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In this article, we study the global stability of fractional partial differential equations
applied to the biological system modeling a viral infection. The reaction in the proposed
biological system is described by the new generalized Hattaf fractional (GHF) derivative.
However, the diffusion is modeled by the Laplacian operator.
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1. Introduction

A partial differential equation (PDE) describes a relationship between an unknown function and its
partial derivatives. Partial differential equations (PDEs) are prevalent across various domains in physics
and engineering. Furthermore, there has been a notable surge in their application in various fields such
as biology [1], chemistry [2], ecology [3,4], epidemiology [5,6], computer science [7] (especially in the
context of image manipulation and graphics), as well as in economics [8,9], particularly in finance [10],
in recent years.

Certain authors have shown interest in developing Lyapunov functionals to demonstrate the global
stability of dynamical systems. For instance, Wang and Wang [11] introduced a mathematical model in
order to simulate hepatitis B virus (HBV) infection taking into account spatial dependence. Based on
the same model given in [11], Wang et al. [12] incorporated a delay to represent the duration required
for infected cells to generate virions after viral entry. AlAgha and Elaiw [13] investigated the global
stability of a system of PDEs with six dimensions that characterize the dynamics of human immun-
odeficiency virus type one (HIV-1) in the existence of humoral immune response and heterogeneous
diffusion. Hattaf and Yousfi [14] formulated a mathematical model for HBV infection featuring dual
modes of transmission, enabling the dynamics of HBV DNA-containing capsids and three distributed
delays. In [15], they investigated an HBV model by introducing spatial diffusion, a general incidence
rate, and time delays subject to homogeneous Neumann boundary. Other recent works for global
stability of dynamical systems have been investigated in [16-18].

Fractional differential equations (FDEs) have been increasingly employed in various fields to de-
scribe the temporal movements of diverse systems in recent years. These types of equations represent
the generalization of the ordinary differential equations (ODEs). Nevertheless, fractional partial differ-
ential equations (FPDEs) are a generalization of PDEs and can serve as an effective tool for modeling
phenomena with memory or possessing hereditary properties in spatiotemporal dynamics.

There are few works on the study of the stability of biological systems using FPDEs. For example,
Nawaz et al. [19] studied the stability of a fractional diffusive SEAIR model with nonlinear incidence
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rate. In [20], Hattaf and Yousfi established the global stability of some fractional biological models
with and without diffusion using the Caputo fractional derivative. Hamadneh et al. [21] studied the
stability of a fractional discrete glycolysis reaction—diffusion model based on the works in [22,23] and
the method of discretization employed in [24].

Recently, Hattaf [25] proposed a new generalized definition of the fractional derivative with non-
singular kernel for Caputo and Riemann—Liouville types. This definition was used to study the influence
of the memory effect on the movements of certain dynamical systems in biology and epidemiology. Also,
this definition generalized the most widely used fractional derivatives with non-singular kernels found
in existing literature. For example, the fractional derivative of Atangana—Baleanu [26], the weighted
fractional derivative of Atangana-Baleanu [27| and the fractional derivative of Caputo-Fabrizio [28].

In this article, we aim to study the global stability of FPDEs applied to a biological system modeling
viral infection, including GHF derivative. To achieve this, the model formulation and preliminaries
are provided in Section 2. The global stability of the model’s equilibria is discussed in Section 3. The
conclusion of our work is presented in Section 4.

2. Model formulation and preliminaries

Within this part of the article, we give the definitions and demonstrate some fundamental results
concerning the partial GHF derivative with nonsingular kernel that will be needed in the following.

