
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 1, 2024

UNCREWED VEHICLE PATHFINDING APPROACH BASED
ON ARTIFICIAL BEE COLONY METHOD

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy,
Mykhailo Pavlyk, Oleh Yarosh, Oleksandr Futey

Ivan Franko National University of Lviv, 50, Drahomanova Str, Lviv, 79005, Ukraine.
Author’s e-mail: oleh.sinkevych@lnu.edu.ua, yaroslav.boyko@lnu.edu.ua,

bohdan.sokolovskyy@lnu.edu.ua, mykhailo.pavlyk@lnu.edu.ua, oleh.yarosh@lnu.edu.ua, olek-
sandr.futey@lnu.edu.ua

https://doi.org/10.23939/acps2024.01.001

Submitted on 30.03.2024
© Sinkevych O., Boyko Ya., Sokolovskyy B., Pavlyk M., Yarosh O., Futey O., 2024

Abstract: The presented study is dedicated to the dy-
namic pathfinding problem for UV. Since the automation
of UV movement is an important area in many applied
domains like robotics, the development of drones, autopi-
lots, and self-learnable platforms, we propose and study a
promising approach based on the algorithm of swarm AI.
Given the 2D environment with multiple obstacles of rec-
tangular shape, the task is to dynamically calculate a
suboptimal path from the starting point to the target. The
agent has been represented as UV in 2D space and should
find the next optimal movement point from the current
position only within a small neighborhood area. This area
has been defined as a square region around the current
agent’s position. The size of the region has been determined
by the attainability of the agent's scanning sensors. If the
obstacle is detected by the agent, the latter should be taken
into consideration while calculating the next trajectory
point. To perform these calculations, the ABC metaheuris-
tic, one of the best representatives of swarm AI, has been
used. The validation of the proposed approach has been
performed on several 2D maps with different complexity
and number of obstacles. Also, to obtain the proper con-
figuration, an inverse problem of identification of guided
function weights has been formulated and solved. The
outlined results show the perspective of the proposed ap-
proach and can complement the existing solutions to the
pathfinding problem.

Index Terms: Artificial bee colony, Metaheuristics, Nu-
merical optimization, Swarm intelligence, UV pathfinding.

I. INTRODUCTION
In the rapidly evolving landscape of modern tech-

nology, uncrewed vehicles (UVs) have emerged as piv-
otal instruments of innovation, pushing the boundaries of
what is possible in fields ranging from environmental
monitoring to disaster response.

The thing is getting even more challenging when it
comes to dealing with a bunch of UVs. In order to fulfill
the assigned task, such a group of vehicles must not only
carry out mutual communication but also jointly coordi-
nate their strategy [1]. This imposes additional difficul-
ties on the design of even simple algorithms compared to
a single agent.

The nature-inspired swarm AI algorithms cover
many ideas, starting with artificial ant colonies and end-
ing with newly found whale and gray wolf optimiza-
tions. Considering some of the shortcomings of the new
approaches, classical and well-tested approaches are still
of interest as a basis for designing swarm systems. We
can highlight particle swarm optimization (PSO) [2],
artificial bee colony (ABC) [3], artificial ant colony
(AAC) [4], and the firefly algorithm [5] as the out-
standing representatives of swarm techniques. Because
based on published papers, it is still impossible to select
the best one, here we would like to give a chance to the
ABC method as a simple and simultaneously effective
swarm AI algorithm.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

First, let us consider just one of the relevant prob-
lems of developing UV’s software, namely seeking an
optimal trajectory. There are a number of scientific pa-
pers related to the mentioned problem. If one distin-
guishes those that concern ABC-based methods, there
are many available at the given period.

