
3 0.9989114 0.9999998
4 0.9997216 1.0
5 0.9999287 1.0
6 0.9999817 1.0
7 0.9999953 1.0
8 0.9999988 1.0
9 0.9999997 1.0

10 1.0 1.0

In view of the SOR NA (5), we get

SR0 = 0.926829,

SR1 = 0.0561118ω + 0.926829,

SR2 = 2.03507 10−8ω6 + 9.55357 10−7ω5 + 0.000033452ω4

+ 0.00089565ω3 − 0.044257ω2 + 0.112224ω + 0.926829,

. . . .

According to ω = 1.3, we give a comparison between the values from
{SRn} sequence (5) and those from {Sn} sequence (6) in Table 1.

From Table 1, we remark that by taking ω = 1.3 our proposed
method converges in a few iterations to the exact solution u = 1
compared to the other methods. Hence,

lim
n→∞

SRn = 1.

Example 2 (Ref. [15]). Consider the following nonlinear fractional differential equation:

dαu(t)

dtα
−

2

5
u(t)2 +

1

10
u(t) = 0, 0 < α 6 1, t > 0, (9)

with the initial condition:

u(0) =
1

5
. (10)

The exact solution of Eqs. (9) and (10) for α = 1, is given by:

u(t) = (e
t

10 + 4)−1. (11)

By integrating the Eqs. (9) and (10), we obtain

u(t) = u(0) + Iαt

(

2

5
u(t)2 −

1

10
u(t)

)

=
1

5
+ Iαt

(

2

5
u(t)2 −

1

10
x(t)

)

= f(t) + F (u(t)).

Take f(t) = 1
5 and F (u(t)) = Iαt

(

2
5u(t)

2 − 1
10u(t)

)

.
Here, ‖F ′‖ 6 0.9 < 1.
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Taking into account the recurrence relation (5), we obtain

SR0 = f =
1

5
,

SR1 = −

(

tαω

250αΓ(α)

)

+
1

5
,

SR2 =
tαω2

250Γ(α + 1)
−

3t2αω2

12500Γ(α + 1)2
+

t3αω3

156250Γ(α + 1)3
−

tαω

125Γ(α + 1)
+

1

5
,

SR3 =
3tαω2

250Γ(α + 1)
−

tαω3

250Γ(α + 1)
−

3tαω

250Γ(α + 1)
−

9t2αω2

12500Γ(α + 1)2
+

3t2αω3

6250Γ(α + 1)2

+
11t3αω3

625000Γ(α + 1)3
−

(t3α)ω4

31250Γ(α + 1)3
+

t(3α)ω5

156250Γ(α + 1)3
+

3t4αω4

1562500Γ(α + 1)4

−
3t4αω5

3906250Γ(α + 1)4
−

7t5αω5

390625000Γ(α + 1)5
+

t5αω6

48828125Γ(α + 1)5
−

3t6αω6

2441406250Γ(α + 1)6

+
t7αω7

61035156250Γ(α + 1)7
+

1

5
,

. . . .

According to ω = 0.8, we give a comparison between the values from {Sn} sequence (6) and those from
{SRn} sequence (5) in Figure 1.
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t
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x(
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NA
SOR NA
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x
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1.4

1.5

1.6

1.7

1.8

1.9

2

y(
x)

Exacte
NA
SOR NA w=0.6

Fig. 1. For α = 1: exact solution (11), the 5-term (6)
and (5) approximations of Eq. (9).

Fig. 2. Five-term (5) and (6) approximations of
Eq. (12) compared to the exact solution.

Hence, the approximate solution of Eqs. (9) and (10) given by new algorithm method (6) and by
our proposed method (5) are plotted in Figure 1 for α = 1, and compared to the exact solution (11).

Example 3. Consider the initial value problem
{

y′ +
(

1 + x2
)

y2 = x4 + 2x3 + 2x2 + 2x+ 2,
y(0) = 1.

(12)

Equation (12) can be written as

y =
x5

5
+

x4

2
+

2x3

3
+ x2 + 2x+ 1−

∫ x

0

(

1 + τ2
)

y2 (τ) dτ = f + F (y),

where f = x5

5 + x4

2 + 2x3

3 + x2 + 2x+ 1 and F (y) = −
∫ x

0

(

1 + τ2
)

y2 (τ) dτ .
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In view of the SOR NA (5), we get

SR0 =
x5

5
+

x4

2
+

2x3

3
+ x2 + 2x+ 1,

SR1 = −
w

325
x13 −

w

60
x12 −

167w

3300
x11 −

19w

150
x10 −

497w

1620
x9 −

3w

5
x8 −

311w

315
x7

−
68w

45
x6 +

(

1

5
−

32w

15

)

x5 +

(

1

2
−

7w

3

)

x4 +

(

2

3
−

7w

3

)

x3 + (1− 2w)x2

+ (2− w)x+ 1,

. . . .

