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Abstract: The presented study is dedicated to the dy-
namic pathfinding problem for UV. Since the automation 
of UV movement is an important area in many applied 
domains like robotics, the development of drones, autopi-
lots, and self-learnable platforms, we propose and study a 
promising approach based on the algorithm of swarm AI. 
Given the 2D environment with multiple obstacles of rec-
tangular shape, the task is to dynamically calculate a 
suboptimal path from the starting point to the target. The 
agent has been represented as UV in 2D space and should 
find the next optimal movement point from the current 
position only within a small neighborhood area. This area 
has been defined as a square region around the current 
agent’s position. The size of the region has been determined 
by the attainability of the agent's scanning sensors. If the 
obstacle is detected by the agent, the latter should be taken 
into consideration while calculating the next trajectory 
point. To perform these calculations, the ABC metaheuris-
tic, one of the best representatives of swarm AI, has been 
used. The validation of the proposed approach has been 
performed on several 2D maps with different complexity 
and number of obstacles. Also, to obtain the proper con-
figuration, an inverse problem of identification of guided 
function weights has been formulated and solved. The 
outlined results show the perspective of the proposed ap-
proach and can complement the existing solutions to the 
pathfinding problem. 

Index Terms: Artificial bee colony, Metaheuristics, Nu-
merical optimization, Swarm intelligence, UV pathfinding. 

I. INTRODUCTION
In the rapidly evolving landscape of modern tech-

nology, uncrewed vehicles (UVs) have emerged as piv-
otal instruments of innovation, pushing the boundaries of 
what is possible in fields ranging from environmental 
monitoring to disaster response.  

The thing is getting even more challenging when it 
comes to dealing with a bunch of UVs. In order to fulfill 
the assigned task, such a group of vehicles must not only 
carry out mutual communication but also jointly coordi-
nate their strategy [1]. This imposes additional difficul-
ties on the design of even simple algorithms compared to 
a single agent. 

The nature-inspired swarm AI algorithms cover 
many ideas, starting with artificial ant colonies and end-
ing with newly found whale and gray wolf optimiza-
tions. Considering some of the shortcomings of the new 
approaches, classical and well-tested approaches are still 
of interest as a basis for designing swarm systems. We 
can highlight particle swarm optimization (PSO) [2], 
artificial bee colony (ABC) [3], artificial ant colony 
(AAC) [4], and the firefly algorithm [5] as the out-
standing representatives of swarm techniques. Because 
based on published papers, it is still impossible to select 
the best one, here we would like to give a chance to the 
ABC method as a simple and simultaneously effective 
swarm AI algorithm. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

First, let us consider just one of the relevant prob-
lems of developing UV’s software, namely seeking an 
optimal trajectory. There are a number of scientific pa-
pers related to the mentioned problem. If one distin-
guishes those that concern ABC-based methods, there 
are many available at the given period. 

In [6], authors proposed a local trajectory planning 
scheme which has been developed with ABC optimiza-
tion algorithm to optimally obtain the next positions of 
all the robots in the world map from their current posi-
tions, so that the paths to be developed locally for n-
robots are sufficiently small with minimum spacing with 
the obstacles, if any, in the world map. In [7], the hybrid 
approach of composing the ABC and evolutionary com-
puting is considered. Local search based on ABC pre-
cedes global evolutionary search, which still incorpo-
rates single-objective optimization. Here, the authors 
insist on the inefficiency of the ABC in order to solve 
the full path optimization problem. 

The paper [8] offers the ABC approach to the coor-
dination of motions of multiple robots in parallel. Also, 
there is an interesting methodology for multiple agents’ 
coordination. Dealing with the interaction of multiple 
robots requires collision-safe movement, which has been 
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studied in [9]. Here, researchers discuss the improved 
and efficient ABC algorithm for online robot path plan-
ning strategy. 