Definition 1 (Ref. [25]). Let p € [0,1), v,A > 0 and g € H'(a,d). The GHF derivative of order p
in Caputo sense of the function g with respect to the weight function w(t) is defined as stated

oio(et) = — S [ = e = 0)7] 5 (0l 9) e )

where w € Cl(a,b), w', w > 0 on [a,d], p, = 1Tpp: N(p) is a normalization function such that
N(0) =N(1) =1 and E\(t) = Y% 1“()37;1)’ A > 0 is the Mittag—Leffler function of parameter \.
In the above definition, H'(a,d) is the Sobolev space of the order one defined as stated
Hl(a,d):{wGLz(a,d): w/€L2(a,d)}. (2)

Corollary 1 (Ref. [29]). Let W(x,t) € R" be a continuously differentiable function and W* > 0.
Then, for any time t > ty, we have

Wix,t 17,%
o8y [y — we — e T >] < <1— )ag;i:zwu,w. 3)

w* W (x,t)

For simplicity, denote 86’”2‘}’;‘ by 0 A, Now, we extend the model given in [15] by using the GHF
derivative for the purpose of describing the dynamics of HBV infection under the effects of diffusion
and memory. Hence, we propose the following model:

O U1 = 0 — diUi(a,1) = g(Us(x,1), Uz(a,1), Us(x, ) Us(x, 1),
Uy = g(Us(w, 1), Un (. 1), Us (r, 1)) Us (. t) — doUs 1), (4)
af’)\Ug = DAU; + 5U2(l‘, t) — ngg(:L’, t),
where the general incidence function g(y,z,w) is supposed to be continuously differentiable in the
interior of R‘:’_ and satisfies the subsequent fundamental hypotheses:

9(0,z,w) =0, forallz>0 and w > 0; (H)
?(?J,Z,w)>0, forally >0, 2 >0 and w > 0; (H,)
Yy
9y Jg
%(?J,Z,w) g 0 and 8_w(y7z7w) < O, fOr all Y 2 07 z 2 0 and w 2 0. (Hg)

In biological context, U;(y,t) is the density of cells without infection at location x and time ¢, Us(x, t)
denotes the density of cells that have been infected at location z and time ¢ and Us(x,t) is the density
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of free virus at location = and time t. The parameter o represents the rate at which uninfected cells
are recruited, ¢ is the rate at which infected cells generate free virus particles, di, do and ds are
respectively, the mortality rates of uninfected cells, infected cells and free virus. D is the diffusion
coefficient. A =3"" ;—;2 denotes the Laplacian operator.

In this article, we investigate system (4) with Neumann boundary conditions, outlined as stated:

oU;
E = 0 on 89 X (0,"‘00),

and initial conditions:

Ui(9,0) = ®1(9) =0, Us(9,0) = ®o(0) =0, Us(9,0) = ®3(9) >0, o€, (5)
where (1 is a bounded domain in R™ with smooth boundary 02 and % represents the outward normal
derivative on 0f2.

3. Global stability of equilibria

Based on the results given by Hattaf et al. in [30], the basic reproduction number of the virus, when
spatial dependence is not considered, is determined by:

o o
Ro=—-—9| +,0,0]).
07 dody ! <d1 )
It is easy to see that if Ry < 1, then equilibrium F f(d%v 0,0) represents the only stable state, signifying

the disappearance of the free virus. The subsequent theorem establishes that there exists one and only
one chronic infection equilibrium if Rg > 1.

Theorem 1. (i) When R < 1, then the model (4) has a single infection-free equilibrium of the form
E¢(7,0,0). (i) When Ro > 1, then the model (4) has a single chronic infection equilibrium of the
form E*(U},Us,Us) where Uy € (d%,O),UQ* > 0 and U3 > 0.

Proof. For any equilibrium, the subsequent equations satisfy:

U_dlUl_U3g(U17U27U3) :07 (6)
Ui g(U1,Up,Us) — d1Us = 0, (7)
§Us — A3Us = 0. (8)

By (6)—(8), we get the following equation
g —d1U1 5(0 —dlUl) dg/\g
= . 9
g (Ul’ dy ' dahs 5 ©)
We have Uy = %;Ul > 0, which implies that Uy > C‘l’—l.
Then, we do not have any equilibrium point if U; > d%'
Now, let h be a function defined on interval [0, ] by:
oc—dUy 6(c —diUy) doAs3
h = — .
() =9 (Ul’ dy ' dahs 5
We have h(0) = —% <0, h(F)= d26)‘3 (Ro—1) > 0 and
0 dy 0 ody 0O
Wy = 20 og b By,
oU; do OUy dod3 OU3
Hence, there exists a unique infection equilibrium E*(Uy,Us,Us), with Uy € (0, %), U5 > 0 and
Uz > 0. n
Now, we rigorously study the global stability of E.