According to ω = 0.6, we give a comparison between the values from {SRn} sequence (5) and those
from {Sn} sequence (6) in Figure 2.

The exact solution of (12) is given by y(x) = 1 + x.

Remark 3. In this example, we show in Figure 2 that our proposed method converges but the NIM
method and its modification given by (6) fails.

Example 4. In this example, the fourth-order Runge–Kutta (RK4) approximation solutions will be
considered as a benchmark for the considered problems.

Consider the system of nonlinear differential equations:










x′ = 2y2, x(0) = 1,

y′ = e−tx, y(0) = 1,

z′ = y + z, z(0) = 0.

(13)

Integrating (13), we get

x = 1 + 2

∫ t

0
y2dt = f1 + F1(x, y, z),

y = 1 +

∫ t

0
e−tx dt = f2 + F2(x, y, z),

z =

∫ t

0
(y + z) dt = F3(x, y, z).

In view of the SOR NA (5), we get

SR1,0 = f1 = 1,

SR2,0 = f2 = 1,

SR3,0 = f3 = 0,

SR1,1 = ω(2t+ 1)− w + 1,

SR2,1 = 1− ω(e−t − 2)− w,

SR3,1 = t ω,

SR1,2 = ω

(

2t− t2(2e−t − 2) +
2t3(e−t − 1)2

3
+ 1

)

− (ω − 1)(ω(2t + 1)− ω + 1),

SR2,2 = ω
(

te−t(t2 + 1) + 1
)

+ (ω − 1)
(

ω + ω(e−t − 2)− 1
)

,

SR3,2 = ω

(

t− t2
(

e−t

2
−

1

2

)

+
t3

2

)

− tω(ω − 1),

. . . .

According to values of ω, we give a comparison between the SOR NA given by (5), the New Algorithm
denote NA given by (6) and the fourth- order Runge–Kutta in Figure 3.
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Fig. 3. Four-term (5) and (6) approximations of
Eq. (12) compared to the exact solution.

Fig. 4. Five-term (5) and (6) approximations of
Eq. (12) compared to the exact solution.
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z(
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NA
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Fig. 5. Five-term (5) and (6) approximations of
Eq. (12) compared to the exact solution.

Fig. 6. Five-term (5) and (6) approximations of
Eq. (12) compared to the exact solution.

5. Conclusion

In this paper we have introduced an relaxed new iterative method RNIM and relaxed new algorithm
SOR NA as a new decomposition to solve the non-linear functional equation of the form v = f +F (v).
According to the values of ω, the proposed method gives new variants of new iterative method and
improves and accelerates the new algorithm for NIM method [15]. We present the convergence analysis
for our proposed algorithm under certain assumptions by taking account of a valid interval for a
parameter ω. To demonstrate its usefulness and confirm our theoretical and numerical results, a
number of non-trivial examples are presented and solved. We show that our proposed algorithm is
suitable for obtaining exact solutions and gives a clear speedup as compared to the other algorithms.

In the section 4, example 3, we show that our proposed method converges to the exact solution
when the others methods fail.
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Розв’язування нелiнiйних функцiональних рiвнянь
новим iтерацiйним методом

Рофiр К.1, Радiд А.2

1LASTI-ENSA Хурiбга, Унiверситет Султана Мулая Слiман, Марокко
2LMFA-FSAC Касабланка, Унiверситет Хасана II, Марокко

Для розв’язування рiзноманiтних рiвнянь виду v = f + N(v), запропоновано
В. Дафтардар–Геджi та iн. новий iтерацiйний метод i новий алгоритм [Daftardar–
Gejji V., Jafari H. J. Math. Anal. Appl. 316 (2), 753–763 (2006); Kumar M., Jhinga A.,
Daftardar–Gejji V. Int. J. Appl. Comp. Math. 6 (2), 26 (2020)], якi використовуються
успiшно i точно. Наша мета в цiй статтi полягає в тому, щоб подати послаблений
новий iтеративний метод шляхом введення контрольованого параметра ω для розши-
рення цих методiв. За значеннями параметра ω обговорюємо та здiйснюємо аналiз
збiжностi. Запропонований алгоритм є швидким, ефективним i простим у реалiза-
цiї порiвняно з iснуючим. Численнi нелiнiйнi рiвняння розв’язуються, щоб показати
застосовнiсть та ефективнiсть алгоритму порiвняно з iншими методами.

Ключовi слова: нелiнiйнi функцiональнi рiвняння; новий iтерацiйний метод; ме-

тод Дафтардар–Геджi та Джафарi; послаблений новий iтерацiйний метод; метод

декомпозицiї Адомiана; метод гомотопiчних збурення; варiацiйний iтерацiйний ме-

тод.
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