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The purpose of this paper is to introduce a new strategy to improve the convergence and
efficiency of the class of domain decomposition known as Schur complement techniques
related to interface variables for the simulation of mechanical, electrical and thermal prob-
lems in presence of cross points. More precisely, we are interested not only in domain de-
composition with two equal parts having the same physical properties but rather in more
general splitting components. It is known that in the first case, the optimal convergence
with good pre-conditioner is obtained in two iterations and the problem is still challeng-
ing in the second case. The primary goal then is to fill part of the gap in such problem
domain decomposition techniques and to contribute to solve extremely difficult industrial
problems of large scale by using parallel sparse direct solver of the multi-core environment
of the whole system and handling each part of the system independently of the change of
the mesh or the shifting of the mathematical method of resolution and subsequently, we
treat the interface as boundary conditions. The numerical experiments of our algorithm
are performed on few models arising from discretization of partial differential equations
using Finite Element Method (FEM).
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1. Introduction

Solving industrial problems using numerical methods usually leads to the assembly of large systems.
This is all the more important in the context of multi-physics problems. For example, the study of an
automotive engine implies the consideration of several state variables (hydraulic pressure, mechanical
constraints, critical operating temperatures, electric current, etc.). Knowing that these variables in-
teract with each other, the resulting systems are strongly coupled, of very large size and thus require
a significant computation time. In the classical case, the replacement of a part in the example of the
engine, leads us to recalculate all the subsystems because of the couplings. In the literature, we find sev-
eral alternative techniques that consist in subdividing the domain into a succession of so-called artificial
subdomains while defining the constitutive laws at the borders in order to ensure the continuity of the
state variables [1]. Barboteu et al. [2,3] have used this method in the modeling of the hinges of rolling
shutters. This problem is a real case of contact with friction, mono physical. The author subdivided
the domain into several so-called artificial subdomains. Instead of obtaining a large global system, the
problem has been transformed into several small systems that can be solved in a parallel way, while
reducing the computation time. It is worth to note the importance of the contact interface definition
and the laws of exchange in it. A contact interface can be considered as the union of boundaries con-
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stituting the natural limit of different subdomains. At this interface, there is generally an exchange of
certain physical quantities producing interactions of various kinds between boundaries. For example,
the classical mechanical contact [4, 5], states that there is no interpenetration of the material at the
interface and therefore, develops normal forces when the boundaries are brought into contact. The
principle of action-reaction is interpreted here by the continuity of displacements and tensile stresses
at the surface. There are also particular interface laws that are governed by phenomenological obser-
vations obtained from experimental tests. For example, the heat exchange law acting at the interface
of two solids is a function of the contact conductance, which itself may be a function of the contact
pressure [6, 7]. In this case, the equilibrium at the interface must respect the continuity of the flows
but not that of the temperature. Finally, an electrical problem in the presence of interfaces implies the
consideration of an electrical resistance governed by an interface law of the same nature as in thermal
exchange, leading to continuity of current densities but not of voltage. Moreover, combining it with
a pre-conditioner based on the FETI method [8], made this approach insensitive to discretization and
the number of subdomains. An approach based on the FETI method [9] was proposed by Avery et al.
His work allowed the solution of the frictionless contact problem with small displacements and contact
areas known a priori. In the same framework, Dostal et al. [10] proposed algorithms for solving large
deformation contact problems with friction in three dimensions. Some authors [2,3,11] have proposed
a Newton–Schur algorithm which at each iteration of Newton allows solving by subdomains a linear
problem condensed at the interfaces. The GMRES method [12] with generalized Neumann–Neumann
preconditioner is applied to solve the local condensed subsystems at the interfaces of the subdomains.
In such a context, the presence of many contact interfaces of various nature, the introduction of sev-
eral unknowns related to the different physical fields, as well as the potential non-symmetry of the
problem to be solved, clearly indicate the need to establish a generic approach for solving subdomains
with so-called natural interfaces that would be applicable to a solution on computers with distributed
memories.

To reduce the computation time, we propose an approach based on the notion of partial Schur
complement. This approach has been used by Xing et al. and is inspired by works based on natural
domain decomposition [13]. The authors treated the mechanical contact problem in a context of solving
by an explicit dynamic method by partitioning the global matrix system into subsystems (subdomains)
by highlighting the slave and master boundary nodes [13]. The linear system at each time step is solved
in parallel by static condensation (Schur complement), reducing it to unknowns located at the domain
boundaries. The approach proposed here allows addressing the generic solution of subdomain problems
applicable to coupled contact problems. In this paper, we will only consider a thermal contact problem
in two subdomains using finite element method.

