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This paper investigates the notion of domination in linear fractional-order distributed
systems in a finite-dimensional state. The objective is to compare or classify the input op-
erators with respect to the output ones, and we present the characterization and property
results of this concept. Then, we examine the relationship between controllability and the
notion of domination. Finally, we provide a numerical example to illustrate our results.
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1. Introduction

In the field of control theory, it is indisputable that certain controls outperform others. This per-
spective opens up a wide realm for the classification of input operators, ultimately giving rise to the
concept known as domination.

The concept of domination was initially introduced and treated for lumped and distributed sys-
tems [1], then the asymptotic case. Subsequently, dominance was introduced and developed for contin-
uous systems in both the parabolic and the hyperbolic cases [2]. It involves researching the potential
for categorizing input operators and categorizing output operators based on duality. An extension of
domination to the regional case is given in [3]. The regional aspect of this problem arises from the fact
that a system may dominate another in a region but not on the basis of the system’s entire geometrical
support. The authors of [4] study a broadening to a class of distributed discrete systems and, as a
result, they examine the case of discrete diffusion processes additionally to sensors and actuators.

Recent years have seen intense research into fractional differential systems [5–8], yielding a wealth
of intriguing findings. The study of controllability and observability in fractional-order differential
systems continues to receive significant attention in the rapidly changing field of control theory and
system analysis. Fractional dynamical systems in finite-dimensional spaces that are both linear and
non-linear are controllable [5]. The Mittag–Leffler matrix function and Schauder’s fixed point theorem
are both used to derive the necessary conditions for controllability. In [9], as a generalization of the
deterministic situation, the authors studied the exact and complete controllability of linear stochastic
fractional systems. A sufficient controllability condition via the Schauder fixed point theorem for
nonlinear fractional dynamical systems has been obtained in [6]. The case of linear fractional-order
finite-dimensional dynamical control systems with delays is considered in different works [7, 8].

The relationship between controllability and domination has been studied in several studies [2], but
in the case of finite-dimensional linear fractional-order systems, domination is still not discussed, and
that is the purpose of this paper.

Initially, let us consider a class of linear fractional-order control systems expressed by

(S)

{

c
0D

α
τ z(τ) = Az(τ) +B1u1(τ) +B2u2(τ), 0 < τ < T , 0 < α < 1,

z(0) = z0
(1)

with A ∈ Mn(R), B1 ∈ M[n,p](R), B2 ∈ M[n,m](R), u1 ∈ L2 (0,T ;Rp), u2 ∈ L2 (0,T ;Rm) and c
0D

α
τ

designates the Caputo fractional-order derivative, where
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c
0D

α
τ z(τ) =

{ 1
Γ(1−α)

∫ τ

0 (τ − s)−αż(s) ds, 0 < α < 1,

ż(τ), α = 1.

where Γ is Gamma function. The output equation of systems S is given by:

y(τ) = Cz(τ)

with C ∈ M[q,n](R), we find

z(τ) = S0(τ)z0 +Hα
1 (τ)u1 +Hα

2 (τ)u2
with

S0(τ) =

∞
∑

r=0

Arτ rα

Γ(rα+ 1)
.

Then

y(τ) = CS0(τ) z0 + CHα
1 (τ)u1 + CHα

2 (τ)u2,

where Hα
i is the operator defined by

Hα
1 (τ) : L

2 (0, τ ;Rp) −→ R
n,

u1 −→
∫ τ

0
S (τ − s)B1 u1(s) ds

and

Hα
2 (τ) : L

2 (0, τ ;Rm) −→ R
n,

u2 −→
∫ τ

0
S (τ − s)B2 u2(s) ds

with

S (τ) =

∞
∑

r=0

Arτ (r+1)α−1

Γ[(r + 1)α]
.

For i = 1, 2, we note Hα
i = Hα

i (T ).
The system (S) is stimulated by two input factors, the first one B2u2 is considered as a distur-

bance caused by accidental or voluntary actions, and the second term B1u1 is introduced in order to
compensate the effect of disturbance at final time T by restoring the observation (CS0(T )z0) to its
normal state at final time T using an appropriate control applied through the control operator B1. So,
we can reformulate the problem under this form: ∀u2 ∈ L2(0,T ;Rm), does a control u1 ∈ L2(0,T ;Rp)
such that:

Hα
2 u2 +Hα

1 u1 = 0
exist?

This brings us to the concept of domination which entails to study the comparison (or classification)
of input operators, with respecting the output one.

This paper is structured in the following way: in section 2, we determine and we define the domi-
nation concept for fractional-order systems and we give some properties for the characterization of the
domination and some examples to confirm the procured results. In section 3, we discuss the connection
through the notion of controllability and domination. In the last section, we present a conclusion that
summarize all the previous results.