Theorem 2. The disease-free equilibrium E; is globally stable whenever Rg < 1.

Proof. Consider the Lyapunov functional for system (4)-(5) at E in the subsequent manner:

Ul(l‘,t)
g(U07 070) d2
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where Uy = o/dy. For simplicity, we consider the subsequent notations: z = z(z,t), for any z €
{U1,U3,Us}. The time Hattaf derivative of Ly along the solution of system (4) satisfies

U1<“ U 9(Up,0,0) d
DA o oA, p, 0, 05\ 92 ap,A
(
9(

00)
< o—diU L
/Q{ Y y(01,0,00 7"

9(Uy,0,0) < (U0,070)> 9(Uo,0,0) }
< dUl—i—dU 1-— + Ui,Us,Us)U.
/Q{ 1= 05, 0,0~ 001,0,0)) + g, 0,0) 901 U2 Us)Us

8“U1 d—2U, + Cg DAU; + d Uy — %ngg} dz,

5

g(U07070)> g(U07070) d2 }
< diUg — diU 1-— + Uq,Us,U3)Us — doUs + — DAU:
/Q{( 1Yo 1 1)( g(Ul,0,0) g(Ul,0,0)g( 1, U2 3) 3 2U29 5 3

{d2DAU3 — %ngg} dz,

d
+ {dlUQ - %ngg} dx,

U1> < 9(U07070)> dads <Q(U17U27U3) > }
< diUg |1 —— 1-— + Ro—1|U;spdx.
/Q{ 1 °< Uo 9(01,0,0)) ~ 5\ g(01,0,0) " ’
According to hypothesis (Hs), we have

(1-2) (1- 00

UO g(U17 07 O)

Then 88’ Lo(x,y) < 0. By applying Theorem 5 in [31], we conclude that the equilibrium Ef of (4) is
globally stable if Ry < 1. ]

Next, we need to define adequate conditions to ensure the global stability of E*. Hence, we introduce
the following hypothesis:

Ul) <g(U17U57U3) U3>
1o ) (LY Ys) <0, forall Uy,Up,Us > 0. H
< Up) \g(U1,Uz,Us) Ui b (Ha)

Remark 1. The condition (Hy) is verlﬁed by numerous types of incidence functions as the satu-
ration incidence if g(Uy,Us,Us) = 1+6U , the mass action when ¢(Uy,Us,Us) = AUj, Beddington—

DeAngelis response [32,33] when ¢(Uy,Us,Us) = H—M)}%’ Crowley—Martin response [34] when

9(U1,U2,U3) = 5077 52)‘[% 55,00, and the more generalized Hattaf-Yousfi functional response [35]
of the form ¢(Uy,Us,Us) = FTEw A +§gl}3 5T where A > 0 is the rate at which the infection pro-
gresses and 41, d2,03 > 0 are constants. Over the past few years, this generalized incidence function is
employed in [36-39].

The subsequent theorem confirms the global stability of E*.

Theorem 3. Assume Rg > 1 and (Hy4) holds. Then the chronic infection equilibrium E* is globally
stable.