2. Natural subdomain method

2.1. Classic definition of the interface

Fig. 1. Classic representation of contact boundaries.

In most of the literature [3, 13, 14], the contact
problem is treated in a classical way (note here
that the contact can be of any nature i.e. me-
chanical, thermal, thermoelectric, etc.). Con-
sider the simple case illustrated in Figure 1. Let
two solids A and B, of respective domains ΩA

and ΩB and having different mesh densities. At
the respective boundaries of these solids, noted
γA and γB , are two subsets of elements noted
respectively master and slave. The contact in-
terface is then defined by the pair of boundaries
noted γA − γB whose respective mesh densities
are dictated by those of the underlying solids.
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Therefore, the boundaries γA and γB have different mesh densities. When considering the interaction
between the subdomains, a coupling between the degrees of freedom associated with the boundaries
γA and γB , naturally arises.

2.2. New definition of the interface

It is possible to define in a different way the link between the boundaries in contact. Figure 2 illustrates
this approach. As defined earlier, each solid is meshed independently by adopting a master–slave
approach. The mesh density of the slave boundary γαs is dictated by the mesh density of the solid
Ωα where α denotes solid A or B. The mesh density of the master boundaries γαm is independent of
the solids. Then is defined, for each subdomain, the mesh of the solid as well as that of the contact
interface γαs − γαm. When the interaction between two subdomains is taken into account when solving
the global problem, it is important to define the boundaries through which, the subdomains will be
coupled. From this point of view, the coupling that appears through the master boundaries γAm and γBm
leads to a global matrix system in which there was, a priori, no interaction at these two boundaries.
More details will be given later on.

Fig. 2. New representation of contact boundaries.

This way of doing things has an important
advantage compared to the classical approach
presented in Figure 1. The subdomain ΩA can
be changed by another subdomain of different
shape and having a different mesh density (see
Figure 2), while keeping the contact interaction
γAm − γBm. Only the local definition of the con-
tact interface γαs − γαm of the concerned subdo-
main is changed without affecting the links to
the other subdomains. However, it is important
to keep in mind that only one interface law can
be assigned between the boundaries of contact-
ing subdomains. This observation will bring an
important nuance when defining the exchange
laws at the interface compared to the classical approach.

Taking again the problem defined in Figure 2, it is easy to demonstrate that the system of equations,
for a thermal, mechanical, etc. problem, can be written in the form:
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where the index i represents the internal nodes of the solid excluding the nodes located on the slave
boundary, and the indices s and m represent respectively the nodes belonging to the slave and master
boundaries. The matrix Kα corresponds to the subdomain Ωα, α = A,B, and Uα is the vector of
degrees of freedom of all elements of Ωα. We distinguish the degrees of freedom of the master boundary
Uα
m and slave boundary Uα

s from other internal degrees of freedom of the solid Uα
i . The system, as

defined in (1) is not solvable because no link exists between the master boundaries with degrees of
freedom UA

m and UB
m . It is therefore important to ensure continuity at the master interfaces. For

example, the continuity of displacements if it is a mechanical contact, temperatures or voltages for the
case of thermal and electrical contacts. In general, the continuity equation is written:

UA
m − UB

m = 0. (2)

To satisfy the equilibrium conditions at the master interfaces (balance of forces in a mechanical problem
or balance of thermal charges in a thermal transfer problem or of electrical charges in an electrical
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problem), we use an iterative method that will correct the degrees of freedom of the master interfaces
(displacements, temperature or voltage) allowing the respect of the equation:

FA
m + FB

m = 0. (3)

In mechanics, the terms Fα
m are related to the nominal constraint which must satisfy the action-reaction

principle but in an incremental sense, i.e. on the basis of a Newton iteration. In the case of thermal
or electrical transfer, Fα

m is related respectively to the flux and current density, but in an incremental
sense.