In [6], authors proposed a local trajectory planning
scheme which has been developed with ABC optimiza-
tion algorithm to optimally obtain the next positions of
all the robots in the world map from their current posi-
tions, so that the paths to be developed locally for n-
robots are sufficiently small with minimum spacing with
the obstacles, if any, in the world map. In [7], the hybrid
approach of composing the ABC and evolutionary com-
puting is considered. Local search based on ABC pre-
cedes global evolutionary search, which still incorpo-
rates single-objective optimization. Here, the authors
insist on the inefficiency of the ABC in order to solve
the full path optimization problem.

The paper [8] offers the ABC approach to the coor-
dination of motions of multiple robots in parallel. Also,
there is an interesting methodology for multiple agents’
coordination. Dealing with the interaction of multiple
robots requires collision-safe movement, which has been

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Mykhailo Pavlyk, Oleh Yarosh, Oleksandr Futey 2

studied in [9]. Here, researchers discuss the improved
and efficient ABC algorithm for online robot path plan-
ning strategy.

In [10], authors modified a generic ABC algorithm
to improve the exploitation phase using the Arrhenius
strategy. The reported approach is declared to be better
than standard implementation, but this modification does
not include a sophisticated approach to optimization for
the path searching ability. More recent publications
mainly focus on basic ABC improvements in contrast to
the complications of the objective function formulation.
For instance, in [11], the authors propose the modifica-
tion of ABC combined with conventional evolutionary
programming (for refinement purposes) in order to im-
prove the optimum path toward the goal position while
taking into account the distance of the food point from
the nearest obstacles. Paper [12] moves further toward
the complex hybridization of ABC, EP (evolutionary
programming), and the probabilistic roadmap method.
Obtained outcomes conclude the superiority of the pro-
posed path planning method against traditional ABC and
ABC-EP algorithms applied to the sophisticated single
objective function. In addition, work [13] profoundly
explains the combination of modified ABC and EP.

The goal of this study is to develop the pathfinding
algorithm for UV in a dense environment with multiple
obstacles. The UV is represented as the dimensionless
agent on the 2D map. Using ABC method, the agent
should build a path from starting to the target point in
dynamic, step by step manner. In details, ABC algorithm
is used to optimize special weighted guided function in
each movement region within reach of the agent's sen-
sors.

Firstly, the combined single-objective dynamic
pathfinding problem in a 2D environment is considered.
Secondly, the solutions are investigated in terms of the
influence of objective weights. Thirdly, the inverse prob-
lem of finding the best objective weights is formulated
and solved. All numerical experiments were imple-
mented in Python 3.

III. SCOPE OF WORK AND OBJECTIVES
Let us consider two static 2D environments (Fig. 1,

2), where a single UV or agent should reach a predeter-
mined goal starting from some initial position. Here are
the movement maps, where rectangular sectors are for-
bidden regions, and two circles are starting and target
points. The agent can travel on the map along the calcu-
lated optimal trajectory in such a way as to avoid obsta-
cles.

Here, obstacles locations are static but not known
in advance to the agent, which in some sense makes the
problem dynamic. Being at some point on the map
(),i ix y , the agent can move to a new point (),i ix y′ ′
along a given trajectory, and the length of the steps be-
tween the previous and next points may be different.

The agent can “see” or perform only in a bounded
square region defined as a square with the center of the

agent's current position. The size of that region can vary
during the computations and is critical for the agent's
pathfinding capabilities; the larger the value, the further
the agent can operate. If there are no obstacles in the
current region, agents can move anywhere within the
area. If there are obstacles in the region or the agent’s
area intersects with obstacles, the agent must pick only
the feasible position (Fig. 3).

