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Abstract: Distributed systems rely on efficient inter-service 
communication, heavily impacted by data transmission costs. 
This study investigates alternative serialization formats, like 
Avro and MessagePack, to reduce data size compared to the 
common JSON format. We utilize a custom model to com-
prehensively assess the space efficiency of serialization for-
mats across various data types. Our findings demonstrate 
that adopting alternative formats achieves a median reduc-
tion in serialized data exceeding 30 %. Notably, Avro exhib-
its exceptional efficiency, leading to reductions exceeding 
83 % in specific scenarios. These insights empower develop-
ers to select optimal formats, potentially leading to signifi-
cant improvements in data transfer speed, reduced band-
width consumption, and enhanced scalability for handling 
larger data volumes within distributed systems.1 

Index Terms: Data communication, Encoding, Informa-
tion exchange, Protocols, Performance evaluation. 

I. INTRODUCTION
In distributed computing, the efficiency of inter-

service communication stands as a cornerstone of system 
performance, scalability, and reliability. As distributed 
systems continue to underpin a growing array of critical 
applications from cloud computing and microservices to 
big data and IoT, the choice of serialization format for 
data interchange emerges as a pivotal consideration. Seri-
alization formats, the mechanisms by which data struc-
tures are converted into a byte stream for storage or 
transmission, vary widely in their design, capabilities, and 
performance implications. The selection of an appropriate 
format is thus not simply an operational decision but a 
strategic one, bearing significant consequences for distrib-
uted architectures' overall efficiency and resilience. De-
spite the critical role of serialization in distributed sys-
tems, the field lacks a comprehensive, comparative analy-
sis encompassing the wide spectrum of available formats, 
particularly considering recent technological advance-
ments and the evolving demands of modern applications. 

1This article uses the materials and results obtained by the au-
thors during the research work "Intelligent design methods and tools 
for the modular autonomous cyber-physical systems," state registration 
number 0124U002340 dated 09.03.2024, which is carried out at the 
Department of Electronic Computing Machines of the Institute of 
Computer Technologies, Automation and Metrology of Lviv Polytech-
nic National University in 2024-2028. 

Developers and system architects are often left to navigate 
this complex landscape with limited guidance, balancing 
trade-offs between speed, size, compatibility, and ease of 
use without clear, empirical benchmarks. 

This study arises from the need to bridge this knowl-
edge gap, offering a systematic evaluation of serialization 
formats within the context of inter-service communication 
in distributed systems. By scrutinizing a selection of 
widely adopted and emerging formats, this research aims 
to illuminate the characteristics of space efficiency, trade-
offs, and practical considerations that inform the optimal 
choice of serialization technology. Specifically, the inves-
tigation targets formats categorized by binary or textual 
nature, schema requirements, and additional features such 
as zero-copy capabilities, addressing the nuanced re-
quirements of diverse system architectures. The contribu-
tions of this study are manifold, offering actionable in-
sights that promise to guide developers and architects in 
their selection of serialization formats, thereby enhancing 
the performance, scalability, and robustness of distributed 
systems. 

Given the absence of exhaustive research addressing 
this topic, we aim to investigate whether alternative binary 
and textual serialization formats can reduce the serialized 
message size by at least 30% compared to JSON. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Let us examine recent studies to understand the cur-
rent landscape of serialization formats and their implica-
tions for inter-service communication in distributed sys-
tems. Research in [1] contrasts JSON/XML with Protobuf 
for data serialization in web services, emphasizing effi-
ciency, readability, and schema enforcement. JSON/XML 
is preferred in REST for its text-based, human-readable 
formats, enabling dynamic, schema-less data interchange. 
Another interesting study in [2] focuses on optimizing 
inter-service communication in a cloud-native microser-
vice architecture. The study presents Protocol buffers as a 
language-neutral, platform-neutral, extensible mechanism 
for serializing structured data. They are known for their 
efficiency and performance benefits over traditional seri-
alization formats like XML or JSON in certain use cases.  
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The study [3] compares various serialization formats, 
focusing on vehicle-to-cloud communication. The paper 
evaluates Protobuf and Flatbuffers, two binary serializa-
tion formats. It mentions Cap’n Proto as an attractive zero-
copy format, which performs similarly to Flatbuffers but 
with a slight speed advantage. Another alternative men-
tioned is MessagePack. 

Source [4] explores binary versus textual serializa-
tion formats for inter-service communication within Java 
microservices under a K-Native, Kubernetes-managed 
environment. The study suggests that Protocol Buffers 
significantly improve response time and payload size 
performance.  

