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Catalytic action is one of the most important characteristics of enzymes in chemical re-
actions. In this article, we propose and study a mathematical model of chemical kinetic
reaction with the memory effect using the new generalized Hattaf fractional derivative.
The existence and uniqueness of the solutions are established by means of fixed point
theory and, finally, to support the theoretical results, we end the article with the results of
numerical simulations based on a novel numerical scheme that includes the Euler method.
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1. Introduction

In chemical kinetic reactions, enzymes catalyze reactions at neutral pH values and low temperatures,
often at very high rates. Catalytic action is one of the crucial properties of enzymes in chemical
reactions that involves lowering the reaction free energy of activation by catalyzing the transformation
of substrates into products. Furthermore, enzyme mechanisms are potentially useful in various fields
of physiology and biochemistry, as well as in many industrial bio-processes like textile industry and
food processing.

In the literature, various models have proposed to understand and describe the dynamics of enzy-
matic reaction. For instance, Wong [1] studied transient-state and steady-state phases of the reaction
according to the enzymatic mechanism of Michaelis and Menten [2]. In order to study the kinetic
behavior at high enzyme concentrations, Cha [3] examined the Michaelis–Menten equation and three
other approximations, which take into account the depletion of free substrate by binding to the en-
zyme. Wald et al. [4] investigated enzymatic hydrolysis of cellulose for sugar production, which offers
advantages of higher conversion, low energy requirements, and mild operating conditions over other
chemical conversions. Najafpour and Shan [5] focused studied on enzymatic hydrolysis of molasses
by means of glucoamylase. Gan et al. [6] presented an overview, an experimental study and math-
ematical modelling of kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose. In 2006,
Urban et al. [7] explored enzymatic microreactors in chemical analysis and kinetic studies. In [8],
the authors developed a differential quasi-steady state approximate kinetic model in order to predict
the behavior of complex biochemical systems. In [9], Atangana examined a model for the enzymatic
control reaction using fractional derivative in Caputo sense. In 2018, Milek [10] studied hydrogen per-
oxide decomposition and aspergillus niger catalase deactivation at temperature varying. In [11], the
authors analyzed the dynamics of two-step reversible enzymatic reaction under the Atangana–Baleanu
fractional derivative [12].

c© 2024 Lviv Polytechnic National University 463



464 El Mamouni H., Hattaf K., Yousfi N.

In this study, we improve and generalize the model given in [11] by considering the new generalized
Hattaf fractional (GHF) derivative [13] that includes the Atangana–Baleanu fractional derivative [12],
the Caputo–Fabrizio fractional derivative [14] and the weighted Atangana–Baleanu fractional deriva-
tive [15].

The rest of this paper is outlined as follows. Section 2 is devoted to some preliminary results about
GHF derivative. Section 3 deals with the existence and uniqueness of solutions of the proposed model.
Section 4 studies the numerical simulation of the proposed model. Finally, the paper ends with a
conclusion section.

2. Preliminaries

This section gives the necessary results and definitions for the elaboration of this study.

Definition 1. Let α ∈ [0, 1), β, γ > 0, and f ∈ H1(a, b). We define the GHF derivative of order α

in Caputo sense of the function f(t) with respect to the weight function w(t) as follows [13],

CD
α,β,γ
a,t,w f(t) =

N(α)

1 − α

1

w(t)

∫ t

a

Eβ [−µα(t− τ)γ ]
d

dτ
(wf)(τ) dτ, (1)

where w ∈ C1(a, b), w,w′ > 0 on [a, b], N(α) is a normalization function obeying N(0) = N(1) = 1,

µα = α
1−α

and Eβ(t) =
∑+∞

k=0
tk

Γ(βk+1) is the Mittag–Leffler function of parameter β.

The GHF derivative introduced in the above definition generalizes and extends many special cases.
In the fact, when w(t) = 1 and β = γ = 1, we get the Caputo–Fabrizio fractional derivative [14] given
by

CD
α,1,1
a,t,1 f(t) =

N(α)

1 − α

∫ t

a

exp[−µα(t− τ)]f ′(τ) dτ.

We obtain the Atangana–Baleanu fractional derivative [12] when w(t) = 1 and β = γ = α, equation (1)
is given by

CD
α,α,α
a,t,1 f(t) =

N(α)

1 − α

∫ t

a

Eα[−µα(t− τ)α]f ′(τ) dτ.