In [10], authors modified a generic ABC algorithm 
to improve the exploitation phase using the Arrhenius 
strategy. The reported approach is declared to be better 
than standard implementation, but this modification does 
not include a sophisticated approach to optimization for 
the path searching ability. More recent publications 
mainly focus on basic ABC improvements in contrast to 
the complications of the objective function formulation. 
For instance, in [11], the authors propose the modifica-
tion of ABC combined with conventional evolutionary 
programming (for refinement purposes) in order to im-
prove the optimum path toward the goal position while 
taking into account the distance of the food point from 
the nearest obstacles. Paper [12] moves further toward 
the complex hybridization of ABC, EP (evolutionary 
programming), and the probabilistic roadmap method. 
Obtained outcomes conclude the superiority of the pro-
posed path planning method against traditional ABC and 
ABC-EP algorithms applied to the sophisticated single 
objective function. In addition, work [13] profoundly 
explains the combination of modified ABC and EP. 

The goal of this study is to develop the pathfinding 
algorithm for UV in a dense environment with multiple 
obstacles. The UV is represented as the dimensionless 
agent on the 2D map. Using ABC method, the agent 
should build a path from starting to the target point in 
dynamic, step by step manner. In details, ABC algorithm 
is used to optimize special weighted guided function in 
each movement region within reach of the agent's sen-
sors. 

Firstly, the combined single-objective dynamic 
pathfinding problem in a 2D environment is considered. 
Secondly, the solutions are investigated in terms of the 
influence of objective weights. Thirdly, the inverse prob-
lem of finding the best objective weights is formulated 
and solved. All numerical experiments were imple-
mented in Python 3. 

III. SCOPE OF WORK AND OBJECTIVES
Let us consider two static 2D environments (Fig. 1,

2), where a single UV or agent should reach a predeter-
mined goal starting from some initial position. Here are 
the movement maps, where rectangular sectors are for-
bidden regions, and two circles are starting and target 
points. The agent can travel on the map along the calcu-
lated optimal trajectory in such a way as to avoid obsta-
cles. 

Here, obstacles locations are static but not known 
in advance to the agent, which in some sense makes the 
problem dynamic. Being at some point on the map 
( ),i ix y , the agent can move to a new point ( ),i ix y′ ′  
along a given trajectory, and the length of the steps be-
tween the previous and next points may be different. 

The agent can “see” or perform only in a bounded 
square region defined as a square with the center of the 

agent's current position. The size of that region can vary 
during the computations and is critical for the agent's 
pathfinding capabilities; the larger the value, the further 
the agent can operate. If there are no obstacles in the 
current region, agents can move anywhere within the 
area. If there are obstacles in the region or the agent’s 
area intersects with obstacles, the agent must pick only 
the feasible position (Fig. 3). 

Fig. 1. Movement environment, map # 1 

Fig. 2. Movement environment, map # 2 

Fig. 3. Scheme of agent’s region 

The calculation of the optimal trajectory of the 
agent’s movement is based on three criteria, which can 
be represented in the form of the following functions: 

( ) ( ) ( )1 , G G
i i i if x y x x y y= − + −  , (1)
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where 1f  stands for the distance function from the cur-

rent position to the goal point, ( ),G Gx y  is the goal’s 

coordinates; 2f  stands for the sum of minimum dis-
tances to obstacles in a current region and is responsible 
for “pushback” action, i.e., the agent is recommended to 
move some distance away from the obstacle for safe 
movement; 3f  defines the trajectory smoothness by 
preserving the smooth of the angle between subsequent 
segments of movement, ix  is the current position, 1i−x
and 2i −x  are two previous positions. 

To determine the minimum distance to the obstacle, 
we use the ray concept, i.e., the agent emits four perpen-
dicular scanning rays within the region, after which the 
points of intersection of the rays with the rectangular 
obstacle and the corresponding length of the resulting 
segment are calculated.  