Source [5] evaluates different serialization protocols 
for improving inter-service communication efficiency 
within dCache, a distributed storage system. It addresses 
the need to replace Java Object Serialization to enhance 
message-passing speed and reduce round-trip time.  

Source [6] assesses diverse data serialization for-
mats. The gap in this study's research is its focus on mi-
crocontrollers with certain constraints, which may not be 
generalizable to all IoT devices or distributed systems. 

Source [7] stresses serialization formats' efficiency 
and performance in distributed systems, focusing on IoT 
sensor networks. Protocol Buffers or Apache Thrift were 
the most efficient means of encoding information based 
on the provided information. 

Source [8] highlights several schema-driven and 
schema-less binary serialization specifications that are 
JSON-compatible, including but not limited to ASN.1, 
Apache Avro, Microsoft Bond, Cap’n Proto, FlatBuffers, 
and others. 

Complementing these findings, [9] evaluates the per-
formance impact of different communication protocols 
(REST, gRPC, and Thrift) in microservices, focusing on 
network, CPU, and memory utilization alongside response 
times. Thrift and gRPC outperformed REST based on 
response time and system resource efficiency, attributed to 
their compact binary serialization formats and efficient 
protocol designs. 

The study [10] investigates JSONBinPack's effi-
ciency, particularly in schema-driven mode, and directly 
aligns with our research. The study suggests that JSON-
BinPack outperforms traditional JSON and binary seriali-
zation formats based on space efficiency. 

Research in [11] provides comparative experiments 
involving HDVM, Redis, and Protobuf for JSON data 
serialization, assessing performance metrics to demon-
strate Protobuf's efficiency. 

The paper [12] focuses on Apache Arrow and its Ar-
row Flight protocol. The document evaluates Apache 
Arrow's columnar format, leveraging it within the Arrow 
Flight protocol for data transfers.  

The research [13] details the impact of SOAP seri-
alization on communication efficiency, particularly in web 
services using HTTP and JMS protocols. The study's 
limitations include not considering the effect of network 
conditions, not testing other serialization formats like 

JSON or Protocol Buffers, and focusing only on SOAP 
messages.  

Research conducted in [14] explores the efficiency 
of serialization formats in distributed systems, focusing on 
IoT devices. 

The study [15] evaluates a wide range of JSON-
compatible binary serialization formats. Schema-driven 
specifications, especially ASN.1 PER Unaligned and 
Apache Avro (unframed) are identified as the most space-
efficient.  

Additionally, for our research, it’s essential to under-
stand the inner workings of various optimized formats, 
like Protocol Buffers [16], to understand better the scenar-
ios they are suited for [17]. 

A recent study [18] highlighted that exploring alter-
native web archival formats, specifically Parquet and 
Avro, demonstrated significant performance improve-
ments over the traditional WARC format. 

The study [19] highlights the unique advantages of 
HatRPC's hint-accelerated approach in optimizing Thrift 
RPC services over RDMA transport. 

Findings in [20] suggest that Cap’n proto is faster 
than Flatbuffers in serialization/deserialization time. 

Source [21] suggests that MessagePack (MsgPuck) 
excels and beats other libraries with formats like, e.g., 
Flatbuffers and NanoPB (Protobuf). 

Considering the issues data serialization can intro-
duce, particularly how it might cancel out the benefits of 
zero-copy I/O due to CPU demands for reading, trans-
forming, and sending message data (which leads to extra 
memory copies), several studies have investigated how to 
make this process more efficient. In several studies, it has 
been suggested that special hardware like FPGAs be used, 
as mentioned in [1].  

These ideas are promising for future exploration. 
Yet, this study narrows its focus to exploring space effi-
ciency for each serialization format. It sets aside these 
broader considerations to pinpoint the direct impact of 
serialization format choice. 

III. SCOPE OF WORK AND OBJECTIVES 
The objective of this study is to assess whether the 

serialized message size can be decreased by at least 30 %, 
compared to JSON, by utilizing alternative binary and 
textual serialization formats. To achieve this, we will 
break the objective into smaller parts. First, we will select 
a set of cross-platform serialization formats. Then, we will 
develop a real-life data model with sufficient complexity 
for space efficiency testing. Then, we will design a test 
schema for our benchmarks and convert it to correspond-
ing schemas for each schema-based format, describing our 
thought process along the way. Then, we will validate the 
consistency of round-trip conversion for each serialization 
format to make sure our test is fair. Next, we will measure 
space efficiency for each serialization format. The last 
step is to perform a comparative analysis of the gathered 
metrics and draw conclusions. 
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IV. SELECTING SERIALIZATION FORMATS 
In our study, we consciously decided to bypass plat-

