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This paper investigates the notion of domination in linear fractional-order distributed
systems in a finite-dimensional state. The objective is to compare or classify the input op-
erators with respect to the output ones, and we present the characterization and property
results of this concept. Then, we examine the relationship between controllability and the
notion of domination. Finally, we provide a numerical example to illustrate our results.
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1. Introduction

In the field of control theory, it is indisputable that certain controls outperform others. This per-
spective opens up a wide realm for the classification of input operators, ultimately giving rise to the
concept known as domination.

The concept of domination was initially introduced and treated for lumped and distributed sys-
tems [1], then the asymptotic case. Subsequently, dominance was introduced and developed for contin-
uous systems in both the parabolic and the hyperbolic cases [2]. It involves researching the potential
for categorizing input operators and categorizing output operators based on duality. An extension of
domination to the regional case is given in [3]. The regional aspect of this problem arises from the fact
that a system may dominate another in a region but not on the basis of the system’s entire geometrical
support. The authors of [4] study a broadening to a class of distributed discrete systems and, as a
result, they examine the case of discrete diffusion processes additionally to sensors and actuators.

Recent years have seen intense research into fractional differential systems [5-8]|, yielding a wealth
of intriguing findings. The study of controllability and observability in fractional-order differential
systems continues to receive significant attention in the rapidly changing field of control theory and
system analysis. Fractional dynamical systems in finite-dimensional spaces that are both linear and
non-linear are controllable [5]. The Mittag—Leffler matrix function and Schauder’s fixed point theorem
are both used to derive the necessary conditions for controllability. In [9], as a generalization of the
deterministic situation, the authors studied the exact and complete controllability of linear stochastic
fractional systems. A sufficient controllability condition via the Schauder fixed point theorem for
nonlinear fractional dynamical systems has been obtained in [6]. The case of linear fractional-order
finite-dimensional dynamical control systems with delays is considered in different works |7, §].

The relationship between controllability and domination has been studied in several studies [2], but
in the case of finite-dimensional linear fractional-order systems, domination is still not discussed, and
that is the purpose of this paper.

Initially, let us consider a class of linear fractional-order control systems expressed by

6D%z(1) = Az(T) + Biui (1) + Baua(1), 0<7<7T, 0<a<l,
© {5 1)

with A € M,(R), Bi € My, ,)(R), By € My, (R), ur € L% (0,T;RP), uy € L*(0,T;R™) and §D2

designates the Caputo fractional-order derivative, where
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0D (1) = ﬁ Jo (T =s)7%%(s)ds, 0<a<l,
! 2}(7-)7 a=1.
where I' is Gamma function. The output equation of systems S is given by:
y(r) = Cx(7)
with C € M4, (R), we find
2(1) = So(1)20 + HY (T)ur + H (T)us

with
0 Arra
Zo(7) = rz—:o I'(ra+1)
Then -

y(r) = CHA(7) 20 + CHY (1) uy + CHS (T) ug,
where H is the operator defined by
H(7): L*(0,7;RP) — R",

uy —>/ L(1 —s)Brui(s)ds
0

and
H3(7): L2 (0,7;R™) — R",

U2 —>/ (1 — s) Baua(s) ds
0

with - S
AT‘T T a—
() EZ:O T[(r+1)a]’

For i = 1,2, we note H* = HX(T).

The system (5) is stimulated by two input factors, the first one Baugy is considered as a distur-
bance caused by accidental or voluntary actions, and the second term Bju; is introduced in order to
compensate the effect of disturbance at final time 7 by restoring the observation (C.%H(T )zo) to its
normal state at final time 7 using an appropriate control applied through the control operator By. So,
we can reformulate the problem under this form: Yus € L2(0,7;R™), does a control u; € L2(0, T;RP)
such that:

HSus + Hi*u; =0
exist?

This brings us to the concept of domination which entails to study the comparison (or classification)
of input operators, with respecting the output one.