For β = γ = α, we get the weighted Atangana–Baleanu fractional derivative [15] given by

CD
α,α,α
a,t,w f(t) =

N(α)

1 − α

1

w(t)

∫ t

a

Eα[−µα(t− τ)α]
d

dτ
(wf)(τ) dτ.

For simplicity, we denote CD
α,β,β
a,t,w by Dα,β

a,w. By [13], the generalized fractional integral associated

to Dα,β
a,w is given by the following definition.

Definition 2 (Ref. [13]). The generalized fractional integral operator associated to Dα,β
a,w is defined

by

Iα,β
a,wf(t) =

1 − α

N(α)
f(t) +

α

N(α)
RLIβ

a,wf(t), (2)

where RLIβ
a,w is the standard weighted Riemann–Liouville fractional integral of order β defined by

RLIβ
a,wf(t) =

1

Γ(β)

1

w(t)

∫ t

a

(t− τ)β−1w(τ)f(τ)dτ. (3)

Now, we recall an important theorem that we will need in the following. This theorem extends the
Newton–Leibnitz formula introduced in [16, 17].

Theorem 1 (Ref. [18]). Let α ∈ [0, 1), β > 0 and f ∈ H1(a, b). Then we have the following
property:

Iα,β
a,w

(

Dα,β
a,wf

)

(t) = f(t) −
w(a)f(a)

w(t)
. (4)
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3. The GHF enzyme kinetic model

This section constructs a mathematical chemical kinetics model involving GHF derivative. Then we
divide the elements of the chemical reaction into four classes x1, x2, x3 and x4 that represent the
substrate, the enzyme, the complex and the product, respectively. The dynamics of the four elements
is formulated by the following nonlinear system of fractional differential equations (FDEs):



































Dα,β
a,wx1(t) = µx1 − σx1x2,

Dα,β
a,wx2(t) = (ζ + µ)x3 − σx1x2,

Dα,β
a,wx3(t) = σx1x2 − (ζ + µ)x3,

Dα,β
a,wx4(t) = ζx3,

(5)

subject to initial conditions xi(0) of xi(t), for i = 1, . . . , 4. First, to summarize the dynamics of the
system (5), the enzyme x1 reacts with the substrate x2 and then transforms it to product x4. On the
other hand, x1 and x2 combine to produce a complex x3 at a positive rate σ. This complex x3 then
degrades to produce x4, which releases x2 at a positive rate ζ, and subsequently to make x2 and x1 at
a positive rate µ.

3.1. Existence and uniqueness of solutions

In this subsection, let E = [0, tmax] and B = C(E ,R) be the Banach space of continuous functions from
E to R defined with the norm

‖xi‖ = sup{|xi(t)| : t ∈ E} for i = 1, . . . , 4.

By using Theorem 1, the fractional chemical kinetics model described in (5) can be written in the
following form

x1(t) = x1,0(t) +
1 − α

N(α)
G1 (t, x1(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G1 (s, x1(s)) ds,

x2(t) = x2,0(t) +
1 − α

N(α)
G2 (t, x2(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G2 (s, x2(s)) ds,

x3(t) = x3,0(t) +
1 − α

N(α)
G3 (t, x3(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G3 (s, x3(s)) ds,

x4(t) = x4,0(t) +
1 − α

N(α)
G4 (t, x4(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G4 (s, x4(s)) ds,

(6)

where xi,0(t) = xi(0)w(0)
w(t) for i = 0, . . . , 4 and



































G1 (t, x1(t)) = µx1 − σx1x2,

G2 (t, x2(t)) = (ζ + µ)x3 − σx1x2,

G3 (t, x3(t)) = σx1x2 − (ζ + µ)x3,

G4 (t, x4(t)) = ζx3.