Fig. 1. Movement environment, map # 1

Fig. 2. Movement environment, map # 2

Fig. 3. Scheme of agent’s region

The calculation of the optimal trajectory of the
agent’s movement is based on three criteria, which can
be represented in the form of the following functions:

() () ()1 , G G
i i i if x y x x y y= − + − , (1)

Uncrewed Vehicle Pathfinding Approach Based on Artificial Bee Colony Method 3

() ()2
1

1, , min_dist , ,
n

i i j i i j
j j

f x y d x y obst
d=

 = = ∑ , (2)

() ()()1 1 2
3 1 2

1 1 2

| , arccos i i i i
i i i

i i i i

f − − −
− −

− − −

 − −
= − −

x x x x
x x x

x x x x
, (3)

where 1f stands for the distance function from the cur-

rent position to the goal point, (),G Gx y is the goal’s

coordinates; 2f stands for the sum of minimum dis-
tances to obstacles in a current region and is responsible
for “pushback” action, i.e., the agent is recommended to
move some distance away from the obstacle for safe
movement; 3f defines the trajectory smoothness by
preserving the smooth of the angle between subsequent
segments of movement, ix is the current position, 1i−x
and 2i −x are two previous positions.

To determine the minimum distance to the obstacle,
we use the ray concept, i.e., the agent emits four perpen-
dicular scanning rays within the region, after which the
points of intersection of the rays with the rectangular
obstacle and the corresponding length of the resulting
segment are calculated.

The complete pathfinding problem is formulated as
minimizing guided function ()iΦ x which consists of
weighted sum of 1f , 2f and 3f , and these functions
provide flexibility of interdependence between functions
and tuning capabilities:

() () () ()1 1 2 2 3 3 ,mini i i if f fω ω ω= + + → X ωΦ x x x x , (4)

where 1 2 3, ,ω ω ω ∈ω are weights and i ∈x X .
Using eq. (4), the definition of pathfinding optimi-

zation is outlined as follows: given initial agent’s posi-
tion ()0 0,x y , region size 0R , target coordinates

(),G Gx y and coordinates of obstacles (),ob ob
i ix y inside

the current region, find a) the best (sub-optimal) move-
ment position ()1 1,x y based on the single-objective
optimization problem and b) continue this step until the
trajectory to the target (),G Gx y :

() () ()0 0 1 1, , , , , ,G G
n nx y x y x x y y= = =T …

will be built.

IV. PATHFINDING METHODOLOGY
Using the discussed assumptions and the provided

weighted function as our foundation, it is possible to
develop a systematic approach to address the pathfinding
problem.

After the map being generated, the agent A , initial-
ized in the position ()0 0,x y , operates inside the region

0R by producing N candidate positions (),i ix y′ ′ ,
1,i N= . This step is performed as a standard solution

initialization approach of cABC [16] algorithm. Then
bounded by region 0R , constraint cABC (which will be
cover in the next section) optimization cycle runs prede-
fined number of iterations I .

Let us describe the proposed routine. By starting
with some initial position ()0 0,x y , the agent A gener-

ates N possible positions (),i ix y′ ′ using the standard
initialization cABC phase. The generation region is
bounded by square 0R defined by the attainability of
agent sensors, where agent’s position is the center point
of the square. After the executing some number of itera-
tions I , i.e., performing employed, onlooker and scout
bees phases to evolve the positions (),i ix y′ ′ according to
guided function (4) we obtain one best agent’s position
()1 1,x y as the best one among all (),i ix y′ ′ . If there are
obstacles inside the region 1R the agent should be aware
of them and can not move to the position which collides
with the obstacle. After moving in ()1 1,x y , the agent
again generates N candidate positions and the routine
continues until the predefined number of outer iterations.
In this step cABC is applied from scratch, assuming the
new candidate solutions exist inside the new square
region 1R . If the agent finds the target position, then the
routine stops. Now, let us briefly outline cABC steps.

In this paper, we use classical constrained ABC al-
gorithm proposed in [14]. According to [14], to optimize
(4) we should take in account possible constraints (ob-
stacles) which are represented as rectangular objects.
That is, the constrained problem is formulated as fol-
lows:

() ,min ,i → X ωΦ x (5)
, ,i j j kObstacle Obstacle in R∉ ∀x (6)

where []0,...,k M∈ , M is the maximum number of
total iterations, X is the solution space and ω is the
known vector of weights, which will be discussed fur-
ther.