2. Definitions and characterizations

Definition 1. If Im(CHα
2 ) ⊂ Im(CHα

1 ), we denote that B1 dominates B2 with respecting the oper-
ator C on [0,T ]. We note, in this situation B2 6

C
B1.

2.1. Characterizations

The coming result offers a characterization of domination with respecting the output operator C.

Proposition 1. These mathematical characteristics are equivalent

1. The input operator (B1) dominates (B2) with respecting the operator C.
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2. For any u2 ∈ L2(0,T ;Rm), there exists u1 ∈ L2(0,T ;Rp) such that:

CHα
1 u1 + CHα

2 u2 = 0. (2)

3. Ker[B∗
1S

∗(T − ·)C∗] ⊂ Ker[B∗
2S

∗(T − ·)C∗].
4. ∃β > 0 such that for any ω ∈ R

q, we have

‖B∗
2S

∗(T − ·)C∗ω‖L2(0,T :Rm) 6 β ‖B∗
1S

∗(T − ·)C∗ω‖L2(0,T : Rp) . (3)

Proof. The equivalence between the assertions is due to definition and from that, if X , Y and Z are
Banach spaces, and P ∈ L(X ,Z), Q ∈ L(Y,Z), we have Im(P) ⊂ Im(Q) if and only if

∃β > 0, ∀z∗ ∈ Z ′/ ‖P∗z∗‖X ′ 6 β ‖Q∗z∗‖Y ′ ,

with X ′, Y ′ and Z ′ denote the dual spaces of X , Y and Z, respectively. �

We consider now, the domination Gramian of the system (1).

Definition 2. Let q > 1, the domination Gramian of system (1) is the symmetric q×q-matrix defined
by

Dα(T ) =

∫ T

0
CS (T − s)B1 B

∗
1 S (T − s)∗ C∗(T − s)2(1−α)ds.

Remark 1. We have, for all Ψ ∈ R
q,

Ψ∗Dα(T )Ψ =

∫ T

0

∥

∥B∗
1 S (T − s)∗C∗(T − s)1−α Ψ

∥

∥

2
ds.

Hence the domination Gramian Dα(T ) is a symmetric nonnegative matrix.

We give afterwards a second characterization of the notion domination.

Theorem 1. Let D̄α(T ) = Dα(T )|Im(C), B1 dominates B2 on [0,T ], with respecting operator C if
and only if the matrix D̄α(T ) is invertible in Im(C).

Proof. Firstly, we suppose that D̄α(T ) is invertible in Im(C) and demonstrate that B1 dominates B2

with respecting operator C, on [0,T ]. For u1 ∈ L2 (0,T ;Rp) defined by:

u1(s) = B∗
1 S (T − s)∗C∗(T − s)2(1−α) D̄α(T )−1 (−CHα

2 u2) ,

for s ∈ [0,T ]. We find

y(T ) = CS0(T )z0 +

∫ T

0
CS (T − s)B1B

∗
1S (T − s)∗C∗(T − s)2(1−α)dsDα(T )−1 (−CHα

2 u2) + CHα
2 u2

= CS0(T )z0.

then B1 dominates B2 with respecting the operator C, on [0,T ].
Let us now surmise that D̄α(T ) is not invertible in Im(C), then ∃Ψ ∈ Im(C)\{0} such that

D̄α(T )Ψ = 0.
Particularly, Ψ∗D̄α(T )Ψ = 0, signifies that,

∫ T

0
Ψ∗CS (T − s)B1 B

∗
1S (T − s)∗C∗(T − s)2(1−α)Ψ ds = 0.

From Remark 1, we obtain
∫ T

0

∥

∥B∗
1S (T − s)∗C∗(T − s)1−αΨ

∥

∥

2
ds = 0.

Which implies that

Ψ∗(T − s)1−αCS (T − s)B1 = 0, s ∈ [0,T ],

then

B∗
1S (T − s)∗C∗Ψ = 0,

consequently the inequality (3) is not verified.
So, D̄α(T ) is invertible. �
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Proposition 2. If rank
(

CB1 CAB1 . . . CAn−1B1

)

= q, then B1 dominates any operator B2 with
respecting the operator C.

Proof. Applying Cayley–Hamilton theorem, we find

rank
(

CB1 CAB1 . . . CAn−1B1

)

= q ⇐⇒









(CB1)
∗

(CAB1)
∗

. . .
(C(A)n−1B1)

∗









(np,q)

y = 0; ∀y ∈ R
q =⇒ y = 0

⇐⇒ Ker [(CHα
1 )

∗] = {0}.
So, Ker [(CHα

1 )
∗] = {0}, implies that Ker [(CHα

1 )
∗] ⊂ Ker [(CHα

2 )
∗] as result, B1 dominates B2 with

respecting C on [0,T ]. �

Remark 2. 1. This condition can still be obtained rank
(

CB1 CAB1 . . . CAn−1B1

)

= q even if the
system S1 is not controllable on [0,T ]. 2. B1 can dominates any operator B2 with respecting C on
[0,T ] without requiring rank

(

CB1 CAB1 . . . CAn−1B1

)

= q.