form-dependent serialization formats such as Java seriali-
zation, .NET Binary Formatter, and Python’s Pickle due to 
their lack of universal compatibility and interoperability 
across different computing environments. While efficient 
within their respective ecosystems, these formats do not 
align with our objective of identifying serialization for-
mats that offer broad applicability and optimal perform-
ance for inter-service communication. A combination of 
popularity, utility, and performance metrics guided our 
selection of serialization formats. We relied on indicators 
such as search frequencies on Google and GitHub, library 
download statistics, and other studies on performance 
evaluations focusing on serialization/deserialization speed, 
storage efficiency, and network bandwidth usage. This 
approach allowed us to identify theoretically capable 
formats validated through widespread practical use. Spe-
cific formats like TSF, Apache Arrow, and PSON were 
deliberately excluded from our analysis due to their de-
clared usage patterns, emerging status, or lack of JVM-
based tooling. However, we included JsonBinPack for 
specialized testing on storage efficiency, despite its lim-
ited applicability in JVM-based environments, to highlight 
its potential in optimizing data storage in serialization 
processes. Next follows the summary of some of the cho-
sen formats. 

Apache Avro is a compact, fast binary format with 
rich data structures and a robust, compact, and efficient 
serialization mechanism. It's designed to serialize data 
language neutrally and is often used in Apache Hadoop 
for big data processing. Protocol Buffers, developed by 
Google, are known for their simplicity and efficiency, 
allowing for the serialization of structured data. It's widely 
used in various Google internal services and external 
applications. Facebook originally developed Thrift, which 
combines a software stack with a code generation engine 
to build services that work efficiently and seamlessly 
between many languages. JsonBinPack is an efficient 
binary format aimed at minimizing the size of JSON 
documents, focusing mainly on storage efficiency, which 
is particularly useful for web and mobile applications 
where bandwidth and storage are concerns. FlatBuffers 
format was Developed by Google; this zero-copy format 
is designed for high performance with a cost of decreased 
memory efficiency. It allows direct access to serialized 
data without parsing/unpacking, making it ideal for real-
time applications in specific scenarios. Cap'n Proto em-
phasizes speed by enabling you to access serialized data 
directly without parsing, like FlatBuffers. In this study, 
Cap’n Proto with packed encoding will be referred to as 
Cap’n (packed) for brevity; correspondingly, we will use 
Cap’n (unpacked) for encoding with no packing).  

The chosen serialization formats and corresponding 
JVM libraries and tools used are listed in Table 1. 

V. SCHEMA DESIGN 
To perform a benchmark with schema-based for-

mats, we need a test schema. We also want to ensure that 

the schema mirrors the complexity found in real-world 
payloads commonly encountered across various business 
scenarios. This schema should feature moderate to high 
levels of nesting cases. Additionally, it must be structured 
to allow seamless and verifiable conversion into other 
serialization formats like ProtoBuf or Thrift. A resulting 
test structure is shown in Fig. 1. 

Let’s take a look at the key features of the designed 
test schema. 

The schema has several nested structures, which are 
good for evaluating how well a serialization format can 
handle hierarchical data. Nested structures, like the ones 
between TransactionData and AccountDetail or Transac-
tionData and TransactionMetadata, can create depth in the 
data representation, challenging the serialization format to 
maintain efficiency. 

There are various data types present, such as strings, 
lists, maps, sets, doubles, booleans, and custom types (like 
GeographicCoordinates). Testing different data types can 
show how the serialization format handles type encoding 
and whether it uses a schema-based approach (like 
Apache Avro) or a schema-less approach (like JSON or 
BSON). 

There are lists (List<String>, List<Associated Docu-
ment>, List<AuthorizationDetail>), maps (Map<String, 
Double>), and arrays (byte[]); the serialization process must 
deal with collections efficiently, including the overhead of 
item count, type information, and potential redundancy in 
item types. 

The schema includes both composite types (like Ad-
dress and AmountDetail) and primitives (like double and 
long). This allows for testing the serialization format's 
handling of flat, simple data versus complex, structured 
data. 

The AssociatedDocument class includes a docu-
mentContent field of type byte[], which can be used to 
simulate the serialization of large binary data blobs. This 
tests the serialization format's efficiency in handling large 
amounts of binary data, which can significantly impact 
space efficiency. 

Use of Enumerations: The Currency enumeration 
tests how the serialization format encodes symbolic data. 
Efficient formats may encode enums as small integers, 
while less efficient ones may use full-string representa-
tion. 

