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In this work, we are interesting in solving the 1D and 2D nonlinear stiff reaction-diffusion
Brusselator system using a machine learning technique called Physics-Informed Neural
Networks (PINNs). PINN has been successful in a variety of science and engineering dis-
ciplines due to its ability of encoding physical laws, given by the PDE, into the neural
network loss function in a way where the network must not only conform to the mea-
surements, initial and boundary conditions, but also satisfy the governing equations. The
utilization of PINN for Brusselator system is still in its infancy, with many questions to
resolve. Performance of the framework is tested by solving some one and two dimen-
sional problems with comparable numerical or analytical results. Validation of the results
is investigated in terms of absolute error. The results showed that our PINN has well
performed by producing a good accuracy on the given problems.

Keywords: Physics-Informed Neural Network; deep learning; reaction-diffusion Brusse-
lator system; stiff PDFEs.
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1. Introduction

The Brusselator model studied in this paper is used to describe an auto-catalytic chemical reaction
between two reactant substances where one of them interacts with the other in order to increase
its production rate [1]. Introduced by Prigogine Ilya [2]|, the reaction-diffusion Brusselator model is
described by the following reactions:

AL,

B+U 3V 4+ F,
2U +V = 3U,
U E,

where the positive parameters r;, (i = 1,2,3,4) represent the reaction rate constant. In the system
above, a reactant, A, is transformed to a final product E in four steps with the help of four additional
species U, B, V, and F. A and B can be modeled at constant concentrations because they are
considered to be in vast excess.
Let © C R? and 09 is its boundary. The Brusselator system is characterized by the following
system of PDEs [3]:
% = pAu+u?v — (e + u + B,
v 9 (1)
a5 = uAv — u v + eu,
with the given Dirichlet and Neumann boundary conditions:
u(x,y,t) :hl(wvyat)v (fL’,y) € 09,
U(:Ev Y, t) = h2($7 Y, t)a
ux(x7 Y, t) =0,
Uy(x, Y, t) =0,
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and the following initial conditions:
{ uo(x7y) = Sl(xay)7 (fL’,y) €,
UO(£7 y) = 82(:177 y)
In above equations, v and v are the dimensionless concentrations of the reactants U and V, 8 and ¢
are the constant concentrations of input reactants, u is a constant diffusion coefficient, hy, ho, s1 and
so are known functions. A is the Laplacian operator.

The reaction-diffusion Brusselator model has diverse applications in chemical reaction-diffusion
processes such as enzymatic reactions, the formation of ozone by atomic oxygen via triple collision,
multiple coupling between modes in laser physics, and plasma physics.

Many researchers used several numerical methodes to approximate the solutions due to the
widespread use of the model and the inaccessibility of the exact solution. For example, in [4] Sirajul
Haq et al. presented a numerical scheme based on Fibonacci and Lucas polynomials. In [5], the authors
have used a combined cubic B-spline method with RK4 scheme for the resolution of two-dimensional
system. In [6], the authors developed a local discontinuous Galerkin and variational multiscale element
free Galerkin methods for the numerical solution of the two-dimensional Brusselator model. Twizell
et al. [7] applied the second-order finite difference scheme in order to obtain numerical solution of the
diffusion free Brusselator model.

In recent years, Deep Learning methods have been achieving unparalleled success in many applica-
tion fields such as speech recognition [8], image recognition [9,10] and natural language processing [11].
In particular, Physics-Informed Neural Networks (PINNs) have been used to solve numerous forward
and inverse differential problems. According to the results, PINNs can effectively solve partial differ-
ential equations at given certain initial and boundary conditions. Compared to traditional numerical
methods, neural networks offer several advantages, including higher accuracy and more efficient com-
putation. Many authors have used this approach in order to solve stiff PDEs such as the Brusselator
system [12,13].

In the current work, we will evaluate the PINN’s performance in solving 1D and 2D Brusselator
problems and compare it to those of other numerical methods [4,5]. In Section 2, an explanation of
the PINN methodology will be presented. In Section 3, we will study the performances of the PINN
in solving four Brusselator problems. Conclusions are presented in Section 4.

2. PINN’s methodology

Physics-Informed Neural Networks are neural networks (NN) that are trained to solve supervised
learning problems while respecting the physical laws are given by the PDE. They were proposed by
Raissi et al. [14].

PINNs can solve PDEs expressed in this general form [15]:

N(u(z);\) = f(z) ze€QcCRY,
{ B(u(x)) = g(z) x € 09,
where N represents the nonlinear differential operator, B is the initial /boundary conditions operator,
x = (21,...,24-1,t) represents the spatiotemporal coordinate vector defined on €2 and A\ are the
parameters related to the physics. Here, u represents the unknown solution of the problem, f is the
function that identify the data of the problem and g is the boundary function.