This paper is structured in the following way: in section 2, we determine and we define the domi-
nation concept for fractional-order systems and we give some properties for the characterization of the
domination and some examples to confirm the procured results. In section 3, we discuss the connection
through the notion of controllability and domination. In the last section, we present a conclusion that
summarize all the previous results.

2. Definitions and characterizations

Definition 1. IfIm(CHS) C Im(CHY), we denote that By dominates By with respecting the oper-
ator C on [0,T]. We note, in this situation By < Bj.
C

2.1. Characterizations
The coming result offers a characterization of domination with respecting the output operator C.

Proposition 1. These mathematical characteristics are equivalent

1. The input operator (By) dominates (Bs) with respecting the operator C.
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2. For any up € L%(0,T;R™), there exists u; € L?(0,7;RP) such that:
CH{'u; + CH3ug = 0. (2)

3. Ker[Bf.*(T —-)C*] C Ker[B3.*(T —-)C*].
4. 48 > 0 such that for any w € R?, we have

1B3#(T = )C 2o gy < BIBLS (T = )C 207 o (3)
Proof. The equivalence between the assertions is due to definition and from that, if X', J and Z are
Banach spaces, and P € L(X, Z), Q € L(Y, Z), we have Im(P) C Im(Q) if and only if

38 >0, Vz* € Z'/||P*2*|| 4 < B 19Q%2" Iy
with X7, V' and Z’ denote the dual spaces of X', ) and Z, respectively. [
We consider now, the domination Gramian of the system (1).

Definition 2. Let g > 1, the domination Gramian of system (1) is the symmetric q X g-matrix defined
by

.
D(T) =/0 CH(T —s) By Bt (T — ) C*(T — s)21=9ds.

Remark 1. We have, for all ¥ € RY,
-
T DT) U :/ |B; (T — 5)* CX(T — s)1=2 0| ds.
0

Hence the domination Gramian D*(7) is a symmetric nonnegative matrix.

We give afterwards a second characterization of the notion domination.
Theorem 1. Let D*(T) = D*(T)|mm(c), B1 dominates By on [0,T], with respecting operator C' if
and only if the matrix D®(T) is invertible in Im(C).
Proof. Firstly, we suppose that D%(T) is invertible in Im(C) and demonstrate that B; dominates By
with respecting operator C, on [0,7]. For u; € L? (0, T;RP) defined by:
ui(s) = By S (T — 5)* C*(T — s)>' = D*(T)~! (~CHS'up)
for s € [0, T]. We find

.
y(T) = CH(T )z + / C.Z(T — s)B1B; .S (T — s)*C*(T — )= ds DYT) ™! (~CHSuy) + CHS us
0

= Cy()(T)Z().

then B; dominates By with respecting the operator C, on [0, T].

Let us now surmise that D*(T) is not invertible in Im(C), then 3¥ € Im(C)\{0} such that
D(T)¥ = 0.

Particularly, ¥*D%(T)¥ = 0, signifies that,

T
/ VO (T — 8) Bi BEA (T — ) C* (T — )20 W ds — 0,
0

From Remark 1, we obtain

/T | BI (T — s)*C*(T — s)l_o‘\I/H2 ds = 0.
Which implies that ’
(T — ) *C.A(T —s)B1 =0, sc0,T],
then
B (T —s)"C*¥ =0,
consequently the inequality (3) is not verified.

So, DY(T) is invertible. [
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Proposition 2. If rank (031 CAB; ... C’A"_lBl) = ¢, then B; dominates any operator By with
respecting the operator C.

Proof. Applying Cayley—Hamilton theorem, we find
(CBy)*

rank (CBy CAB; ... CA" 'B)) = q <= (CABy)

y=0;VyeRI =y =0
(CA)" ' By)*

< Ker [(CH})*] = {0}.