The complete pathfinding problem is formulated as 
minimizing guided function ( )iΦ x  which consists of 
weighted sum of 1f , 2f  and 3f , and these functions 
provide flexibility of interdependence between functions 
and tuning capabilities: 

( ) ( ) ( ) ( )1 1 2 2 3 3 ,mini i i if f fω ω ω= + + → X ωΦ x x x x , (4) 

where 1 2 3, ,ω ω ω ∈ω  are weights and i ∈x X .  
Using eq. (4), the definition of pathfinding optimi-

zation is outlined as follows: given initial agent’s posi-
tion ( )0 0,x y , region size 0R , target coordinates 

( ),G Gx y  and coordinates of obstacles ( ),ob ob
i ix y  inside 

the current region, find a) the best (sub-optimal) move-
ment position ( )1 1,x y  based on the single-objective 
optimization problem and b) continue this step until the 
trajectory to the target ( ),G Gx y :

( ) ( ) ( )0 0 1 1, , , , , ,G G
n nx y x y x x y y= = =T …

will be built. 

IV. PATHFINDING METHODOLOGY
Using the discussed assumptions and the provided 

weighted function as our foundation, it is possible to 
develop a systematic approach to address the pathfinding 
problem.  

After the map being generated, the agent A , initial-
ized in the position ( )0 0,x y , operates inside the region 

0R  by producing N  candidate positions ( ),i ix y′ ′ , 
1,i N= . This step is performed as a standard solution 

initialization approach of cABC [16] algorithm. Then 
bounded by region 0R , constraint cABC (which will be 
cover in the next section) optimization cycle runs prede-
fined number of iterations I . 

Let us describe the proposed routine. By starting 
with some initial position ( )0 0,x y , the agent A  gener-

ates N  possible positions ( ),i ix y′ ′  using the standard 
initialization cABC phase. The generation region is 
bounded by square 0R  defined by the attainability of 
agent sensors, where agent’s position is the center point 
of the square. After the executing some number of itera-
tions I , i.e., performing employed, onlooker and scout 
bees phases to evolve the positions ( ),i ix y′ ′  according to 
guided function (4) we obtain one best agent’s position 
( )1 1,x y  as the best one among all ( ),i ix y′ ′ . If there are 
obstacles inside the region 1R  the agent should be aware 
of them and can not move to the position which collides 
with the obstacle. After moving in ( )1 1,x y , the agent 
again generates N  candidate positions and the routine 
continues until the predefined number of outer iterations. 
In this step cABC is applied from scratch, assuming the 
new candidate solutions exist inside the new square 
region 1R . If the agent finds the target position, then the 
routine stops. Now, let us briefly outline cABC steps.  

In this paper, we use classical constrained ABC al-
gorithm proposed in [14]. According to [14], to optimize 
(4) we should take in account possible constraints (ob-
stacles) which are represented as rectangular objects.
That is, the constrained problem is formulated as fol-
lows:

( ) ,min ,i → X ωΦ x  (5) 
, ,i j j kObstacle Obstacle in R∉ ∀x    (6) 

where [ ]0,...,k M∈ , M  is the maximum number of
total iterations, X  is the solution space and ω  is the 
known vector of weights, which will be discussed fur-
ther. 

To solve this problem, the initial phase and three 
cABC steps should be applied. 

Firstly, we generate N  candidate solution inside 
the kR  by formulae 

( )( ), rand 0,1lb ub lb
i j j j jx x x x= + −  ,    (7) 

where 1,i N= , lb
jx  and ub

jx  are the lower and upper 

bounds of each component determined via kR , 

( )rand 0,1  gives the random value in range [0, 1] and 
1,2j =  (because we consider 2D space). Each of solu-

tion has a special variable itrial , which indicates how 
many times this solution has not been improved.  

During the employed phase each of candidate solu-
tions is evolved by the following step 
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( ), , , ,i j i j i j k jv x x xφ= + − .      (8) 

Here φ  is the random value which is chosen from 
range [-1, 1], ,k jx  is another neighboring position. To 
select the better position, a special fitness function 
should be calculated. This function is given as follows: 

( )
( ) ( )

( )( ) ( )
1 : 0,

1 1 : 0
i i

i
i i

fit
 + ≥
 =
 + < 

Φ Φ

Φ Φ

v v
v

v v
 .   (9) 

If value of this function for iv  is larger than that for 

ix , and both solutions are feasible according to obsta-
cles, then i i←x v  and 0itrial ← . If position iv  is in-
feasible, but ix  is feasible, then ix  remains the same 
and itrial  should be incremented. If both solutions are 
infeasible, than we choose that solution which violates 
less constraints/obstacles (if it is not iv , then 