To solve this problem, the initial phase and three
cABC steps should be applied.

Firstly, we generate N candidate solution inside
the kR by formulae

()(), rand 0,1lb ub lb
i j j j jx x x x= + − , (7)

where 1,i N= , lb
jx and ub

jx are the lower and upper

bounds of each component determined via kR ,

()rand 0,1 gives the random value in range [0, 1] and
1,2j = (because we consider 2D space). Each of solu-

tion has a special variable itrial , which indicates how
many times this solution has not been improved.

During the employed phase each of candidate solu-
tions is evolved by the following step

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Mykhailo Pavlyk, Oleh Yarosh, Oleksandr Futey 4

(), , , ,i j i j i j k jv x x xφ= + − . (8)

Here φ is the random value which is chosen from
range [-1, 1], ,k jx is another neighboring position. To
select the better position, a special fitness function
should be calculated. This function is given as follows:

()
() ()

()() ()
1 : 0,

1 1 : 0
i i

i
i i

fit
 + ≥
 =
 + <

Φ Φ

Φ Φ

v v
v

v v
 . (9)

If value of this function for iv is larger than that for

ix , and both solutions are feasible according to obsta-
cles, then i i←x v and 0itrial ← . If position iv is in-
feasible, but ix is feasible, then ix remains the same
and itrial should be incremented. If both solutions are
infeasible, than we choose that solution which violates
less constraints/obstacles (if it is not iv , then

1itrial + =).
During the onlooker phase, firstly the probability

score for each solution is calculated as

()

()
()

()
()

0.5
0.5 ,

0.5 1 , ,

i
i

j
j

i

i

j
j

fit
if is feasible

fit

p
violation

else
violation

+

=

−

∑

∑

x
x

x

x
x

x

 (10)

where ()iviolation x indicates how many obsta-
cles/constraints ix does not satisfy. Once the probabili-
ties have been calculated, then each of N solutions can
be improved based on the condition () ()0,1 irand p< x .
The improvement loop which incorporates employed
phase process the solution by solution until the im-
provement counter equals N . This phase helps to
strengthen neighbors search.

The final step is a scout phase. Each variable itrial
is checked if it equals some predefined limit. If so, the
corresponding solution must be reinitialized using (7).
Generally, the limit is set to 2* N or 2* / /2N .

V. DIRECT PATHFINDING PROBLEM
To study the proposed approach, we conducted

several numerical experiments based on two movement
environment (Fig. 1, 2) and guided function ()iΦ x (4).
Firstly, we have investigated the impact of two weighted
functions 1f and 2f on pathfinding capabilities. For
these experiments the number of cABC runs during each
iteration equals to 8. Since cABC is stochastic in nature
and may generate different solutions for each run, we
performed 20 experiments, 200M = . The results are
outlined in Tables 1 for the first map (Fig. 1).

Table 1

Pathfinding results for 1f and 2f (map # 1)

1ω 2ω target avgPath stdPath avgT stdT

0.7 0.3 5 113 31 1.9 0.98
0.9 0.1 17 68 0.8 0.4 0.06
1.0 0.0 16 66 1.9 0.35 0.05

Here target stands for the number of times the

agent reaches the goal point, avgP is the average path
lengths, stdP is the standard deviation of path lengths,
avgT is the average execution time and stdT is the stan-
dard deviation of path execution time.

What can be learned from these results is that for
the map # 1 the increase of the first weight 1ω improves
pathfinding capabilities while the smaller values do not
help to reach the target. Also, decreasing weight 2ω
down to zero, i.e., elimination of the impact of
“pushback” provides better search due the large number
of obstacles. For the second map, such a weight configu-
ration does not produce any good results, i.e., the agent
did not reach the target during all experimental runs.