(7)

We can verify that the functions G1, G2, G3 and G4 satisfy the Lipschitz conditions with Li

Lipschitz constant satisfying Li < 1, for i = 0, . . . , 4.
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By the following recursive formula,

x1,n(t) = x1,0(t) +
1 − α

N(α)
G1 (t, x1,n−1(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G1 (s, x1,n−1(s)) ds,

x2,n(t) = x2,0(t) +
1 − α

N(α)
G2 (t, x2,n−1(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G2 (s, x2,n−1(s)) ds,

x3,n(t) = x3,0(t) +
1 − α

N(α)
G3 (t, x3,n−1(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G3 (s, x3,n−1(s)) ds,

x4,n(t) = x4,0(t) +
1 − α

N(α)
G4 (t, x4,n−1(t)) +

α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1w(s)G4 (s, x4,n−1(s)) ds,

(8)

we write the difference between the successive terms as

An(t) = x1,n(t) − x1,n−1(t)

=
1 − α

N(α)
[G1 (t, x1,n−1(t)) −G1 (t, x1,n−2(t))]

+
α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1 w(s) [G1 (s, x1,n−1(s)) −G1 (s, x1,n−2(s))] ds,

Bn(t) = x2,n(t) − x2,n−1(t)

=
1 − α

N(α)
[G1 (t, x2,n−1(t)) −G1 (t, x2,n−2(t))]

+
α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1 w(s) [G2 (s, x2,n−1(s)) −G2 (s, x2,n−2(s))] ds,

Cn(t) = x3,n(t) − x3,n−1(t)

=
1 − α

N(α)
[G3 (t, x3,n−1(t)) −G3 (t, x3,n−2(t))]

+
α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1 w(s) [G3 (s, x3,n−1(s)) −G3 (s, x3,n−2(s))] ds,

Dn(t) = x4,n(t) − x4,n−1(t)

=
1 − α

N(α)
[G4 (t, x4,n−1(t)) −G4 (t, x4,n−2(t))]

+
α

N(α)Γ(β)w(t)

∫ t

0
(t− s)β−1 w(s) [G4 (s, x4,n−1(s)) −G4 (s, x4,n−2(s))] ds.

We verify immediately that

x1,n(t) − x1,0(t) =

n
∑

i=1

Ai(t),

x2,n(t) − x2,0(t) =
n
∑

i=1

Bi(t),

x3,n(t) − x3,0(t) =

n
∑

i=1

Ci(t),

x4,n(t) − x4,0(t) =

n
∑

i=1

Di(t).

(9)

By the above result, we write the following theorem of existence and uniqueness of solutions of
model (5).

Theorem 2. The GHF fractional chemical kinetics model (5) has a unique solution for t ∈ [0, tmax]

if
(

1−α
N(α) + αt

β
max

N(α)Γ(β+1)

)

Li < 1, for i = 1, . . . , 4.
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Proof. Since the functions Gi satisfy the Lipschitz conditions, we can prove

‖An(t)‖ 6 ‖x1,0‖

[

1 − α

N(α)
L1 +

αt
β
max

N(α)Γ(β + 1)
L1

]n

,

‖Bn(t)‖ 6 ‖x2,0‖

[

1 − α

N(α)
L2 +

αt
β
max

N(α)Γ(β + 1)
L2

]n

,

‖Cn(t)‖ 6 ‖x3,0‖

[

1 − α

N(α)
L3 +

αt
β
max

N(α)Γ(β + 1)
L3

]n

,

‖Dn(t)‖ 6 ‖x4,0‖

[

1 − α

N(α)
L4 +

αt
β
max

N(α)Γ(β + 1)
L4

]n

.

(10)

Therefore, the above-mentioned sequences exist and satisfy ‖An(t)‖ → 0, ‖Bn(t)‖ → 0, ‖Cn(t)‖ → 0,
‖Dn(t)‖ → 0 as n → +∞. On the other hand, by applying the triangular inequality, we get

‖x1,n+j − x1,n‖ 6 ‖x1,0‖

n+j
∑

k=n+1

[

1 − α

N(α)
L1 +

αt
β
max

N(α)Γ(β + 1)
L1

]k

,

‖x2,n+j − x2,n‖ 6 ‖x2,0‖

n+j
∑

k=n+1

[

1 − α

N(α)
L2 +

αt
β
max

N(α)Γ(β + 1)
L2

]k

,

‖x3,n+j − x3,n‖ 6 ‖x3,0‖

n+j
∑

k=n+1

[

1 − α

N(α)
L3 +

αt
β
max

N(α)Γ(β + 1)
L3

]k

,

‖x4,n+j − x4,n‖ 6 ‖x4,0‖

n+j
∑

k=n+1

[

1 − α

N(α)
L4 +

αt
β
max

N(α)Γ(β + 1)
L4

]k

.

