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Taking into account new frontiers in materials technology to improve construction mate-
rials, we investigate the bending analysis of a Functionally Graded Material (FGM) skew
plate using a meshless approach based on Third-order Shear Deformation Theory (TSDT).
We assume that the material distribution is functionally graded across the thickness of
the skew plate. The proposed approach uses both mixture rule theory and the meshless
method. The mixture rule theory is used to estimate the effective material properties of
the skew plate.
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1. Introduction

Integration of skew plate geometry has become very important due to its performance and usefulness
for optimization purposes. These structures are frequently used in construction for reinforcement or
optimization purposes. The skew plate structure is used in the construction of bridges, buildings and
ship hulls, etc. Because of the importance of these structures, they have penetrated the high-tech
sector, where they have become commonplace in the aeronautics, automotive and military industries.
Due to the importance of these structures, they have penetrated the high technologies area where
they have become frequent in the aeronautical, automobile and military industries. Buragohain and
Patodi (1978) treated the large deflection skew plate problem where they obtained a set of nonlinear
algebraic equations using the Newton—Raphson iterative method with increments to solve it [1]. They
demonstrated their formulation for the isotropic skew plate of constant thickness simply and clamped
supported, subjected to uniformly distributed transverse load to be independent of boundary condi-
tions. Chia (1980) used an analytical method to study the small deflection elastic behavior of isotropic
and anisotropic skew plates [2|. Daripa and Singha (2009) analyzed the impact of corner stresses on the
behavior of composite skew plates [3]. Das et al. (2008) studied the dynamic problem of skew plates
simply supported and clamped boundary conditions using a variational method [4]. For non-linear
vibration problems for laminated skew plates, the Differential Quadrature Method (DQM) is used
in [5]. Duan and Mahendran (2003) used the oblique coordinate systems to study a new non-linear
quadrilateral hybrid /mixed shell with five degrees of freedom at each node and analyze the behavior of
skew plate for the large deflection under concentrated and distributed load [6]. Liew and Han (1997)
using Reissner/Mindlin theory studied the bending analysis of the thick skew plate simply supported
based on the first-order shear deformation [7]. They introduced the geometric transformation of the
governing differential equations and boundary conditions of the plate from the physical domain into
a unit square computational domain. Subsequently, they derived a set of linear algebraic equations
from the transformed differential equations via DQM, and the approximate solutions of the problem
are obtained by solving the set of algebraic equations. Liew et al. (2004) analyzed the buckling of thin
plates under non-uniform loading using the mesh-free radial basis function method [8]. They obtained
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initial (i.e., pre-buckling) stresses by discretizing the variational form of the static system of equations
and calculated the static buckling loads of the plates by solving the resultant eigenvalue equation.
Malekzadeh and Fiouz (2007) based on the thin plate theory to study two different differential quadra-
ture approaches and analyzed the large deformation of the thin orthotropic skew plate using the first
order shear deformation plate theory with rotationally restrained edges [5]. They have modeled the
geometrical nonlinearity of the plate by using Green’s strain and Von Karman’s assumption for the
two approaches. Rajamohan and Raamachandran (1997) have solved a fundamental solution, avoiding
numerical integration since domain integrals for oblique coordinates, for the analysis of skew plates
under transverse loading using the boundary element method [9].

In this work, an alternative based on meshless methods [10-15] to simulate the bending analysis
of a FGM skew plate. This proposed approach is based on Third-order Shear Deformation Theory
(TSDT) [16,17] in the formulation and WLS for variables approximation. Material distribution is
assumed to be functionally graded across the entire thickness of the skew plate. In the proposed
meshless approach, mixing rule theory is used to estimate the effective material properties for the skew
plate.

2. Mechanical and kinematic characteristics

The TSDT [16,17] is a structural theory that is based on similar assumptions as the classical plate
theory and the FSDT (First-order Shear Deformation Theory). However, it relaxes the assumption
of straightness and normality of a transverse normal after deformation by expanding the in-plane
displacements (u,v) as cubic functions of the thickness coordinate. In the TSDT, the displacement
field is expressed as follows:

4
e.2) = ol ) + Ba(o) — 2 (Buln) +

aZU(] (337 y)
Ox ’

v(z,y, 2) = vo(z,y) + 20, (x,y) — 34?23 <6y(a:,y) + %ﬁ) ,

’(U(!E, Y, Z) = ’lU()(ZE, y)
The TSDT accounts for transverse shear deformation effects more accurately than the classical plate
theory and the FSDT. By including cubic terms in the displacement field, it allows for a better rep-
resentation of the transverse normal and shear strains throughout the thickness of the plate or shell.
The relationship between deformation and displacement for small deformation are defined as:
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3. Constitutive relations of FG plates

The constitutive relation corresponding to Hook’s relation for FG plates is given as follows:

Oxx 011(2) 012(2) 0 0 0 Exx
Oyy Cgl(z) 022(2) 0 0 0 Eyy
Ozy ¢ = 0 0 066(Z) 0 0 Yy ¢ »
Oyz 0 0 0 Cs5(2) 0 Yyz
Orz 0 0 0 0 C44(Z) Yz
where:
E(2)
011(2’) = 022(2’) = —ma

012(2) = l/(Z) C’H(z),
E(2)

C44(Z) = C55(Z) = CGG(Z) = —m.