Table 2

Pathfinding results for 1f and 3f (map # 1)

1ω 3ω target avgP stdP avgT stdT

0.5 0.05 6 141 32 0.92 0.3
0.6 0.05 5 201 30 1.5 0.3
0.7 0.03 17 118 44 0.96 0.6
0.7 0.1 5 153 53 1.0 0.53
0.8 0.05 12 155 57 1.1 0.6
0.9 0.1 3 180 58 1.2 0.6
0.9 0.05 12 155 51 1.23 0.7

Table 3

Pathfinding results for 1f and 3f (map # 2)

1ω 3ω target avgP stdP avgT stdT

0.6 0.01 1 94.6 0.0 0.27 0.0
0.7 0.03 14 166 53 0.5 0.2
0.7 0.1 10 178 61 0.36 0.2
0.8 0.05 13 179 46 0.4 0.1
0.9 0.1 8 188 83 0.4 0.2
0.9 0.05 10 154 35 0.35 0.1
1.0 0.05 14 173 70 0.4 0.2

Results for incorporating weighted 1f and 3f are

shown in Tables 2, 3 for each map, respectively.
A combination of 1f and 3f functions for the first

map produces, in general, better results than 1f and 2f .
Such combination not only leverages impact of the first
function, but also adds influence regarding the sharpness
of the angle of rotation of the agent when generating the
next position. The best result is obtained for 1 0.7ω = ,

3 0.03ω = applied to the map # 1 and is visualized in
Fig. 4.

Uncrewed Vehicle Pathfinding Approach Based on Artificial Bee Colony Method 5

Fig. 4. Path trajectory for 1 0.7ω = , 3 0.03ω = , map # 1

The main point here is that weights ω play a cru-
cial role in guided function (4) and are of considerable
interest related to tuning the algorithm.

Fig. 5. Path trajectory for 1 0.7ω = , 3 0.03ω = , map # 2

The last conducted experiment relates to the in-
volvement of all three weighted functions 1f , 2f and 3f
(Tables 4, 5). Most of the weights chosen for map # 1
turn into adequate results, but the best one obtained for
weights 1 1.0ω = , 2 0.2ω = and 3 0.03ω = due to lowest
average path value.

The second map # 2 is more complicated, because
to reach the target agent should worsen guided function
value for 1f which stands for a target attraction. There-
fore, the value target in average lower than target calcu-
lated for the map # 1. The best weight obtained for map
2 is 1 0.8ω = , 2 0.1ω = , 3 0.03ω = and results in tar-
get=16. Visualized tracks are presented in Fig. 6, 7 for
each map, respectively.

The interesting behavior of the agent is shown in
Fig. 7. The proposed approach allows reaching the target
even in case when the agent traps in corner/local min-
ima. To get out of the trap, the agent should generally

worsen target function 1f . This behavior becomes possi-
ble because the other two functions ‘balance’ the first
one. Thus, the pressure of the first function on the func-
tion (4) becomes smaller.

Table 4

Pathfinding results for 1f , 2f and 3f (map # 1)

1ω 2ω 3ω target avgP stdP avgT stdT
0.8 0.1 0.05 16 146 39 1.1 0.5
0.8 0.2 0.1 9 186 50 1.4 0.5
0.8 0.3 0.2 7 164 30 1.2 0.3
0.9 0.2 0.05 14 171 41 1.6 0.5
0.9 0.1 0.1 6 133 25 0.95 0.3
0.9 0.3 0.03 17 105 30 0.9 0.4
1.0 0.1 0.1 7 168 48 1.2 0.5
1.0 0.2 0.03 17 90 30 0.7 0.4
1.2 0.1 0.05 17 132 36 1.1 0.5

Table 5

Pathfinding results for 1f , 2f and 3f (map # 2)