2.3. Resolution at the master–master interface

The thermal or electrical exchange at an interface consisting of two candidate contact boundaries on
the continuous medium is then given by:

FA
s = −FB

s = h
(

UA
s (x, y)− UB

s (x, y)
)

, (4)

where h is the thermal or electrical contact conductance (considered constant in the linear problem),
Uα is the temperature or voltage at the contacting solid boundary α, and (x, y) the coordinates related
to the contacting surface. The flux leaving the surface γA is the opposite of that entering the surface
γB . The variational form associated with equation (4), with the boundary γA being slave and γB

master, is written:

WC =

∫

γA

(

δUA − δUB
)

h
(

UA − UB
)

dγ, (5)

where δUα is the weight associated with the boundary γα. In a finite element context, we will have:
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∫
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[

KC
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]

= −h

∫
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(6)

Or Nα are the interpolation functions associated to the surface γα. Fα here represents the equivalent
nodal flow on the boundary α. The upper subscript C indicates that this term comes from the
contact. The previous equations are valid between two boundaries with a classical definition of master-
slave contact. Introducing now the definition presented in Figure 2, a new definition of the incoming
and outgoing flows between the master-slave pairs of each boundary associated with a solid becomes
necessary. This new definition leads to the introduction of an a priori unknown thermal or electrical
conductance. The latter is written:

FA = h̄
(

UA
s − UA

m

)

, FB = h̄
(

UB
s − UB

m

)

. (7)

At convergence, according to equation (2), we obtain:

UA
m = UB

m =
1

2

(

UA
s + UB

s

)

. (8)

The equality of the real fluxes as defined in equation (4) and those defined in (7), allows to write
with the help of (8):

FA = h̄
(

UA
s −

1

2

(

UA
s + UB

s

)

)

, (9)

which allows us to deduce that h̄ = 2h. With this new definition, we can write, with the help of (6),
the necessary relations for the new master-slave definition by subdomains:

WC,α =

∫

γα

(δUα
s − δUα

m) h̄ (Uα
s − Uα

m) dγ, (10)

{Fα
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, (11)

{Fα
m} =

([

KC,α
ms

]

{Uα
s }+

[

KC,α
mm

]
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)

, (12)
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where {Uα
s } and {Uα

m} are the respective degrees of freedom of the slave and master boundaries of the
solid α and

[
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ξξ

]

= h̄
[

Mα
ξξ

]

,
[

KC,α
ξζ

]

= −h̄
[

Mα
ξζ

]

,
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]
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∫

γα

{

Nα
ξ

} 〈

Nα
ξ

〉

dγ,
[

Mα
ξζ

]
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∫
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{
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ξ

} 〈

Nα
ζ

〉

dγ.
(13)

With ξ and ζ being able to take the values of m and s. Therefore, {Nα
e } are the interpolation functions

of the slave boundary of the solid γα. Note here that the restriction of the identical mesh of two master
boundaries implies, a fortiori that

{

NA
m

}

≡
{

NB
m

}

. The application of relation (3) finally allows us to
write the equilibrium at the master boundaries according to which:

{R} =
{

FA
m

}

+
{

FB
m

}

= {0} . (14)

In a subdomain resolution context, relation (14) will be satisfied by an iterative method. For this
purpose, it is assumed that the resolution on each subdomain has been obtained by admitting a fixed
value of {Uα

m} thus allowing the displacement of the slave boundary to be estimated using the system (1)
for a resolution on each subdomain:
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where the terms ii are related to the solid variational form term α, {Fα
i } contains the Neumann

boundary conditions and the volume stresses applied on the solid and
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Knowing the value of {Uα
s } for each subdomain, it is possible to compute the residual defined

in (14) to obtain a correction to the solution to the field {Uα
m} by:
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−1 {Rm}, α = A,B, (22)

where [Kα
C ]

−1 is a correction matrix to be defined. The idea behind this method is to find the correction
of the displacement of each boundary from the common residue {Rm} and to apply relation (2) through
a mixing law defined by relations (20) and (21). In the case where β = 1/2, we simply average the
corrections obtained from two “master” boundaries. The value of β can be defined as a function of
physical quantities (see the numerical applications section). Note, for now, that if two subdomains
have the same dimensions, the same mesh density and the same physical parameters (same thermal or
electrical conductivity), then the optimal value for this parameter is 1/2.