Many researchers use a power law function “P-FGM” to describe the material properties of materials
with graduated functionality. Once the local volume fraction V'(z) is defined, the material properties
of “P-FGM” plate [16,17] can be determined by the rule of mixtures:

e Young’s Modulus:
E(2)=(E.— Ep) xV(z2)+ Ep;
e Poisson’s ratio:
v(z) = (Ve — Um) X V(2) + v
where E. and v, define the properties of the ceramic material and FE,, and v,, define the properties of
the metal material. The expression of volume fraction of the P-FGM is given by a power law function:

V(z) = <%+%>N

where h is the thickness of the plate and N (0 < N < 00) is an exponent of the volume fraction which
represents the variation of the material through the thickness of the layer in FGM.

4. Governing equations

We obtain the TSDT equilibrium equations from the virtual displacement principle:
ou — v = 0.

The virtual strain energy du, and the virtual work done applied force dv are given by:

h
2

ou = / / } (0220820 + Oyybeyy + Tay0Vay + Toz0Vaz + Ty207y2),
Q /b

v = —/ qdw dx dy,
Qo

where €}y and g are respectively the middle-line of plane and concentrated load applied on the surface.
We obtained the equation below by integrating the deformation on equilibrium equation:

h
2 4 4
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So, the equilibrium equations are given as follows:

where

N
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Taking into account the law of behavior and the kinematics, we find:
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5. Weighted least squares approximation constructed over the local support domain

To determine the shape functions of the Weighted Least Squares (WLS) approximation [18], it is
necessary to assign to each point of interest X a set of neighboring points included in the local support
domain. The WLS approximation at a point of interest X is given by:

m

X) =) Pi(X)a; = (P(X)){a}. (6)
j=1

The coefficient vector {a} is given by:
{a}T = (ag a1 ay ... ap).
We can prove the polynomial P(z) using Pascal’s triangle and choosing a complete base. We

minimize the discrete weighted norm J(a) representing the square of the distance between the approx-
imation at any point X and the set of nodal values:

J = ZW (@) [u(X) — w)?

=S W) [P (X
=1

where W (g;) is the weight function, u; are the nodal values of the unknown field, n is the number of
points in the domain of influence of the point X. The chosen weight function W(g;) is Gaussian, and
this function and its derivatives are illustrated in Figure 1.

// _—
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-
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a (W b (OW/0x)
Fig.1. Weight function and its derivatives.

Minimizing J(a) allows us to write in relation to the coefficient {a}:

G0
é W (g:)2P1(X)[PT(X:)a — u;] = 0,
évv(qz-)m(&)[ﬂ(xi)a — ) =0,
,:ilvv(qmpm(m[ﬂ(xi)a — ) =0,
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n

> Wi(g) P (X:)PT(X;)a = i W(qi)P1(X;)ui,
w

I
M=

,_1W(qi)P2(Xi)PT(Xi)a >

wHli

'21 W (¢i) P (X:) P (Xi)a = 21 W (gi) P (Xi)ui,
The above equations can be written in compact form:
[Al{a} = [B{Un},
where {U,} is the vector that assembles the nodal unknowns of the domain of influence. [A] is the
matrix of moments whose size is equal to (m x m) and given by:

= Z W (q;) P(X;) PT(X5),

[B] is given as follows:

n
S WP
i=1
The coefficients of the vector {a} are determined from:

{a} = [A]7'[B{U.}.
Thanks to equation (6) and the integration of the constant coefficients calculated therein, the WLS
approximation is given by the following relationship:

u(X) = (P(X))[A]"! [B{Un}
=1
= (¢(X)){Un},

where the vector of shape functions can be written as follows:
(0(X)) = (P(X))[A]7"[B].
The formulas for the first and second derivatives of the shape function with respect to spatial
coordinates are as follows:
(p(X)) = (P(X)[A]~'(B],
(px(X)) = (Px(X)[A]'[B], (7)
(D, (X)) = (Pr(X)[A]H[B].

The shape function and its derivatives are given in Figure 2.
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Fig. 2. Shape function and its derivatives.
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6. TSDT-based meshless approach

By replacing the approximations of the shape functions (7) in the local equilibrium equations (1)—(5),
we obtain:

(KUY = {F°},

where the components of the matrix [K] are as follows:

e 82¢Z a2¢2
K =Ang 5 +A66—8y2 ;
82¢2 82¢z a2¢z
Kiy = Ao+ Asg o+ Beog g

4 Py 4 >’ ¢i 8 P ¢i 4 9?¢;

Kis = T3zt s T 32 128w—8y2 - WE%(‘)w—E?y? — g Feo gz
K3 = A gzgl + A66%7
K3y = AQQ({?;—;;Z + AGG%,
K55 = B22%2—;; +B66% B 34? 22%2;; _ 3;}412 66%,
K3 =0,
K3 =0,
el b e
SIS T
K§s = Au %‘Z 4 pu 2 < &Zz L )
o (2 58),
Kip = B66§2—g; - %Eﬁﬁ%,
Ky = —Ass %@ + D35 %(ZZ 3;; FH%Z(@" 3;}412]?12;;_;;2 _ %F%;f_gyg
4 <D558¢ iFss%> . <—i 11% . 12% — iH66%>
T\ T ) T3 s aas T 3R 2 amay7 T 3R aady?
Kiy = —Ass¢i + D11882q;Z + 13 5 Ds50i + Des 662;;2 - :,)%Fn%