The customAttributes field is a TreeMap<String, 
String>, which adds the dimension of sorted maps. It tests 
if the serialization format can leverage the sorted property 
to further optimize the data. 

Each schema-based format should be adequately 
mapped from Test Schema, to have a representative test. 
Let’s review several key points and insights from our 
mapping procedure. 

For instance, Thrift required us to perform a series of 
transformations to and from the Test Schema as follows: 

• Direct translation of Currency and 
TransactionType enums, leveraging native enum support 
in Avro and Thrift. 
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• Direct translation of Currency and Transaction 
Type enums, leveraging native enum support in Avro and 
Thrift. 

• Complex Avro records like Geographic 
Coordinates, Address, AccountDetail, etc., are mapped to 
equivalent Thrift structs, preserving nested data structures. 

• Direct mapping of Avro primitive types (e.g., 
string, double, long, Boolean) to Thrift's corresponding 
types (string, double, i64, bool). 

• Avro arrays are mapped to Thrift lists (e.g., 
list<string>), and Avro maps to Thrift maps, maintaining 
collection semantics. 

• Avro bytes type for binary data are directly 
mapped to Thrift's binary type. 

• Handling Avro's nullable types via Thrift's 
optional field mechanism, leveraging field presence or 
absence to manage nullability. 

• Assigning unique field identifiers in Thrift for 
each struct field is a requirement for Thrift's serialization 
and field evolution management. 

• Mapping Avro long type for timestamps to 
Thrift's i64. 

Table 1

Selected serialization formats 
Format Library version used 

Apache Avro 1.11.0 

Protocol Buffers protobuf-java, 3.22.2 

Thrift libthrift, 0.19 

JsonBinPack npm, jsonbinpack@1.1.2 

Flatbuffers flatbuffers-java 23.5.26 

Cap'n (un-
packed) 

java, org.capnproto.runtime 0.1.16, 
capnp 1.0.2 

Cap'n (packed) java, org.capnproto.runtime 0.1.16, 
capnp 1.0.2 

MessagePack jackson-dataformat-msgpack, 0.9.8 

BSON bson4jackson, 2.15.0 

CBOR jackson-dataformat-cbor, 2.14.2 

AmazonIon jackson-dataformat-ion, 2.14.2 

Smile jackson-dataformat-smile, 2.14.2 

 JSON jackson, 2.14.2 

XML jackson-dataformat-xml, 2.14.2 

YAML jackson-dataformat-yaml, 2.14.2 

 
The Cap’n Proto approach was similar to the one we 

used for Thrift; mapping from Avro to Cap'n Proto in-
volves explicit field numbering, transforming Avro maps 
into Cap'n Proto lists of custom structs due to the absence 
of a direct map type, and assigning integer values to Enum 

symbols. Key differences include handling optional fields 
implicitly in Cap'n Proto versus Avro's nullable fields and 
the bytes type in Avro mapping to Data in Cap'n Proto.  

For JsonBinPack, the approach follows the official 
benchmark. The matching schema is generated from an 
example JSON file. A complete testing JSON record was 
provided as input to the jsonbinpack compile command to 
create a schema. At the time of writing, there’s no offi-
cially supported library for JVM-based environments, so 
the console tool was used instead. 

Mapping between Avro and ProtoBuf schemas in-
volves translating data types and structures to maintain 
semantic integrity and consistency. Basic types like string, 
bytes, and double are directly compatible between Avro 
and ProtoBuf, ensuring straightforward mappings for 
fields such as amount and documentContent. Compound 
types like arrays and maps are handled differently: Avro's 
array maps to Protobuf’s repeated fields, and Avro's map 
type directly corresponds to Protobuf’s map for key-value 
pairs. Nested structures are preserved in the translation, 
with nested records/messages (e.g., AccountDetail includ-
ing Address, which includes GeographicCoordinates) 
maintaining hierarchical data relationships. 

Converting the Base Schema to the FlatBuffers 
structure involves mapping Avro's enums directly to Flat-
Buffers enums, ensuring compatibility in their byte repre-
sentation. Avro's primitive types and arrays translate to 
FlatBuffers' scalar types and vectors, respectively, requir-
ing type alignment. Avro records, representing complex 
and nested structures, are converted into FlatBuffers ta-
bles, with each nested record becoming a corresponding 
table. Avro maps are represented as vectors of key-value 
pair tables in FlatBuffers, such as StringDoublePair and 
StringStringPair, simulating map structures by converting 
each map entry into instances of these tables. 