3. Definition of the correction matrix at the interface based on the subdomain flexibility

The correction matrix at the interface can be defined in various ways. The following lines present two
distinct techniques, either the direct method or the method based on the subdomain flexibility. It is
possible to define the correction matrix [Kα

C ]
−1 exactly by using the system of equations (1) adapted

to the master-slave approach presented in the previous section and such that:

[Kα
mm] {Uα

m}+ [Kα
ms] {U

α
s } = [Fα

m] , (23)

[Kα
C ]

−1 ≡ [Kα
mm]−1 =

1

h̄
[Mmm]−1 , (24)

or the matrix [Mmm] is as defined in equation (13). One can notice, in the denominator of equation (24),
a term in h̄ = 2h. If the value of the physical parameter h becomes large, this approximation of the
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interface correction matrix will make the iterative process very slow. Here we propose an alternative
to the definition of [Kα

C ] based on the following idea. By applying the residual {Rm} not on the
master-master interface but on the solid, we can obtain a good estimate of the correction of the nodal
variables carried by the master boundaries. Since a coincident node-to-node mesh necessarily implies
the same mesh density of the master and slave boundaries, the residual {Rm} at the nodes of the
master-master interface can be applied to the nodes of the slave interface of the solid. Therefore, it is
possible to take as a first approximation of [Kα

C ]:
[

Kα
C

]

=
[

K̄α
ss

]

=
[

KB,α
ss

]

−
([

KB,α
si

][

Kα
ii

]−1[
KB,α

is

])

. (25)

For which the contributions of the contact interface to the global matrix of the subdomain in
question are not assembled. The matrix

[

K̄α
ss

]

is therefore the result of a static condensation of the
global matrix of the subdomain commonly referred to as the Schur complement. Since the computation
of the matrix

[

K̄α
ss

]

is costly, it is possible to limit the dimension of
[

K̄α
ii

]

by taking only a certain
number of rows of elements under the slave boundary surface. However, the mesh density to be
discarded inevitably has the convergence of this method as will be illustrated in the next section.

4. Numerical applications

This section summarizes the numerical results of the Parallel Preconditioning Schur Complement
(PPSC) for the solid-solid thermal contact problem between two bars, denoted A and B (see Fig-
ure 3). Each bar α = A,B has conductivity Kα, cross-section Sα = πr2α and length Lα.

Fig. 3. One-dimensional thermal contact problem.

We consider a thermal contact conductance h =
Kmoy×Smoy

Lmoy
×C between the two bars with Kmoy =
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2 , Smoy = SA+SB

2 , Lmoy = LA+LB

2 and C is
the order of magnitude of thermal conductivity. As

shown in Figure 4, two subsystems can be written in the form:
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Fig. 4. Discrete representation at the contact interface.

We notice that the term at position (4, 4) of
the matrix
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coming from element 3 (see Figure 4) and that
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subdomain,
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Two subsystems can be rewritten as:
(

Kα
ii Kα

is

Kα
si Kα
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)(

Tα
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)

+

(

0
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sm
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Tα
m =

(

Fα
i
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)
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or in the following condensed form:
[

Kα
]

{Tα}+ {Kα
sm}Tα

m = {Fα} , α = A,B. (30)

We can establish the residue expression {Rm} at the interface of the subdomains using equation (18)
such that:
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Fα
m = −h̄ (Tα

e − Tα
m) . (31)

Now, the parameter β is equal to 0.5 if the subdomains were of the same dimension, mesh density
and defined with the same physical parameters. Recall that this parameter weights the update of the
correction of the nodal variables associated with the master boundaries in order to hopefully converge
faster to the solution

{

TA,i
m

}

=
{

TB,i
m

}

. However, if any of the subdomains involved are different in
nature, it is clear that the optimal value of β will no longer be 0.5. The objective of this section is
to propose a good estimate of this parameter. Intuitively, we can deduce that the parameter must be
established according to the relative stiffness of the bodies potentially in contact. This observation
allows us to establish the first expression linking the material property of the subdomains and a certain
amount of material such that:

β =

KA

hA

KA

hA
+ KB

hB

, (32)

where KA and KB are respectively the thermal conductivities of the subdomains A and B, and hA
and hB are the characteristic sizes of an element of the subdomains A and B.