So, Ker [(CH{)*] = {0}, implies that Ker [(CH{)*] C Ker [(CH$)*] as result, B; dominates By with

respecting C' on [0, 7. |

Remark 2. 1. This condition can still be obtained rank (031 CAB; ... C’A"_lBl) = q even if the

system & is not controllable on [0,7]. 2. By can dominates any operator By with respecting C' on

[0, 7] without requiring rank (031 CAB; ... C’A"_lBl) =q.

For clarity, let us look at this example.

(np,q)

Example 1. 1. In the situation where p=¢=1and n =2

A:<(1) 0?5>, Blz<(1)>, C=(11).

We have the controllability matrix as

( B, ABl):<é é)
and its rank is 1 # 2. As a result, our system is not controllable on [0, 7]. In contrast,
(CBy CAB; )=(1 1)
and its rank is ¢ = 1, so By dominates any operator By with respecting C on [0, 7.
2.Wheng=n=2andp=1

0 1 0 10
=(00) m=(3) m-(0 1),
(01 [ w1
c=(5 1) «=(2)

we obtain
(T—S)O‘*l (T_S)Zafl
&) — () I'(2a)
L (T —s)= ( 0 (T—s) )
I'(a)
We have X
(T—9)*"
* *ovk 10 I« 0 0 0 w1
mrrew= (3 V) (e e )(20) ()
I'(2a) T'(a)
= —s a—1
( (T (O)[) (Wl +WQ) )
as well as
(7'_ a—1
BiA (T —8)"C*'w =2 T (w1 +w2) .
Then,
T _ o\2(a—-1)
* * vk 2 (T S) 2
IBL.AT = 5) C o) :4/0 ST (et ds
and
T _ O\ 2(a-1) 2
* * Yk 2 o (T S) 0
| B3 (T —s)"C WHL2(0,T;R2) —/0 W ‘( w1 + wo > ds
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T (T— s)2(a—1) 5
= —_ d
/0 F(Q)Z (w1 +wa)”ds

IBSA(T 5 C*ll aoirmey < B IBLA (T — )" Cwlo iy
So, the condition (3) in Proposition 1 is verified with g = 2.
Resultantly, B; dominates By with respecting C' on [0, 7], even if

therefore

rank (CB; CAB;) = rank < g 8 > =1#2.

3. Domination and controllability

Proposition 3. 1. If the system
D%z(1) = Az(1) + Biu(r), 0<7<T, 0<a<l,
(S1) _
Z(O) = 20
is controllable on [0, 7], then By dominates any operator By with respecting C, on [0, T].
2. The reciproque is false.

Proof.
1. We assume that the linear control system (S;) is controllable on [0, 7] <= Im (H{*) = R™.
So,
Im (CHY) = Im(C),
then

Im (CHS) C Im (CHY).
As result, By dominates By with respecting C', on [0, 7.
2. Counter example. Considering the situation, when n =2, p=1,¢q¢ = 2

0 1 1 10
(o) m=(o) m=(an)

C=(10), w:<2>

we obtain
(T—S)O‘*l (T_S)Zafl
ST ~5) = ( Y )
I'(a)
We have
(T—s)1
. o ok 10 T 0 1
B2y(T—S) C*w = ( 0 0 > ( (T_I‘s()z)afl (T—S)O‘*l ) ( 0 )w
T'(2a) I'(a)
—s a—1
_ [ @)
0
and
* vk, (T_ s)a_l
BIA(T —s)"C*w = o) (w),
then
1B5.7* (T = )0l oo g2y = IBE#*(T = $)C*wll 207 29 - (4)

Consequently, By dominates B on [0, 7] with respecting C', even though

rank(31 ABq )zrank(é 8)21752.

So, the controllability is not achievable for the system on [0, T]. ]
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Proposition 4. B; dominates By on [0, 7], with respecting C' if and only if
Im (CBy CAB, ... CA" " 'By) CIm (CBy CAB; ... CA" 'By).