1itrial + = ). 
During the onlooker phase, firstly the probability 

score for each solution is calculated as  

( )

( )
( )

( )
( )

0.5
0.5 ,

0.5 1 , ,

i
i

j
j

i

i

j
j

fit
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fit
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else
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+
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−  
  
  

∑

∑

x
x

x

x
x

x

   (10) 

where ( )iviolation x  indicates how many obsta-
cles/constraints ix  does not satisfy. Once the probabili-
ties have been calculated, then each of N  solutions can 
be improved based on the condition ( ) ( )0,1 irand p< x . 
The improvement loop which incorporates employed 
phase process the solution by solution until the im-
provement counter equals N . This phase helps to 
strengthen neighbors search. 

The final step is a scout phase. Each variable itrial  
is checked if it equals some predefined limit. If so, the 
corresponding solution must be reinitialized using (7). 
Generally, the limit is set to 2* N  or 2* / /2N . 

V.  DIRECT PATHFINDING PROBLEM 
To study the proposed approach, we conducted 

several numerical experiments based on two movement 
environment (Fig. 1, 2) and guided function ( )iΦ x  (4). 
Firstly, we have investigated the impact of two weighted 
functions 1f  and 2f  on pathfinding capabilities. For 
these experiments the number of cABC runs during each 
iteration equals to 8. Since cABC is stochastic in nature 
and may generate different solutions for each run, we 
performed 20 experiments, 200M = . The results are 
outlined in Tables 1 for the first map (Fig. 1). 

Table 1 

Pathfinding results for 1f  and 2f  (map # 1) 

1ω  2ω  target avgPath stdPath avgT stdT 

0.7 0.3 5 113 31 1.9 0.98 
0.9 0.1 17 68 0.8 0.4 0.06 
1.0 0.0 16 66 1.9 0.35 0.05 

 
Here target stands for the number of times the 

agent reaches the goal point, avgP is the average path 
lengths, stdP is the standard deviation of path lengths, 
avgT is the average execution time and stdT is the stan-
dard deviation of path execution time. 

What can be learned from these results is that for 
the map # 1 the increase of the first weight 1ω  improves 
pathfinding capabilities while the smaller values do not 
help to reach the target. Also, decreasing weight 2ω  
down to zero, i.e., elimination of the impact of 
“pushback” provides better search due the large number 
of obstacles. For the second map, such a weight configu-
ration does not produce any good results, i.e., the agent 
did not reach the target during all experimental runs. 

Table 2 

Pathfinding results for 1f  and 3f  (map # 1) 

1ω  3ω  target avgP stdP avgT stdT 

0.5 0.05 6 141 32 0.92 0.3 
0.6 0.05 5 201 30 1.5 0.3 
0.7 0.03 17 118 44 0.96 0.6 
0.7 0.1 5 153 53 1.0 0.53 
0.8 0.05 12 155 57 1.1 0.6 
0.9 0.1 3 180 58 1.2 0.6 
0.9 0.05 12 155 51 1.23 0.7 

Table 3 

Pathfinding results for 1f  and 3f  (map # 2) 

1ω  3ω  target avgP stdP avgT stdT 

0.6 0.01 1 94.6 0.0 0.27 0.0 
0.7 0.03 14 166 53 0.5 0.2 
0.7 0.1 10 178 61 0.36 0.2 
0.8 0.05 13 179 46 0.4 0.1 
0.9 0.1 8 188 83 0.4 0.2 
0.9 0.05 10 154 35 0.35 0.1 
1.0 0.05 14 173 70 0.4 0.2 

 
Results for incorporating weighted 1f  and 3f  are 

shown in Tables 2, 3 for each map, respectively. 
A combination of 1f  and 3f  functions for the first 

map produces, in general, better results than 1f  and 2f . 
Such combination not only leverages impact of the first 
function, but also adds influence regarding the sharpness 
of the angle of rotation of the agent when generating the 
next position. The best result is obtained for 1 0.7ω = , 

3 0.03ω =  applied to the map # 1 and is visualized in 
Fig. 4.  
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Fig. 4. Path trajectory for 1 0.7ω = , 3 0.03ω = , map # 1 

The main point here is that weights ω  play a cru-
cial role in guided function (4) and are of considerable 
interest related to tuning the algorithm. 