Another approach to take into account this internal stiffness is to take the trace of the matrices of
subdomains A and B excluding the contact contributions such that:

β =

tr([KA])
nA

tr([KA])
nA

+ tr([KB])
nB

, (33)

where nA and nB are the numbers of points (called nodes in FEM) of discretization in the subdomains
A and B.

Fig. 5. Evolution of residual as a function of iterations
in the case of 5 nodes per subdomain.

We recall that the trace operator allows us
to take into account the effect of the dominant
terms in the tangent matrix and, by the same
token, of the nature of the materials, of the
quantity of material considered as well as of
all the non-linear exchange phenomena at the
boundaries.

For numerical applications, consider two
steel bars A and B of thermal conductivity
KA = KB = 36W/(m·K). The lengths of the
bars are LA = LB = 1m and the radii of its
circular sections are rA = rB = 5 cm. The temperatures of the edges of two bars are TA

1 = T (x = 0) =
100◦C and TB

1 = T (x = 1m) = 0◦C. We consider a contact conductance h = 106 × KA×SA

LA
. Note that

when the thermal contact conductance h tends to infinity, two bars can be considered as a homoge-
neous bar, so we can compare the results of the PPSC method with those of the analytical solution
Texact(x) =

T (L)−T (0)
L

x+T (0). For more precision, we calculate the relative error
(‖TPPSC−Texact‖

‖Texact‖
×100

(%)
)

at the contact position.

Table 1. Influence of discretization in two subdomains considering h =
106 × KA×SA

Lmoy
(Smoy = SA and Kmoy = KA).

LA LB nA nB Number of iterations Relative error (%)
0.5 0.5 3 3 3 1.6207× 10−6

0.5 0.5 5 5 3 1.6207× 10−6

0.5 0.5 7 7 3 1.6207× 10−6

0.5 0.5 11 11 3 1.6207× 10−6

0.5 0.5 15 15 3 1.6207× 10−6

0.5 0.5 3 5 3 1.6207× 10−6

0.25 0.75 3 3 4 4.2× 10−3

0.25 0.75 3 5 21 4.2× 10−3

Figure 6 shows the outstand-
ing performance of using Schur’s
complement in preconditioning.
The algorithm converged after 3
loops by reaching a residual on
the order of 10−6. The number
of iterations can vary depending
on the mesh parameters and ge-
ometry.

The analysis of Table 1 shows
that the number of iteration re-
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mains insensitive when the two bars have the same length while it increases significantly when the two
lengths are different.

Figure 6 shows good results for the subdomain method when comparing with the analytical solution.
Indeed, the case (a) corresponds to the homogeneous case where two bars have the same mesh and the
same geometry. The resulting master temperature is naturally 50.5◦C, the same as indicated by the
analytical solution. The linearity of the solution and the respect of the boundary conditions confirm
the validity of the solution as well as the efficiency of the Schur complement conditioning and its
coupling to the FEM. Case (c) is an application of a special case where the length of the bar B is 4
times that of A as well as a different mesh. Despite the large number of iterations required in this case,
the result is identical to the analytical one and gives the high interface temperature (75◦C), given the
short length of the hot bar (A).
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Fig. 6. Comparison of the results of the PPSC method and those analytical ones.

Now we plot the effect of the contact thermal conductance in Figure 7. We observe that the
decrease in the order of magnitude of the conductance at the interfaces increases the difference of two
temperatures at the interfaces. The conductance at the interface intervenes in the equation of the
exchange law between two bodies and can be assimilated to a transmission coefficient of the physical
quantity which is, in our case, the temperature. The more this constant is important, the more there
is exchange of heat flow and this ensures a good diffusion and continuity of temperature. Thus, in the
case where h is of the order of 100, the discontinuity reached 60◦C of deviation and from ho106, we
observe that the temperature is continuous and the bar can be assimilated to the homogeneous case
and the values are the same as in the analytical case.

Fig. 7. Effect of contact conductance.

In order to understand the effect of the con-
ductivity coefficient, we considered the same
mesh and geometry (the a case) for both steel
and aluminum bars. Figure 8 shows a domi-
nance of the bar with the higher conductivity
coefficient, i.e. bar B. Thus, the equilibrium
temperature at the interface is close to 20◦C
and remains dominated by the cold bar. The
same is true for the effect of the length of the

bars, those with the largest dimensions have a greater dominance on the contact temperature.
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Fig. 8. Results in the case nA = 3, nB = 5 and h = 104 ×
Kmoy×Smoy

Lmoy
.