1ω 2ω 3ω target avgP stdP avgT stdT
0.8 0.1 0.05 11 141 41 0.8 0.4
0.8 0.2 0.05 5 195 50 1.4 0.4
0.8 0.3 0.05 10 203 53 1.43 0.4
0.9 0.2 0.05 14 165 58 1.2 0.5
0.9 0.1 0.03 12 153 55 1.3 0.6
0.8 0.1 0.03 16 183 54 1.5 0.6
0.7 0.1 0.03 14 166 60 1.3 0.6
1.0 0.1 0.05 14 187 55 1.4 0.5
1.2 0.1 0.05 13 146 34 1.1 0.3

Fig. 6. Path trajectory for 1 1.0ω = , 2 0.2ω =
and 3 0.03ω =

Another interesting direction is to study the impact
of local cABC iterations inside each independent region

kR . Since this is not clear in advance how many itera-
tions must be executed to get the best result, we have
conducted several numerical experiments presented in
Tables 6, 7.

Judging from Table 6 (map # 1) it is seen that the
best target value was obtained when 2 iteration of cABC

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Mykhailo Pavlyk, Oleh Yarosh, Oleksandr Futey 6

were executed inside each independent kR due to the
shorter path. What is also interesting is that even if a
simple greedy search on randomly generated solutions is
used without any run of cABC, it is still possible to reach
the target.

Fig. 7. Path trajectory for 1 0.8ω = , 2 0.1ω =
 and 3 0.03ω =

Table 6

Local number of cABC iterations (map # 1)
Inner iter. avgP stdP target

0 34 137 30
1 32 120 28
2 32 126 30
5 32 125 26
8 24 132 20

10 24 116 12

For map # 2 things are getting more complicated,

because this map is more advanced. The best results are
obtained for five cABC iterations which produced the
smallest average path length.

Table 7

Local number of cABC iterations (map # 2)
Inner iter. avgP stdP target

0 205 72 13
1 200 60 15
2 202 50 14
3 146 60 17
5 137 36 19
8 142 37 14

The reason why greedy search can sometimes pro-
duce decent results is the fact that all regions kR are
independent and optimal trajectory point for kR cannot
be any good for the next 1kR + .This consequence leads us
to the construction of the path with memory, when the
agent will remember the regions where he has already
been. And the generation of a new position will take
place in an area consisting of several regions. Neverthe-
less, for now the proposed approach is still quite effec-
tive in a partially unknown environment with obstacles.

VI. INVERSE PATHFINDING PROBLEM
The last question that arises in this research is how

to determine the proper set of weights for the guided
function (4).

In this paper, we consider this issue as the formula-
tion of an inverse pathfinding problem. Let us study the
possibility of calculating the weights based on the solu-
tion of the inverse problem (11):

* arg min
1

avgP
target

=
+ωω (11),

where avgP is the average path lengths obtained
during K experiments, target indicates how many times
of K the agent has reached the target, *ω is the optimal
weight vector. The inverse problem (11) can be solved
by running the direct pathfinding routine (5), (6) K
times and gathering the respective avgP and target val-
ues. The essence of (11) function is the minimization of
average path length in accordance with the best target
value. The number of cABC iterations was set equal to 3
in order to reduce computational efforts and 30K = .

To solve this problem for each map, we used a
greedy brute-force algorithm applied to the predefined
grid of possible weights.

For map # 1 we got some sub-optimal results
[]* 1.05,0.2,0.03=ω , target=30, avgP=108 and

stdP=28. The path trajectory for []* 1.05,0.2,0.03=ω is
shown in Fig. 8.

Fig. 8. Path trajectory for 1 1.05ω = , 2 0.2ω =

and 3 0.03ω = , map # 1

For map # 2 we obtained another sub-optimal pa-
rameters []* 0.73,0.09,0.03=ω , target=22, avgP=147
and stdP=53. The path trajectory of for

[]* 0.73,0.09,0.03=ω is presented in Fig. 9.
It is evident that more sophisticated map # 2 leaves

its mark on the optimization results. Hence, in general, to
get the stable values for *ω during solving the inverse
problem requires more experiments than 30K = , which

Uncrewed Vehicle Pathfinding Approach Based on Artificial Bee Colony Method 7

in turn leads to more exhaustive computations. Neverthe-
less, this is a good starting point for future numerical
experiments.