In the PINN methodology, the unknown solution u(x) is computationally predicted by a fully
connected neural network, parameterized by a set of parameters 6. This network takes the space-time
coordinate vector x as input and then outputs a solution tg(z). Between the input and the output
layers exist multiple hidden layers. Each of these hidden layer takes X = [z, 22,...,2;] as an input
and outputs Y = [y1,¥2, ..., y;] through a nonlinear activation function o(-) such as:

Y = a(wi,jwj + bz)

where trainable hyperparameters w; ; and b; represent the weights and biases of the network.
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In this sense, the NN must learn to approximate the solution of the partial differential equation
through finding the hyperparameters 6 defining the network by minimizing a weighted loss function:

0* = argmin(L(6,7)).
0

The loss function is given by:

LO,T)=wnLa(8,Tn) +wsLlp(d,Tp),

where:
L0, ) = = S [N (itg(w); \) — F()]2,
’%’ €T
£5(0.T;) = % 2; 1B(iig(x)) — g(a)]2.

Here, L and Lg are the residual of the governing PDE and the boundary conditions respectively. T,
is the set of points inside the domain 2 and 7 is the set of points on the boundary 092. wy and wpg
are the weighting coefficients of L and Lp respectively.

Ve AN

/ N(w,b) y—————————————— ~

| /l PDE
| i |
| |1 |
| || |
: WAl |
| ® | %—uAu—u2v+(€+1)u—6 I
I @—uAvﬁ—uQU—au |
l ot |
I |
I I
| //

Fig.1. Schematic of PINN for solving the Brusselator system.

In Figure 1, we present a schematic of our PINN framework. The NN takes as input the spa-
tiotemporal coordinates z, y and ¢, and through its hidden layers it outputs the concentrations « and
v. Then the network calculates the boundary losses from the boundary conditions and then uses the
automatic differentiation to calculate the residual inside the domain by enforcing the PINN output to
satisfy the Brusselator equations. The total loss is then calculated by adding the PDE residual loss
and the boundary loss. The loss function is then minimized using an optimizer in order to obtain the
new hyperparametres of the network.

3. Results and discussions

We test the efficiency of our PINN on four different problems. We implemented our PINN using Google
Colaboratory notebooks https://colab.research.google.com/7hl=fr on its GPU T4. We sample
the training points using the Latin Hypercube Sampling (LHS) and we choose the activation function
for all the examples to be “tanh(-)”.
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Problem 1. We consider the case of one dimensional Brusselator model given by:

0 H?
8—?=ua—;;+uzv—(a+l)u+5,
ov 0% )

o~ Magr T

with the following initial conditions:
ug(x) =1 +sin(2rz), vo(x) =3 =z €Q,
and Dirichlet boundary conditions:

w(0,8) =1, w(l,t)=1, v(0,t)=3, ov(l,t)=3, t>0.

We choose, in this case, p = 1/50, ¢ = 3 Predicted u Predicted v
and § = 1. We choose 30000 training
residual points inside 2, and 3000 train- 25 L0 ”‘
ing points sampled on its boundary for the ?2 ' ' zz
boundary conditions and 3000 initial resid- 0 0
2.0
ual points for the initial conditions. We use 05 v 5

a Fully Connected Neural Network (FCNN) ’ /
of depth 5 (i.e., 4 hidden layers) with 50 -
neurons on each layer, we trained our NN !
with 30000 iterations using the optimizer Fig. 2. Predicted solution for Problem 1.

Adam then we continue to train our neural network using the optimizer L-BFGS to achieve a smaller
loss. The predicted solution was plotted using our PINN over the domain © = [0, 1] x [0, 10]. As shown
in Figure 2, the solution profile is in good agreement with those computed using numerical methods
in [4].

Problem 2. For this problem, we consider equation (1) with the given initial conditions:

’LL(]($,y) :05+y7 U0($7y) :1+5$7

0 0.

and boundary conditions:

uz(0,y,t) =0, wuz(l,y,t) =0, wvy(z,0,t) =0, wvy(x,1,t)=0, t>0.

We choose € = 0.5, 8 = 1 and p = 0.002. We choose 30000 train-  Table1l. Approximate solution
ing residual points inside the domain Q = [0,1]2 x [0,10], and 1500  of Problem 2 at point (0.4,0.6).

training points sampled on its boundary. We also choose 2000 initial T | Our PINN Ref. [5]

residual points for the initial conditions. We use a FCNN of depth 4 1.0 | w=2.3800 | u = 2.3803
(i.e., 3 hidden layers) with 123 neurons on each layer, we trained our v =0.1965 | v =0.1968
NN with 30000 iterations using Adam then we continue the training 20 | u=1.4464 | u=1.4478
of our the network using the optimizer L-BFGS to achieve a smaller v =0.2970 | v=0.2971

3.0 | ©v=1.1087 | u=1.1094
v=0.3877 | v=0.3877
9.0 | ©u=0.9796 | u=0.9799
v =0.4859 | v =0.4858

loss. In Table 1, we compare our PINN with the numerical method
cited in [5]. From the table it is noticed that our method produced
same results as recorded in [5].