Proof. Consider the subsequent Lyapunov functional:

Uy * * *
* g(U17U27U3) * <U2> d2 <U3>
L:/ U—U—/ ToL 2 28) gsypH( 22 ) + 2 U3 d, 10

where H(y) =y — 1 —Iny, y > 0. Obviously, H(y) achieves its minimum value 0 at y = 1. Then,
H(y) > 0. On the other hand, we have

US, U3, U5\ o Ux dy Ux
ap,)\L </ 1_9( 1>Y2,Y3 ap, U ~3 ap, U bt ~3 8P7 d
s UL, on ) U T, U “

( )
g(UT, U3, U3) ) o
S - s n ) @ U3, — AU, — g(Uy, Us,

/g{< g(UL, U3, U%) (1 UT + g(UT, U3, U3)Us — diUr — g(Us, Us, U3)Us)
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x ds dod dy U*
g(Uy,Us, Us)Us — Yy g(U1,Us, Us)Us + doU3 + 2DAU3 — 22U — U3 pav,
Us 5 5 5 Us
Us dods
+{—d273 U2 TU3 dZE,

Ul (U17U2*7U§( g(Ulngng)

* U U*vU*7U* * TThk TTR\TT* U*7U*7U* * TTk TTH *
</§2d1U1< 1><1_(1—23§>+g(U17U27U3)U3_MQ(U17U27U3)U3
{g(Uf7U27U3) 3

U. d
9(U1, Uz, Us)Us — 72 9(Ur, Uz, Us)Us + doU3 — DAU

Q(LLL;’L?T) U
dods dy U3 Us dods
—— U3 — =Z—=DAU3 » + U, + —=——=U*
s 4TS Us 3} { d2U3 2+ 5 3 dz,

Q(UT,US,U§)>
diUr[1-=— ——
/ 1 < ) < g(Ulngng)
Us g(U1,Uz,Us)  g(U1,Up,U3) Us U3 Uz U

+ {d Uz < U Us - )}

o U U3 g(Un,U3,U3)  g(UF, U3, U5) U5 Uy Us Uy

o 9003, U5) gL U3,U5)  g(U1,Uz,Us) Us Uy U Us
—d2U2 dx

9(U1,U3,U5)  g(h,Us,Us)  g(UF, U3, U5) Us Uz Us Us
nggD/ AUs

Hence,

U, g(UF, US, UE)
ML </dU* 1— L) (1L U1, U3, U5)
N Uy U1,U2,U3
Us  Us g(Ui,Us, Us)
+dyU; 1——3 39(1 228 4

U17U27U3)>
U3g Ul’U2’U3) (UI’U27U3)

(
U17U27U3)> +1n <g(U17U27U3)>>
U17U27U3) g(U 7U57U§)
)

Ul,UZ,Ug > <g(U1,U5,U§)> <U§UQ> <U§UQ>>
H +In(Z——~—2 22|+ H +In
< (U1,Us,Us) (U1,Us,Us) UsUs UsUg

U (H <U3 U3 9(U1,U2,U3)> o (ﬂiU_z* Q(Ui,Ui, Us*) >> dlUgD/ AUs
U3 U2 g(U17U27U3) U3 U2 g(U17U27U3)

Uy g(UF, Uz, U?)
Iy < | iU (1- A St Lt
v “< U1>< (U1, U3, U3)

U3 U3 g(U17U27U3) g(U17U§7U§)>
4+ d1U3 1——+ +
o < Ui g(Ur,U3,U3)  g(Us,Us, Us)

* (U17U27U3)> < (U17U57U§)> <U3 U2 g(U17U27U3)>
- Uy |H|=—F—/——F~>">- |+ H|—F*>""~ |+ H AN i
e < ( (U1, U3,U3) (U1,Us,Us) Ui Uy g(UF, U3, U3)

UsUs _ duU3 |AU3|2
H(|=2 3D/
o1 (i) ) a .
U, g(UF,US, UY)
< dU*<1__><1 M)
/Q . U1 (UlaUzaUs)
Us Uz g(Uy,Us, Us) +9(U1,U5,U§)>

. (
+ daU. 1——+—=
? 2< U; U3 g(U,U3,U3)  g(Ur,Us, Us)
)