Fig. 9. Path trajectory for 1 0.73ω = , 2 0.09ω =
and 3 0.03ω = , map # 2

VII. CONCLUSION
In this paper, we propose and study the approach to

pathfinding problems in the dense 2D environment
which is a partially unknown in advance.

To validate the proposed scheme, we have gener-
ated two maps of different complexity. During the nu-
merical experiments, we have considered different
weight and function combinations as well as the influ-
ence of cABC iterations inside each bounded region. The
results led us to several essential conclusions: 1) weights
that are used to balance the guided function are crucial
and radically affect search capabilities, which necessi-
tates a more thorough study of this issue; 2) since the
search is bounded by independent regions at each itera-
tion, the agent does not incorporate memory of previ-
ously visited areas; hence, in future work, this improve-
ment will be widely studied; 3) the problem of proper
weights that can be applied to the arbitrary maps is rele-
vant in the course of the conducted research; to set up
the starting point for this issue, we proposed a simple
approach based on solving the inverse problem, which
requires the decent number of runs of the direct problem;
4) the latter problem can be solved using certain rules
and adaptive weights to avoid solving a long-running
inverse problem; 5) machine learning techniques may be
used to transform this problem into a reinforcement
learning stack.

References

[1] Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H.,
& Bettstetter, C. (2018). Drone networks: Communica-
tions, coordination, and sensing. Ad Hoc Networks, 68, 1-
15. DOI: https://doi.org/10.1016/j.adhoc.2017.09.001.

[2] Gad, A. G. (2022). Particle swarm optimization algorithm
and its applications: a systematic review. Archives of

computational methods in engineering, 29(5), 2531-
2561. DOI: https://doi.org/10.1007/s11831-021-09694-4.

[3] Abu-Mouti, F. S., & El-Hawary, M. E. (2012, March).
Overview of Artificial Bee Colony (ABC) algorithm and
its applications. In 2012 IEEE International Systems
Conference SysCon 2012 (pp. 1-6). IEEE.
 DOI: https://doi.org/10.1109/syscon.2012.6189539.

[4] Dorigo, M., & Blum, C. (2005). Ant colony optimization
theory: A survey. Theoretical computer science, 344(2-
3), 243-278.
DOI: https://doi.org/10.1016/j.tcs.2005.05.020.

[5] Fister, I., Fister Jr, I., Yang, X. S., & Brest, J. (2013). A
comprehensive review of firefly algorithms. Swarm and
evolutionary computation, 13, 34-46.
DOI: https://doi.org/10.1016/j.swevo.2013.06.001.

[6] Bhattacharjee, P., Rakshit, P., Goswami, I., Konar, A., &
Nagar, A. K. (2011, October). Multi-robot path-planning
using artificial bee colony optimization algorithm.
In 2011 Third World Congress on Nature and Biologi-
cally Inspired Computing (pp. 219-224). IEEE.
DOI: https://doi.org/10.1109/nabic.2011.6089601.

[7] Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernan-
dez-Belmonte, U. H. (2015). Mobile robot path planning
using artificial bee colony and evolutionary program-
ming. Applied Soft Computing, 30, 319-328.
DOI: https://doi.org/10.1016/j.asoc.2015.01.067.

[8] Contreras-Cruz, M. A., Lopez-Perez, J. J., & Ayala-
Ramirez, V. (2017, June). Distributed path planning for
multi-robot teams based on artificial bee colony. In 2017
IEEE congress on evolutionary computation (CEC) (pp.
541-548). IEEE.
DOI: https://doi.org/10.1109/cec.2017.7969358.

[9] Liang, J. H., & Lee, C. H. (2015). Efficient collision-free
path-planning of multiple mobile robots system using ef-
ficient artificial bee colony algorithm. Advances in Engi-
neering Software, 79, 47-56.
DOI: https://doi.org/10.1016/j.advengsoft.2014.09.006.