Mathematical Modeling and Computing, Vol. 11, No. 2, pp. 438-447 (2024)



A meshfree TSDT-based approach for modeling a skew plate 445
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and {F*°} is given by:

{F} =

oo O O

After assembly, the problem is written as:

[KI{UY = {F}.

7. Numerical results and discussions

7.1. Bending analysis of a homogeneous skew plate

We consider a homogeneous square plate with side @ = 20cm. The deformed plate after deflection is

shown in Figure 3.

Fig. 3. Deflection for a square plate. Fig. 4. Deflection for a plate with a skew angle of 30°.
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The results of the proposed model are compared with those of Ref. [19], as shown in Table 1.
As a second example, we consider the same plate with a skew angle of 30°. The deformed configu-

ration after deflection is shown in Figure 4.

7.2

Table 3. Comparison of the nondimensional stress and
displacements of Al/Al;O3 square plates (a/h = 10).

ing

8.

Table 1. Non-dimensional Table 2. Non-dimensional displacement
displacement for a square plate. for a plate with a skew angle of 30°.

3 3

Model wb Model wb
Present study 4.06 Present study 2.56
FDM (Morley 1962) Ref. [19] | 4.06 FDM (Morley 1962) Ref. [19] | 2.54

The results of the proposed model are compared with those of [19], as shown in Table 2.

. Bending analysis of a FGM plate

In this part, the results of the bending analy-
sis of the simply supported perfect and porous
FG-plate are presented. All results of bending

Exponent N Model w analysis are in the dimensionless form as:
1 Tounsi et al. [20] | 0.5888 WEL /a b
Present 0.586 w = 04 w <§, 5) .
2 Tounsi et al. [20] | 0.7573 qo(_l _
Present 0.754 Table 3 shows the dimensionless center deflec-
1 Tounsi et al. [20] | 0.882 tions (w) of Al Al/Al,O3 P-FG plates under
Presentl O 38 sinusoidal loads, the obtained results are com-

pared with those given by Tounsi et al. [20] us-
an analytical solution.

Conclusion

The present research proposes a meshless method based on the WLS approximation to simulate the
bending behavior of an FG skew plate. We obtained excellent results in comparison with Morley
(1962) [19] and Tounsi (2020) [20]. This study opens up very important perspectives for further
verification of FGM skew plates. Work is in progress to address the different boundary conditions and
non-linear behavior of FGM skew plates.
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Be3ciTkoBuii nigxig Ha OCHOBI Teopil 3cyBHOI aedopmau,ii TpeTboro

nopsagkKy noJjia MmoaesioBaHHA KOCOI NN1aCTUHNM

Byuayara }0.', Ens Kaamipi P.!, Bemaacinia FO.2, Taitveci AL

! Vinieepcumem Xacana II Kacabaanxu, Hayionaivha 6uwa uwkois Mucmeyms i
pemecea (ENSAM Kacabaanxa), Jabopamopis AICSE, 20670 Kacabaanka, Mapoxko
2 Vuisepcumem Yoyatiba Jykkana, daryivmem Hayx, Aabopamopia A0epHo, amomHos, MOAEKYAAPHOT,
MeTaHiwHoi ma enepeemuunol disuru, Eav-loncadida, Mapoxko

Bepyun 1o yBarm HoBi MexKi TeXHOJIOTII MaTepiaJIiB I BAOCKOHAJIEHHS KOHCTPYKITIITHIX
MaTepiaJiiB, JOCTIKYEMO aHAJI3 BUTHHY KOCOI INTACTUHHU 3 (PYHKITIOHAJILHO-IPAIIEHTHOTO
marepiany (FGM) 3a monomororo 6e3ciTKOBOTO mifxoay Ha OCHOBI Teopil 3cyBHOI medop-
mariil Tperboro nopsiaky (TSDT). Ilpunyckaemo, 1o pos3nozina Marepiaty GyHKIIOHAIBHO
rpajyioBaHuUil 38 TOBIUHOI KOCOI IUIACTUHU. 3AIPOIOHOBAHMIA IIi/IXi]] BUKOPUCTOBYE SK
Teopiro cywmimi, Tak i 6e3citkoBuii MeTox. Teopist cyMmili BUKOPUCTOBYETHCS It OIIHKA
eeKTUBHIX BJIACTUBOCTEIl MaTepialy s KOCOI ILIACTUHU.

Knwu4osi cnosa: 6eacimrosuti memod; meopisa 3cysnoi depopmanii mpemvo2o nopadxky;
) )
(ﬁynnuianaﬂbﬁo—zpadienmﬁuﬂ Mamepiaﬂ; roca naacmura.
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