Optional fields in Avro, which lack direct support for 
nullability in FlatBuffers, necessitate management to 
reflect data absence accurately. The Avro bytes type for 
binary data, seen in document_content, is directly con-
verted to a [ubyte] array in FlatBuffers, ensuring proper 
data encoding and decoding. Timestamps represented by 
Avro's long type are mapped to int64 in FlatBuffers, main-
taining precise time value representation. Custom attrib-
utes modeled as a map in Avro require conversion to a 
vector of StringStringPair in FlatBuffers. 

VI. SPACE EFFICIENCY BENCHMARK 
This section will analyze the space efficiency results 

for the selected formats and will show the reduction in 
comparison with JSON. 

The methodology for this benchmark is as follows. 
The first test will evaluate space efficiency for test mes-
sages generated from epochs 1 to 30 and the second from 
1 to 15. The message size will vary pseudo-randomly 
from ~1 kB to ~30 kB for the first test, and for the second 
test, the size will range from ~1 kB to ~4 kB; the size of 
the serialization output array will be measured and re-
corded. Gathered metrics will be presented as a table 
ordered by median serialized size in ascending order.  
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Fig. 1. A designed model for space efficiency testing

Space usage reduction in comparison with JSON (Ri) 
is calculated as follows: 

 −
= ×100%json ii json

S SR S                   

 (1) 

where Sjson is the median serialized size for JSON and Si is 
the median serialized size for the format in row i. 

 Let’s look at our results presented in Table 2. Avro 
leads with a reduction of Ri=38.34 %. JsonBinPack fol-
lows at 36.81 %, with Thrift close behind at 35.97 %. This 
contradicts findings from [10] suggesting that JsonBin-
Pack outperforms Avro in space efficiency. 
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Table 2

Serialized size over 30 epochs 
Format Mean Median R(%) 

Avro 4871.73 2368.50 38.34 

JsonBinPack 4999.93 2427.00 36.81 

Thrift 5002.67 2459.50 35.97 

Protobuf 5225.00 2571.00 33.06 

Smile 5685.87 3016.00 21.48 

Cap’n (packed) 6022.93 3020.00 21.37 

MessagePack 6486.03 3250.50 15.37 

CBOR 6511.77 3265.50 14.98 

AmazonIon 7418.33 3747.50 2.43 

JSON 7542.80 3841.00 0.00 

BSON 7728.03 3974.50 -3.48 

Flatbuffers 7658.40 4060.00 -5.70 

Cap’n (unpacked) 7681.07 4076.00 -6.12 

YAML 8251.33 4226.50 -10.04 

XML 15040.80 8082.50 -110.43 

Table 3

Serialized size over 15 epochs 

Format Mean Median R(%) 

Avro 862.93 160.00 83.74 

JsonBinPack 890.47 175.00 82.22 

Protobuf 945.87 186.00 81.10 

Thrift 932.67 217.00 77.95 

Cap’n (packed) 1173.67 307.00 68.80 

Smile 1403.00 631.00 35.87 

Flatbuffers 1803.73 632.00 35.77 

Cap’n (unpacked) 1801.07 640.00 34.96 

MessagePack 1655.27 744.00 24.39 

CBOR 1670.00 756.00 23.17 

AmazonIon 1951.27 898.00 8.74 

BSON 2073.40 954.00 3.05 

JSON 2048.07 984.00 0.00 

YAML 2223.53 1038.00 -5.49 

XML 3788.73 1297.00 -31.81 

In this case, JsonBinPack was also inferior to Avro 
in median space efficiency by 2.41 % and mean by 2.56 % 
when measured across all message variations. 

Protobuf comes next, achieving a 33.06 % reduction. 
Smile and Cap’n (packed) show competitive efficiencies 
at 21.48 % and 21.37 %, respectively. 

 Now, let’s take a look at Table 3. The results for 
smaller sample messages are slightly different. Avro per-
forms significantly better in this case, with a reduction of 
Ri=83.74 %. Another important change is that Protobuf 
and Cap’n (packed) moved up the table. That might sug-
gest that Protobuf is more efficient than Thrift in smaller 
message sizes. We can also see that Cap’n (packed), with 
a reduction of 68.8 %, significantly outperforms Smile as 
opposed to previous results in Table 2. 

VII. CONCLUSION 
Our results indicate that by switching to alternative 

serialization formats, it's possible to achieve more than a 
30 % median reduction in serialized size compared with 
JSON. Specifically, utilizing the Avro format leads to size 
reductions of Ri=38.34 % and 83.74 % under various 
scenarios. Such significant reductions underscore the 
potential for more efficient use of network resources. By 
adopting these more compact formats, we can signifi-
cantly decrease the amount of data transmitted over the 
network, potentially leading to reduced latencies and 
improved performance in inter-service communication. 
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