Table 2. Results from two different materials for h = 104 ×
Kmoy×Smoy

Lmoy
.

LA LB nA nB Number of iterations Residu
0.5 0.5 3 3 6 4.8686× 10−6

0.5 0.5 3 5 15 2.7134× 10−5

0.5 0.5 3000 5000 10 9.2288× 10−5

0.5 0.5 5000 5000 6 4.8686× 10−6

0.25 0.75 3 3 6 1.7816× 10−6

0.25 0.75 3 5 9 1.0997× 10−5

0.25 0.75 3000 5000 7 4.4473× 10−5

0.25 0.75 5000 5000 6 1.7815× 10−6

Table 2 summarizes the sim-
ulation results of an aluminum
and steel bar by coupling the
Schur complement precondition-
ing and the finite element
method. The results show good
convergence after a few itera-
tions not exceeding 10 iterations
and reaches a residual on the or-
der of 10−6. The number of it-
erations remains highly dependent on the mesh. This method is dedicated to meshes of large size, that
is why we present in Table 2 the results of the simulations with a large number of meshes, which show
some iterations not exceeding 10 iterations.

5. Conclusion

In this paper, a novel method for solving contact problems by natural subdomains is presented. In order
to achieve subdomain independence, the interface discretization is based on a modified master-slave
approach. In this approach, the set of contact candidate boundaries are identified as slaves and the
interface generated via two virtual master boundaries, each of which is coupled with its slave boundary.
In this context, the global resolution of the linear system, or linearized at each Newton iteration, is
obtained after convergence of all interfaces. To do this, two methods were proposed for the calculation
of the correction matrix at the interface. The first method, called direct, depends exclusively on the
physical properties of the interface. Depending on the law governing the interface, the convergence
can become very slow. The second method is based on the flexibility of the candidate subdomains
at the contact. Thus, it allows to consider the nature of the bodies in contact. However, taking
into account the whole body requires a significant computation time. The use of the trace operator
was particularly interesting to converge with a minimum computational cost for any choice of mesh.
Numerical examples in 1D have demonstrated the efficiency of this method, which is very promising
for the resolution of large-scale problems with industrial impact. Work is currently in progress to apply
the proposed method to the resolution of multiphysics problems by subdomains.
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[8] Farhat C., Roux F.-X. A method of finite element tearing and interconnecting its parallel solution algo-
rithm. International Journal for Numerical Methods in Engineering. 32 (6), 1205–1227 (1991).

[9] Avery P., Rebel G., Lesoinne M., Farhat C. A numerically scalabel dual-primalsubstructuring method for
the solution of contact problems – part I: the frictionless case. Computer Methods in Applied Mechanics
and Engineering. 193 (23–26), 2403–2426 (2004).
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Метою цiєї роботи є впровадження нової стратегiї для покращення збiжностi та
ефективностi класу декомпозицiї доменiв, вiдомого як методи доповнення Шура, якi
пов’язанi з iнтерфейсними змiнними для моделювання механiчних, електричних i
теплових задач за наявностi точок перетину. Точнiше, нас цiкавить не лише розкла-
дання домену на двi однаковi частини з однаковими фiзичними властивостями, але i
бiльш загальнi компоненти розщеплення. Вiдомо, що в першому випадку оптимальна
збiжнiсть з хорошим попереднiм зумовленням досягається за двi iтерацiї, а в другому
випадку задача залишається складною. Тодi основна мета полягає в тому, щоб запов-
нити частину прогалини серед таких методiв декомпозицiї областi задачi та сприяти
вирiшенню надзвичайно складних промислових задач великого масштабу за допо-
могою паралельного розрiдженого прямого розв’язувача багатоядерного середовища
всiєї системи та обробки кожної частини системи незалежно вiд змiни сiтки або зсу-
ву математичного методу розв’язування, i пiсля того розглядаючи межу подiлу як
граничнi умови. Чисельнi експерименти нашого алгоритму виконуються на декiль-
кох моделях, що виникають iз дискретизацiї диференцiальних рiвнянь у частинних
похiдних за допомогою методу скiнченних елементiв (FEM).

Ключовi слова: метод декомпозицiї областi; доповнення Шура; метод скiнченних
елементiв; паралельнi обчислення.
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