For clarity, let us look at this example.

Example 1. 1. In the situation where p = q = 1 and n = 2

A =

(

1 3
0 0.5

)

, B1 =

(

1
0

)

, C =
(

1 1
)

.

We have the controllability matrix as
(

B1 AB1

)

=

(

1 1
0 0

)

and its rank is 1 6= 2. As a result, our system is not controllable on [0,T ]. In contrast,
(

CB1 CAB1

)

=
(

1 1
)

and its rank is q = 1, so B1 dominates any operator B2 with respecting C on [0,T ].
2. When q = n = 2 and p = 1

A =

(

0 1
0 0

)

, B1 =

(

0
2

)

, B2 =

(

1 0
0 1

)

,

C =

(

0 1
0 1

)

, ω =

(

ω1

ω2

)

,

we obtain

S (T − s) =

(

(T −s)α−1

Γ(α)
(T −s)2α−1

Γ(2α)

0 (T −s)α−1

Γ(α)

)

.

We have

B∗
2S (T − s)∗C∗ω =

(

1 0
0 1

)

(

(T −s)α−1

Γ(α) 0
(T −s)2α−1

Γ(2α)
(T −s)α−1

Γ(α)

)

(

0 0
1 1

)(

ω1

ω2

)

=

(

0
(T −s)α−1

Γ(α) (ω1 + ω2)

)

as well as

B∗
1S (T − s)∗C∗ω = 2

(T − s)α−1

Γ(α)
(ω1 + ω2) .

Then,

‖B∗
1S (T − s)∗C∗ω‖2L2(0,T ;R) = 4

∫ T

0

(T − s)2(α−1)

Γ(α)2
(ω1 + ω2)

2 ds

and

‖B∗
2S (T − s)∗C∗ω‖2L2(0,T ;R2) =

∫ T

0

(T − s)2(α−1)

Γ(α)2

∥

∥

∥

∥

(

0
ω1 + ω2

)∥

∥

∥

∥

2

ds
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=

∫ T

0

(T − s)2(α−1)

Γ(α)2
(ω1 + ω2)

2 ds

therefore
‖B∗

2S (T − s)∗C∗ω‖L2(0,T ;R2) 6 β ‖B∗
1S (T − s)∗C∗ω‖L2(0,T ;R) .

So, the condition (3) in Proposition 1 is verified with β = 2.
Resultantly, B1 dominates B2 with respecting C on [0,T ], even if

rank (CB1 CAB1) = rank

(

2 0
2 0

)

= 1 6= 2.

3. Domination and controllability

Proposition 3. 1. If the system

(S1)

{

c
0D

α
τ z(τ) = Az(τ) +B1u(τ), 0 < τ < T , 0 < α < 1,

z(0) = z0

is controllable on [0,T ], then B1 dominates any operator B2 with respecting C, on [0,T ].
2. The reciproque is false.

Proof.

1. We assume that the linear control system (S1) is controllable on [0,T ] ⇐⇒ Im (Hα
1 ) = R

n.
So,

Im (CHα
1 ) = Im(C),

then

Im (CHα
2 ) ⊂ Im (CHα

1 ) .

As result, B1 dominates B2 with respecting C, on [0,T ].
2. Counter example. Considering the situation, when n = 2, p = 1, q = 2

A =

(

0 1
0 0

)

, B1 =

(

1
0

)

, B2 =

(

1 0
0 0

)

,

C =
(

1 0
)

, ω =

(

ω1

ω2

)

we obtain

S (T − s) =

(

(T −s)α−1

Γ(α)
(T −s)2α−1

Γ(2α)

0 (T −s)α−1

Γ(α)

)

.

We have

B∗
2S (T − s)∗C∗ω =

(

1 0
0 0

)

(

(T −s)α−1

Γ(α) 0
(T −s)2α−1

Γ(2α)
(T −s)α−1

Γ(α)

)

(

1
0

)

ω

=

(

(T −s)α−1

Γ(α) (ω)

0

)

and

B∗
1S (T − s)∗C∗ω =

(T − s)α−1

Γ(α)
(ω),

then

‖B∗
2S

∗(T − s)C∗ω‖L2(0,T : R2) = ‖B∗
1S

∗(T − s)C∗ω‖L2(0,T : R1) . (4)

Consequently, B1 dominates B2 on [0,T ] with respecting C, even though

rank
(

B1 AB1

)

= rank

(

1 0
0 0

)

= 1 6= 2.