Proof. Using Proposition 1, B; dominates By with respecting C' on [0, 7] if and only if,
Ker [(CHY)*] C Ker [(CHS)™].
Applying the Cayley—Hamilton theorem, we find for i = {1, 2}
(CBy)*

(CAB;))*

y € Ker [(CHY)"| — y=0; VyeRi

1%
(CA B/ (mpa
Then

(CB;)*

Ker (CAB;)

= Ker [(CH{)™].
(C(A)'B;)*
Resultantly, By dominates By with respecting C' on [0, 7], if and only if
Im (CBy CAB; ... CA"'By) CIm (CBy CAB; ... CA"!By). .

Numerical example
Let n=2,¢g=2,p=1, and

a=(00) m=(5) e=(5 1) m=(51)

with the following us term

0=y
For o = %, we find
T—n= 0
AT )= (TF—(f))Tl (T-n7
r(3) (%)

Now, let us define u; by:
wi (1) = B{.S (T — 7)*CH(T — 7)21=9D(T) ™ (~CHSus)
it is clear that the control verify very well the equation (2) in Proposition 1.
So, we get
ur(r) = 96T (L) (T —7)i —120T (1) T7 (T — 7).
We suppose, for the sake of simplicity, that 29 = 0, then y(gg) = 0, and
06T (3)(T-m)tr asor(})7 Tt
Vo™= N e
Bdp—lry — 207772 + 1074
The values of the gamma function evaluted at % and % are respectivly:
r (%) ~ 3.62560990822, T (%) = /7.

After fixing 7 = 12 we get the following numerical simulation which perform the previous developments.
Figure 1 shows that the control u; ensure the compensation of the effect of term Bouso, by returning
the observation at the final time 7 to its regular situation which is yg 0 = 0.
Figures 2 and 3 display respectively, the observation yg ., and the evolution of the control term ;.

. Yous(T) = <

Al
N———

vz <

T
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Fig. 1. Representation of yy, u,- Fig. 2. Representation of yg 4, .
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Fig. 3. Representation of the dominant control u;.

4. Conclusion

Our paper discusses the classification of distributed parameter systems through the utilization of
the domination concept. In this research, we extend this concept to include fractional linear-order
dynamical systems where the Caputo fractional derivative is considered. Characterization results and
main properties are presented, and not only the sufficient condition that ensures such domination was
proved but also the sufficient and necessary conditions were discussed. Finally, we give some examples
to illustrate our results.
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MoHaTTa AoMiHyBaHHSA B NiHIMHNX po3noaineHux
cucrtemax ApoboBOro nopsigkKy

Xizasi X., Awmicci K., JIyc M., Marpi E. M.

Jlabopamopis dyrdamenmanrvHoi ma NPUKAGOHOT MATNEMATIUKU,
xagedpa Mamemamury ma iHdopmamur,
daxyrvmem nayx Adn Yok, Ynisepcumem Xacana 11 Kacabaarxu, Mapoxko

VY miit cTaTTi JAOCTIIKYETHCA MOHITTS JOMIHYBAaHHS y JHHIHHUX PO3IMOIIIEHUX CHCTEMAaX
JPpOoOOBOTO MOPSJIKY B CKIHYEHHOBUMIpHOMY cTaHi. Mera mossrae B ToMy, mo0 MOPiBHATH
abo ruracuikyBaTH BXiJIHI OIEPATOPH BiIHOCHO BUXIIHWX, i IMOJATH XapPAKTEPUCTUKHU Ta
BJACTUBOCTI i€l Kouremniiil. [ToriM moc/timKeHo 3B’s30K MiK KEPOBAHICTIO Ta MOHATTIM
JovinyBanus. HaBeeHo qucaoBuit MpuKIa I, 00 MPOLTIOCTPYBATH OTPUMAHI PE3YIbTATH.

Kntouosi cnoBa: dpobosuti nopadox; po3nodiseni Cucmemu; KePoSaHicmyd; JOMIHYGAMHHA.
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