[10] Nayyar, A., Nguyen, N. G., Kumari, R., & Kumar, S.
(2020). Robot path planning using modified artificial bee
colony algorithm. In Frontiers in Intelligent Computing:
Theory and Applications: Proceedings of the 7th Interna-
tional Conference on FICTA (2018), Volume 2 (pp. 25-
36). Springer Singapore.
DOI: https://doi.org/10.1007/978-981-13-9920-6_3.

[11] Kumar, S., & Sikander, A. (2022). Optimum mobile
robot path planning using improved artificial bee colony
algorithm and evolutionary programming. Arabian Jour-
nal for Science and Engineering, 47(3), 3519-3539.
DOI: https://doi.org/10.1007/s13369-021-06326-8.

[12] Kumar, S., & Sikander, A. (2024). A novel hybrid
framework for single and multi-robot path planning in a
complex industrial environment. Journal of Intelligent
Manufacturing, 35(2), 587-612.
DOI: https://doi.org/10.1007/s10845-022-02056-2.

[13] Faridi, A. Q., Sharma, S., Shukla, A., Tiwari, R., & Dhar,
J. (2018). Multi-robot multi-target dynamic path planning
using artificial bee colony and evolutionary programming
in unknown environment. Intelligent Service Robot-
ics, 11, 171-186. DOI: https://doi.org/10.1007/s11370-
017-0244-7.

[14] Karaboga, D., & Akay, B. (2011). A modified artificial
bee colony (ABC) algorithm for constrained optimization
problems. Applied soft computing, 11(3), 3021-3031.
DOI: https://doi.org/10.1016/j.asoc.2010.12.001.

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Mykhailo Pavlyk, Oleh Yarosh, Oleksandr Futey 8

Oleh Sinkevych, PhD, was born in
Lviv, Ukraine, in 1988. Starting
from 2023, he has been working as
Associate Professor at the Faculty of
Electronics and Computer Techno-
logies of Ivan Franko National Uni-
versity of Lviv. His research inte-
rests encompass machine learning,
natural language processing, swarm
AI algorithms, numerical optimi-
zation, and metaheuristics.

Yaroslav Boyko, PhD, was born in
Lviv region, Ukraine, in 1967. Since
2017, he has been working as
Asssociate Professor at the Faculty
of Electronics and Computer Tech-
nologies of Ivan Franko National
University of Lviv. His research
interests encompass Internet of
Things and Fog/Edge computing.
.

Bohdan Sokolovskyy, PhD, was
born in Kulykiv, Lviv region,
Ukraine, in 1950. Since 2014, he has
been working as Associate Professor
at the Faculty of Electronics and
Computer Technologies of Ivan
Franko National University of Lviv.
His research interests encompass
computer modeling of nonuniform
semiconductor structures and
methods of stochastic optimization.

Mykhailo Pavlyk, PhD, was born
in Davydiv, Lviv district, Lviv
region, in 1986. From 2023 he has
been working as Associate Professor
at the Electronics and Computer
Technologies faculty of Ivan Franko
National University of Lviv. His
research interests include machine
learning, embedded machine learn-
ing and embedded systems.

Oleh Yarosh was born on August
26, 2003, in the city of Dobromil,
Ukraine. In 2020, he entered the
faculty of electronics and computer
technologies at Ivan Franko Univer-
sity of Lviv. His research interests
include machine learning, embedded
machine learning and embedded
systems. Now he works in swarm AI
subfield of machine learning.
.

Oleksandr Futey was born on May
10, 1955, in Buchach, Ternopil
region. Since 2013 he has been
working as Assistant Professor at
the Department of Radioelectronic
and Computer Systems of the Fac-
ulty of Electronics and Computer
Technologies. His research interests
include electronics and embedded
machine learning.