Problem 3. We consider another case of equation (1) when pu = 7.0 | ©=0.9920 | u = 0.9925
0.25, e = 1 and 8 = 0 with the given exact solution for all (x,y) € v =0.5038 | v =0.5035
[0,1)2 and ¢ € [0, 5]: 8.0 | u=0.9977 | u=0.9979
v = 0.5029 | v=0.5026

{ u(@,y,t) = exp(=z —y — 0.51), 9.0 [ u=1.0003 | u=1.0001

v(z,y,t) = exp(z +y + 0.5¢). v =0.5014 | v =05011

In this case, we choose 60000 points inside the domain and 6000

points for the boundary and initial conditions. We use the same architecture of NN as used in Prob-
lem 1. We trained our network for 30000 iterations using Adam then we continue training the network
using L-BFGS to obtain a smaller loss. We presented the results obtained by our PINN in Tables 2 and
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3. It can be seen from the tables that the proposed framework produced accurate solutions. Figures 3
and 4 show an implementation of the predicted solution at T' = 2 and T = 5 respectively. From the
figures we can notice that the exact and the predicted solutions are well matched with each other which
prove that the proposed PINN is efficient.

Predicted v at t=2

Exact u at t=2 Predicted u at t=2 Exact v at t=2

Exact u at t=5

0.35
0.30
0.25
0.20
0.15 0.
0.10
0.05

00

Fig. 3. Exact and predicted solutions at ¢ = 2.

Predicted u at t=5

Table 2. Absolute errors for Problem 3 using PINN solution.

00

Fig. 4. Exact and predicted solutions at ¢t = 5.

0.08

Exact v at t=5

Predicted v at t=5

(z,y) T | Exactu | Absolute u | Absolute error
(0.3,0.3) | 1 | 0.33281922 | 0.33287108 | 5.1856x10~°
3 | 0.12242617 | 0.12245643 | 3.0264x107°
5 | 0.04563612 | 0.04504920 | 5.8692x10~*
(0.5,0.5) | 1 | 0.22308332 | 0.22313016 | 4.4894x10~°
3 | 0.08185102 | 0.08208500 | 2.3380x10~*
5 | 0.03043715 | 0.03019738 | 2.3977x10~*
(0.9,0.9) | 1 | 0.09998850 | 0.10025884 | 2.7034x10~%
3 | 0.03648921 | 0.03688317 | 3.9396x10~*
5 | 0.01383702 | 0.01356856 | 2.6846x10~*

Table 3. Absolute errors for Problem 3 using PINN solution.

(z,y) T Exact v Absolute v | Absolute error
(0.3,0.3) | 1 | 3.00361630 | 3.00416602 5.4979x 10~
3 | 8.16627900 | 8.16616991 1.0872x 1074

5 | 22.19785700 | 22.19795128 | 9.3460x 1075

(0.5,0.5) | 1 4.4813876 4.48168907 | 3.0136x10~%
3 | 12.18246100 | 12.18249396 | 3.3379x107°

5 | 33.11552000 | 33.11545196 | 6.8664x10~°

(0.9,0.0) | 1 | 9.9736960 | 9.97418245 | 4.8637x10
3 | 27.11241100 | 27.11263892 | 2.2697x10~*

5 | 73.70000000 | 73.69979370 | 2.0599x10~*
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Problem 4. Consider equation (1) with the following initial conditions:
ug(z,y) =2+ 025y, wvo(z,y) =1+0.8z (z,9) €[0,1]%,
and boundary conditions:
uz(0,y,t) =0, ug(l,y,t) =0, wvy(x,0,t) =0, wvy(z,1,t)=0, te]l0,10].
We choose the parameters to be u = 0.002, ¢ = 1 and § = 2. We implemented the same NN used in
Problem 3. We compare the results obtain with PINN with those obtained in [4,5]. The results are

presented in Tables 4 and 5. From the tables, we can see that our framework gives the same results as
in [4,5].