 

 

Fig. 5. Path trajectory for 1 0.7ω = , 3 0.03ω = , map # 2 

The last conducted experiment relates to the in-
volvement of all three weighted functions 1f , 2f  and 3f  
(Tables 4, 5). Most of the weights chosen for map # 1 
turn into adequate results, but the best one obtained for 
weights 1 1.0ω = , 2 0.2ω =  and 3 0.03ω =  due to lowest 
average path value. 

The second map # 2 is more complicated, because 
to reach the target agent should worsen guided function 
value for 1f  which stands for a target attraction. There-
fore, the value target in average lower than target calcu-
lated for the map # 1. The best weight obtained for map 
# 2 is 1 0.8ω = , 2 0.1ω = , 3 0.03ω =  and results in tar-
get=16. Visualized tracks are presented in Fig. 6, 7 for 
each map, respectively. 

The interesting behavior of the agent is shown in 
Fig. 7. The proposed approach allows reaching the target 
even in case when the agent traps in corner/local min-
ima. To get out of the trap, the agent should generally 

worsen target function 1f . This behavior becomes possi-
ble because the other two functions ‘balance’ the first 
one. Thus, the pressure of the first function on the func-
tion (4) becomes smaller.  

 

Table 4 

Pathfinding results for 1f , 2f  and 3f  (map # 1) 

1ω  2ω  3ω  target avgP stdP avgT stdT 
0.8 0.1 0.05 16 146 39 1.1 0.5 
0.8 0.2 0.1 9 186 50 1.4 0.5 
0.8 0.3 0.2 7 164 30 1.2 0.3 
0.9 0.2 0.05 14 171 41 1.6 0.5 
0.9 0.1 0.1 6 133 25 0.95 0.3 
0.9 0.3 0.03 17 105 30 0.9 0.4 
1.0 0.1 0.1 7 168 48 1.2 0.5 
1.0 0.2 0.03 17 90 30 0.7 0.4 
1.2 0.1 0.05 17 132 36 1.1 0.5 

Table 5 

Pathfinding results for 1f , 2f  and 3f  (map # 2) 

1ω  2ω  3ω  target avgP stdP avgT stdT 
0.8 0.1 0.05 11 141 41 0.8 0.4 
0.8 0.2 0.05 5 195 50 1.4 0.4 
0.8 0.3 0.05 10 203 53 1.43 0.4 
0.9 0.2 0.05 14 165 58 1.2 0.5 
0.9 0.1 0.03 12 153 55 1.3 0.6 
0.8 0.1 0.03 16 183 54 1.5 0.6 
0.7 0.1 0.03 14 166 60 1.3 0.6 
1.0 0.1 0.05 14 187 55 1.4 0.5 
1.2 0.1 0.05 13 146 34 1.1 0.3 

 

 

Fig. 6. Path trajectory for 1 1.0ω = , 2 0.2ω =   
and 3 0.03ω =  

Another interesting direction is to study the impact 
of local cABC iterations inside each independent region 

kR . Since this is not clear in advance how many itera-
tions must be executed to get the best result, we have 
conducted several numerical experiments presented in 
Tables 6, 7. 

Judging from Table 6 (map # 1) it is seen that the 
best target value was obtained when 2 iteration of cABC 
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were executed inside each independent kR  due to the 
shorter path. What is also interesting is that even if a 
simple greedy search on randomly generated solutions is 
used without any run of cABC, it is still possible to reach 
the target. 

 

 

Fig. 7. Path trajectory for 1 0.8ω = , 2 0.1ω =  
 and 3 0.03ω =  

Table 6 

Local number of cABC iterations (map # 1) 
Inner iter. avgP stdP target 

0 34 137 30 
1 32 120 28 
2 32 126 30 
5 32 125 26 
8 24 132 20 

10 24 116 12 
 
For map # 2 things are getting more complicated, 

because this map is more advanced. The best results are 
obtained for five cABC iterations which produced the 
smallest average path length. 