So, the controllability is not achievable for the system on [0,T ]. �
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Proposition 4. B1 dominates B2 on [0,T ], with respecting C if and only if

Im
(

CB2 CAB2 . . . CAn−1B2

)

⊂ Im
(

CB1 CAB1 . . . CAn−1B1

)

.

Proof. Using Proposition 1, B1 dominates B2 with respecting C on [0,T ] if and only if,

Ker [(CHα
1 )

∗] ⊂ Ker [(CHα
2 )

∗] .

Applying the Cayley–Hamilton theorem, we find for i = {1, 2}

y ∈ Ker [(CHα
i )

∗] ⇐⇒









(CBi)
∗

(CABi)
∗

. . .
(C(A)n−1Bi)

∗









(np,q)

y = 0; ∀y ∈ R
q.

Then

Ker









(CBi)
∗

(CABi)
∗

. . .
(C(A)n−1Bi)

∗









= Ker [(CHα
i )

∗] .

Resultantly, B1 dominates B2 with respecting C on [0,T ], if and only if
Im
(

CB2 CAB2 . . . CAn−1B2

)

⊂ Im
(

CB1 CAB1 . . . CAn−1B1

)

. �

Numerical example

Let n = 2, q = 2, p = 1, and

A =

(

0 0
1 0

)

, B1 =

(

1
0

)

, C =

(

1 0
0 1

)

, B2 =

(

0 0
0 1

)

with the following u2 term

u2(τ) =

(

0
Γ
(

1
4

)

τ

)

.

For α = 1
4 , we find

S (T − τ) =







(T −τ)
−3

4

Γ( 1

4
)

0

(T −τ)
−1

2

Γ( 1

2
)

(T −τ)
−3

4

Γ( 1

4
)






.

Now, let us define u1 by:

u1(τ) = B∗
1S (T − τ)∗C∗(T − τ)2(1−α)D̄α(T )−1 (−CHα

2 u2) ,

it is clear that the control verify very well the equation (2) in Proposition 1.
So, we get

u1(τ) = 96Γ
(

1
2

)

(T − τ)
3

4 − 120Γ
(

1
2

)

T −1

4 (T − τ).

We suppose, for the sake of simplicity, that z0 = 0, then y(0,0) = 0, and

yu1,u2
(τ) =





96 Γ( 1

2
)(T −τ)

3
4 τ

Γ( 1

4
)

− 480 Γ( 1

2
)T

−1

4 τ
5
4

5Γ( 1

4
)

·
384
5 T −1τ

5

4 − 240
3 T −1

4 τ
3

2 + 16
5 τ

5

4



 , y0,u2
(τ) =

(

0
16
5 τ

5

4

)

.

The values of the gamma function evaluted at 1
4 and 1

2 are respectivly:

Γ
(

1
4

)

≈ 3.62560990822, Γ
(

1
2

)

=
√
π.

After fixing T = 12 we get the following numerical simulation which perform the previous developments.
Figure 1 shows that the control u1 ensure the compensation of the effect of term B2u2, by returning

the observation at the final time T to its regular situation which is y0,0 = 0.
Figures 2 and 3 display respectively, the observation y0,u2

and the evolution of the control term u1.
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Fig. 1. Representation of yu1,u2
. Fig. 2. Representation of y0,u2

.

-300

-250

-200

-150

-100

-50

0

50

100
Optimal control

0 2 4 6 8 10 12

Fig. 3. Representation of the dominant control u1.

4. Conclusion

Our paper discusses the classification of distributed parameter systems through the utilization of
the domination concept. In this research, we extend this concept to include fractional linear-order
dynamical systems where the Caputo fractional derivative is considered. Characterization results and
main properties are presented, and not only the sufficient condition that ensures such domination was
proved but also the sufficient and necessary conditions were discussed. Finally, we give some examples
to illustrate our results.
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Поняття домiнування в лiнiйних розподiлених
системах дробового порядку

Хiзазi Х., Амiссi К., Лус М., Магрi Е. М.

Лабораторiя фундаментальної та прикладної математики,

кафедра математики та iнформатики,

факультет наук Айн Чок, Унiверситет Хасана II Касабланки, Марокко

У цiй статтi дослiджується поняття домiнування у лiнiйних розподiлених системах
дробового порядку в скiнченновимiрному станi. Мета полягає в тому, щоб порiвняти
або класифiкувати вхiднi оператори вiдносно вихiдних, i подати характеристики та
властивостi цiєї концепцiї. Потiм дослiджено зв’язок мiж керованiстю та поняттям
домiнування. Наведено числовий приклад, щоб проiлюструвати отриманi результати.

Ключовi слова: дробовий порядок; розподiленi системи; керованiсть; домiнування.
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