Table 4. Approximate solution Table 5. Approximate solution
of Problem 4 at point (0.2,0.2). of Problem 4 at point (0.8,0.9).
T | Our PINN Ref. [4] Ref. [5] T | Our PINN Ref. [4] Ref. [5]
1.0 | uw=2.3453 | v =2.3457 | u=2.3454 1.0 | u=2.6073 | v =2.6323 | u = 2.6069
v =0.4163 | v =0.4162 | v = 0.4163 v=0.3692 | v=0.3656 | v =0.3693
2.0 | v=2.0950 | u=2.0953 | u=2.0952 20 | vw=2.1739 | u=2.1839 | u=2.1757
v =10.4690 | v =0.4688 | v = 0.4689 v =10.4476 | v=0.4459 | v =0.4478
3.0 | ©v=2.0218 | ©=2.0220 | u =2.0219 3.0 | ©u=2.0428 | ©u=2.0460 | u = 2.0433
v=0.4917 | v =0.4916 | v = 0.4916 v=0.4845 | v=0.4837 | v =0.4844
5.0 | ©w=2.0007 | u=2.0008 | u=2.0008 5.0 | ©=2.0015 | u=2.0027 | u=2.0017
v =0.4997 | v=0.4997 | v = 0.4996 v=0.4993 | v=0.4991 | v =0.4993
7.0 | w=2.0000 | v =2.0000 | u=2.0001 7.0 | ©v=1.9999 | v =2.0011 | u = 2.0001
v =0.5000 | v =0.5000 | v =0.4999 v =0.5000 | v=0.4997 | v =0.4999
8.0 | w=2.0000 | u=2.0000 | v =2.0000 8.0 | w=2.0000 | u=2.0011 | v = 2.0000
v =0.5000 | v=0.5000 | v = 0.5000 v =0.5000 | v=0.4998 | v = 0.5000
9.0 | ©=2.0001 | v =2.0000 | u=2.0000 9.0 | ©=2.0000 | w=2.0000 | u=2.0000
v = 0.5000 | v=0.5000 | v = 0.5000 v =0.5000 | v=0.5000 | v = 0.5000

4. Conclusions

In this study, we test the efficiency of PINNs in solving the nonlinear reaction diffusion Brusselator
system. A total of four problems of the Brusselator system were investigated using the proposed
technique.

We compared the results obtained by PINN with those obtained by the numerical methods cited
in [4,5]. It was found that the solutions obtained by PINN are very accurate and show good agreement
with the numerical and analytical solutions.

For future work, we will compare the performance of PINN with other neural network techniques,
such as Recurrent Neural Networks (RNN).
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Di3nYHi HEPOHHI MepeXxi Ansa peakuiiHo-andy3iHOT
mogeni optocensitopa

Xapipi 1.1, Pazgix A.!, Podip K.2

LLMFA, FSAC, Yuisepcumem Xacawa II Kacabaarwu
2LASTI, ENSAK, Ynisepcumem Cyamana Myaas Caimana

V 1iit poboTi po3B’sI3yeMO OMHOBUMIPHY Ta JBOBHMIDHY HEJIHIAHY »KOPCTKY PEAKIIHHO-
mudysiitHy cucreMy OpPrOCesITOpa 3a JOIMOMOIO0 TEXHIKM MAIIMHHOIO HABYAHHS ITi/T HA3-
Boto Gbizuuni meiiponni mepexi (PINN). PINN jocsar ycnixy B pisHHX HayKOBHX Ta iH-
JKEHEPHUX JUCIUTLIHAX 3aB/JIIKU CBOIHM 37aTHOCTI KOayBaTH (hi3wdHi 3aKOHU, SKi 3aaH1
JTudepeHIiaJbHIMA PIBHAHHAMA Y JACTUHHUAX MOXITHUX, Y (PYHKIHIO BTPAT HEHPOHHOI
Mepeki Tak, 0 MepexKa IOBUHHA He JIMIIE BiJIOBJIATH BUMIDIOBAHHSM, OYATKOBUM i
TPAHUYHUM YMOBaM, aje TaKOXK 3aJI0BOJILHATH OCHOBHI piBHAHHs. Bukopucrannsa PINN
st OprocesaTopa Bee Ire 1epedyBae B 3apOJIKOBOMY CTaHi, 1 moTpibHO BupimuTH Garato
nmuTanb. KdeKTUBHICT, HPeMBOPKY MEPEBIPIETHCS IMIJISIXOM PO3B’s3aHHS JIEAKUX OJIHO-
Ta JBOBUMIPHUX 38124 13 MOPIBHIAHHIM 1X 3 YACETbHUME 200 aHATITHIHUMU PE3Y/IHbTATAMHU.
IlepeBipka pe3yabTaTiB JOCTIKYETHCS 3 TOUYKH 30py abcoioTHOI moxnbku. Pesynbratu
nokazauin, mo Ham PINN cropaitioBas 706pe, 3a0e31meunBIng BUCOKY TOYHICTD Y PO3B’ si3aHH]
[TOCTABJICHUX 3aJa4.

Knto4oBi cnoBa: gizuuna Heliporha mepestca; 2Aub0Ke Ha8UGHHA; PEAKUITiHO-uPYsitina
cucmema Bprocceasmopa; orcopemuxi PDE.
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