Table 7 

Local number of cABC iterations (map # 2) 
Inner iter. avgP stdP target 

0 205 72 13 
1 200 60 15 
2 202 50 14 
3 146 60 17 
5 137 36 19 
8 142 37 14 

 

The reason why greedy search can sometimes pro-
duce decent results is the fact that all regions kR  are 
independent and optimal trajectory point for kR  cannot 
be any good for the next 1kR + .This consequence leads us 
to the construction of the path with memory, when the 
agent will remember the regions where he has already 
been. And the generation of a new position will take 
place in an area consisting of several regions. Neverthe-
less, for now the proposed approach is still quite effec-
tive in a partially unknown environment with obstacles. 

VI. INVERSE PATHFINDING PROBLEM 
The last question that arises in this research is how 

to determine the proper set of weights for the guided 
function (4).  

In this paper, we consider this issue as the formula-
tion of an inverse pathfinding problem. Let us study the 
possibility of calculating the weights based on the solu-
tion of the inverse problem (11): 

* arg min
1

avgP
target

=
+ωω      (11), 

where avgP is the average path lengths obtained 
during K  experiments, target indicates how many times 
of K  the agent has reached the target, *ω  is the optimal 
weight vector. The inverse problem (11) can be solved 
by running the direct pathfinding routine (5), (6) K  
times and gathering the respective avgP and target val-
ues. The essence of (11) function is the minimization of 
average path length in accordance with the best target 
value. The number of cABC iterations was set equal to 3 
in order to reduce computational efforts and 30K = . 

To solve this problem for each map, we used a 
greedy brute-force algorithm applied to the predefined 
grid of possible weights.  

For map # 1 we got some sub-optimal results 
[ ]* 1.05,0.2,0.03=ω , target=30, avgP=108 and 

stdP=28. The path trajectory for [ ]* 1.05,0.2,0.03=ω  is 
shown in Fig. 8. 

 

 

Fig. 8. Path trajectory for 1 1.05ω = , 2 0.2ω =   

and 3 0.03ω = , map # 1 

For map # 2 we obtained another sub-optimal pa-
rameters [ ]* 0.73,0.09,0.03=ω , target=22, avgP=147 
and stdP=53. The path trajectory of for 

[ ]* 0.73,0.09,0.03=ω  is presented in Fig. 9. 
It is evident that more sophisticated map # 2 leaves 

its mark on the optimization results. Hence, in general, to 
get the stable values for *ω  during solving the inverse 
problem requires more experiments than 30K = , which 
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in turn leads to more exhaustive computations. Neverthe-
less, this is a good starting point for future numerical 
experiments.  

 

 

Fig. 9. Path trajectory for 1 0.73ω = , 2 0.09ω =   
and 3 0.03ω = , map # 2 

VII. CONCLUSION 
In this paper, we propose and study the approach to 

pathfinding problems in the dense 2D environment 
which is a partially unknown in advance. 

To validate the proposed scheme, we have gener-
ated two maps of different complexity. During the nu-
merical experiments, we have considered different 
weight and function combinations as well as the influ-
ence of cABC iterations inside each bounded region. The 
results led us to several essential conclusions: 1) weights 
that are used to balance the guided function are crucial 
and radically affect search capabilities, which necessi-
tates a more thorough study of this issue; 2) since the 
search is bounded by independent regions at each itera-
tion, the agent does not incorporate memory of previ-
ously visited areas; hence, in future work, this improve-
ment will be widely studied; 3) the problem of proper 
weights that can be applied to the arbitrary maps is rele-
vant in the course of the conducted research; to set up 
the starting point for this issue, we proposed a simple 
approach based on solving the inverse problem, which 
requires the decent number of runs of the direct problem; 
4) the latter problem can be solved using certain rules 
and adaptive weights to avoid solving a long-running 
inverse problem; 5) machine learning techniques may be 
used to transform this problem into a reinforcement 
learning stack. 
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