(11)

Since
(

1−α
N(α) + αt

β
max

N(α)Γ(β+1)

)

Li < 1, we deduce that xi,n are Cauchy sequences. Thus, for all i = 0, . . . , 4,

xi,n are uniformly convergent. Applying this result to system (8), we conclude that model (5) has a
unique solution. �

4. Numerical simulations

In this section, we apply the numerical scheme cited in [19] to formulate the equations of the GHF
chemical kinetic model (5) in the following approximations

x1(tn+1) =
x1(0)w(0)

w(tn)
+

1 − α

N(α)
G1((t, x1(tn)) +

α

N(α)Γ(β + 1)

hβ

w(tn)

n
∑

k=0

w(tk)G1((tk, x1(tk))Aβ
n,k,

x2(tn+1) =
x2(0)w(0)

w(tn)
+

1 − α

N(α)
G2((t, x2(tn)) +

α

N(α)Γ(β + 1)

hβ

w(tn)

n
∑

k=0

w(tk)G2((tk, x2(tk))Aβ
n,k,

x3(tn+1) =
x3(0)w(0)

w(tn)
+

1 − α

N(α)
G3((t, x3(tn)) +

α

N(α)Γ(β + 1)

hβ

w(tn)

n
∑

k=0

w(tk)G3((tk, x3(tk))Aβ
n,k,

x4(tn+1) =
x4(0)w(0)

w(tn)
+

1 − α

N(α)
G4(t, x4(tn)) +

α

N(α)Γ(β + 1)

hβ

w(tn)

n
∑

k=0

w(tk)G4((tk, x4(tk))Aβ
n,k,

where

Aβ
n,k = (n− k + 1)β − (n− k)β.

To support the theoretical results, we give the following graphs for different values of the parameter
α in order to study the impact of the memory effect on the system with the following initial conditions
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x1(0) = 0.17, x2(0) = 0.1000005, x3(0) = 0.01005 and x4(0) = 0. Also, we choose µ = 0.48, σ = 0.48,
ζ = 0.48, β = 0.9 and w(t) = 1.

Fig. 1. The impact of the memory effect on the dynamics of system (5).

Figure 1 shows the numerical solutions of system (5) including substrate, enzyme, complex and
product for different values of fractional order α. Based on such figure, we conclude that the memory
has a significant effect on the dynamics of model (5). Therefore, it is more interesting to study the
dynamics of enzymatic reaction by taking into account the effect of memory.

5. Conclusion

In this article, we have explored the role of catalytic action in enzymatic chemical reactions. Our study
focused on developing and examining a mathematical model for chemical kinetic reactions that incor-
porates memory effects using the generalized Hattaf fractional derivative. Additionally, by applying
fixed point theory, we have demonstrated the existence and uniqueness of solutions. To support our
findings, we performed numerical simulations using a numerical scheme that covers the Euler method.
This comprehensive study contributes to the expanding body of knowledge in enzyme catalysis and
paves the way for further advancements in understanding and manipulating chemical reactions with
memory effects.
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Динамiка ферментативної кiнетичної моделi за новою
узагальненою дробовою похiдною Хаттафа

Ель Мамунi Х.1, Хаттаф К.1,2, Юсфi Н.1

1Лабораторiя аналiзу, моделювання та симулювання (LAMS),
Факультет наук Бен М’Сiк, Унiверситет Хасана II Касабланки,

п.с. 7955 Сiдi Осман, Касабланка, Марокко
2Наукова група з моделювання та викладання математики (ERMEM),

Регiональний центр освiти i пiдготовки професiй (CRMEF),
20340 Дерб Галеф, Касабланка, Марокко

Каталiтична дiя є однiєю з найважливiших характеристик ферментiв у хiмiчних ре-
акцiях. У цiй статтi пропонується та дослiджується математична модель хiмiчної
кiнетичної реакцiї з ефектом пам’ятi з використанням нової узагальненої дробової
похiдної Хаттафа. Iснування та єдинiсть розв’язкiв встановлено за допомогою теорiї
нерухомої точки, i, нарештi, щоб пiдтвердити теоретичнi результати, закiнчуємо чи-
сельним моделюванням на основi нової чисельної схеми, яка включає метод Ейлера.

Ключовi слова: ферментативна реакцiя; дробова похiдна Хаттафа; теорiя неру-
хомої точки; чисельне моделювання.
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