— U3 <H< (U17U27U3)> +H <9(U17U2,U3)>
Us) U3 / 0Us
+ D<Z Ugal’l 8332 du ’

(U17U2*7U§( (U17U27U3)
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0Us Z?Ug |AU3|?
dx.
Z/ Us Ox; ((‘?xl) /39 ng 83:, o U2 v
Consequently,

U, g(U* U* U*)
aWL</dU%Ft_>@__J;z;L
P Uy 9(U1, U3, U3)
. U3 Uz g(U1,Us,U3) g(Ul,Ug*,ny))
+ daU. 1 — — 4+ —
o < U3 g(U1,U3,U3) ~ g(Us,Us,Us)

* (U17U27U3)> <(U17U57U§)> <U3U2 g(U17U27U3)>
vy (p (SULULRUDN | (9WLUSUDY | gy 9(U,Us, Us)
? 2< ( (U1,U3,U3) (U1,Us,Us) Uz Uy g(UF, U3, U3)

UZUs do U LAL%P
H(| =2 31)J/
- <U3U2*>>

Since g(Uy,Us, Us) is strictly monotonically increasing Wlth respect to Uy, we get

* * *
(1- 8 (1-sibit)
U1 g(U17U27U3)
According to the assumption (Hy), we get
4 Us 9 U3,U5) | Us g(U1, U, Us) _ <1 B 9(U17U2,U3)> <9(U1,U2*,U§) _ %) <0
U; " g(U1,Us,Us) * Us g(U1,U3,U3) 9(Ur,U3,U03) ) \ g(U1,U2,Us) U3 '

Since H(z) > 0 for z > 0, we have af’)‘Ll < 0. By applying Theorem 5 in [31], we conclude that the
equilibrium E* of (4) is globally stable if Rg > 1. |

where

4. Conclusion

In this article, we have established a fractional virus dynamics model with general incidence rate and
Hattaf time-fractional derivative. By employing appropriate Lyapunov functionals, we have studied
the global stability of both the disease-free equilibrium F; and the chronic infection equilibrium E*.
We have shown that Ey is globally stable if the basic reproduction number satisfies Rg < 1. In this
case, the virus cannot maintain the infection and will eventually disappear. When Ry > 1, the virus
persists and E* is globally stable.
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MobanbHa cTilikicTb AudepeHuianbHNX PiBHAHL y APObOBUX
noxiAHUX, sIKi 3acTocoBaHi A0 bionorivHoOl cucremu,
O MOAENOE BipyCcHY iHekuito

Accazixi ®@.1, Xarradp K.12, FOchi H.1

LTa6opamopia ananisy, moderrocanmna ma cumyaosarmns (LAMS),
Daxyavmem nayx Ben M’Cix, Ynisepcumem Xacana II Kacabararxu,
n.c. 7955 Cidi Ocman, Kacabaranxa, Mapokxo
2 JTocaionuyvrka epyna 3 modearosarma ma cuxaadarns mamemamury (ERMEM),
Pezionaavruti uenmp ocsimu i nidzomosxu npopeciti (CRMEF),
20340 Jlep6 TI'aned, Kacabranka, Mapoxko

V crarTi BUBYa€ThCH TyI00abHA CTIWKICTh AudepeHIlaJbHIX PIBHAHD Y APOOOBUX MOXIi-
HUX, $Ki 32CTOCOBaHI /10 OIOJIOTIYHOI cucTeMu, IO MOJIENIOE BipycHy indexioo. Peakiis B
3aIPOIIOHOBaHIH GioJIOTivUHIM cucTeMi omrcana HOBOIO y3arajJbHEHOIO JPOOOBOIO MTOXiTHOIO
Xarrada (GHF), npore nudysis Mmoaemoerbes omepaTopoM Jlarmaca.

Knw4osi cnosa: dugepenuyiaavhe pisHanna 6 dpobosuxr moxidnux; dpobosa noridna
Xammadgpa; dudysia; 2robasvha cmitikicmo.
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