
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 1, 2024

BEYOND JSON: EVALUATING SERIALIZATION FORMATS
FOR SPACE-EFFICIENT COMMUNICATION

Eduard Maltsev, Oleksandr Muliarevych

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.
Authors’ e-mails: eduard.y.maltsev@lpnu.ua, oleksandr.v.muliarevych@lpnu.ua

https://doi.org/10.23939/acps2024.01.009

Submitted on 09.04.2024

© Maltsev E., Muliarevych O., 2024

Abstract: Distributed systems rely on efficient inter-service
communication, heavily impacted by data transmission costs.
This study investigates alternative serialization formats, like
Avro and MessagePack, to reduce data size compared to the
common JSON format. We utilize a custom model to com-
prehensively assess the space efficiency of serialization for-
mats across various data types. Our findings demonstrate
that adopting alternative formats achieves a median reduc-
tion in serialized data exceeding 30 %. Notably, Avro exhib-
its exceptional efficiency, leading to reductions exceeding
83 % in specific scenarios. These insights empower develop-
ers to select optimal formats, potentially leading to signifi-
cant improvements in data transfer speed, reduced band-
width consumption, and enhanced scalability for handling
larger data volumes within distributed systems.1

Index Terms: Data communication, Encoding, Informa-
tion exchange, Protocols, Performance evaluation.

I. INTRODUCTION
In distributed computing, the efficiency of inter-

service communication stands as a cornerstone of system
performance, scalability, and reliability. As distributed
systems continue to underpin a growing array of critical
applications from cloud computing and microservices to
big data and IoT, the choice of serialization format for
data interchange emerges as a pivotal consideration. Seri-
alization formats, the mechanisms by which data struc-
tures are converted into a byte stream for storage or
transmission, vary widely in their design, capabilities, and
performance implications. The selection of an appropriate
format is thus not simply an operational decision but a
strategic one, bearing significant consequences for distrib-
uted architectures' overall efficiency and resilience. De-
spite the critical role of serialization in distributed sys-
tems, the field lacks a comprehensive, comparative analy-
sis encompassing the wide spectrum of available formats,
particularly considering recent technological advance-
ments and the evolving demands of modern applications.

1This article uses the materials and results obtained by the au-
thors during the research work "Intelligent design methods and tools
for the modular autonomous cyber-physical systems," state registration
number 0124U002340 dated 09.03.2024, which is carried out at the
Department of Electronic Computing Machines of the Institute of
Computer Technologies, Automation and Metrology of Lviv Polytech-
nic National University in 2024-2028.

Developers and system architects are often left to navigate
this complex landscape with limited guidance, balancing
trade-offs between speed, size, compatibility, and ease of
use without clear, empirical benchmarks.

This study arises from the need to bridge this knowl-
edge gap, offering a systematic evaluation of serialization
formats within the context of inter-service communication
in distributed systems. By scrutinizing a selection of
widely adopted and emerging formats, this research aims
to illuminate the characteristics of space efficiency, trade-
offs, and practical considerations that inform the optimal
choice of serialization technology. Specifically, the inves-
tigation targets formats categorized by binary or textual
nature, schema requirements, and additional features such
as zero-copy capabilities, addressing the nuanced re-
quirements of diverse system architectures. The contribu-
tions of this study are manifold, offering actionable in-
sights that promise to guide developers and architects in
their selection of serialization formats, thereby enhancing
the performance, scalability, and robustness of distributed
systems.

Given the absence of exhaustive research addressing
this topic, we aim to investigate whether alternative binary
and textual serialization formats can reduce the serialized
message size by at least 30% compared to JSON.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Let us examine recent studies to understand the cur-
rent landscape of serialization formats and their implica-
tions for inter-service communication in distributed sys-
tems. Research in [1] contrasts JSON/XML with Protobuf
for data serialization in web services, emphasizing effi-
ciency, readability, and schema enforcement. JSON/XML
is preferred in REST for its text-based, human-readable
formats, enabling dynamic, schema-less data interchange.
Another interesting study in [2] focuses on optimizing
inter-service communication in a cloud-native microser-
vice architecture. The study presents Protocol buffers as a
language-neutral, platform-neutral, extensible mechanism
for serializing structured data. They are known for their
efficiency and performance benefits over traditional seri-
alization formats like XML or JSON in certain use cases.

Eduard Maltsev, Oleksandr Muliarevych 10

The study [3] compares various serialization formats,
focusing on vehicle-to-cloud communication. The paper
evaluates Protobuf and Flatbuffers, two binary serializa-
tion formats. It mentions Cap’n Proto as an attractive zero-
copy format, which performs similarly to Flatbuffers but
with a slight speed advantage. Another alternative men-
tioned is MessagePack.

Source [4] explores binary versus textual serializa-
tion formats for inter-service communication within Java
microservices under a K-Native, Kubernetes-managed
environment. The study suggests that Protocol Buffers
significantly improve response time and payload size
performance.

Source [5] evaluates different serialization protocols
for improving inter-service communication efficiency
within dCache, a distributed storage system. It addresses
the need to replace Java Object Serialization to enhance
message-passing speed and reduce round-trip time.

Source [6] assesses diverse data serialization for-
mats. The gap in this study's research is its focus on mi-
crocontrollers with certain constraints, which may not be
generalizable to all IoT devices or distributed systems.

Source [7] stresses serialization formats' efficiency
and performance in distributed systems, focusing on IoT
sensor networks. Protocol Buffers or Apache Thrift were
the most efficient means of encoding information based
on the provided information.

Source [8] highlights several schema-driven and
schema-less binary serialization specifications that are
JSON-compatible, including but not limited to ASN.1,
Apache Avro, Microsoft Bond, Cap’n Proto, FlatBuffers,
and others.

Complementing these findings, [9] evaluates the per-
formance impact of different communication protocols
(REST, gRPC, and Thrift) in microservices, focusing on
network, CPU, and memory utilization alongside response
times. Thrift and gRPC outperformed REST based on
response time and system resource efficiency, attributed to
their compact binary serialization formats and efficient
protocol designs.

The study [10] investigates JSONBinPack's effi-
ciency, particularly in schema-driven mode, and directly
aligns with our research. The study suggests that JSON-
BinPack outperforms traditional JSON and binary seriali-
zation formats based on space efficiency.

Research in [11] provides comparative experiments
involving HDVM, Redis, and Protobuf for JSON data
serialization, assessing performance metrics to demon-
strate Protobuf's efficiency.

The paper [12] focuses on Apache Arrow and its Ar-
row Flight protocol. The document evaluates Apache
Arrow's columnar format, leveraging it within the Arrow
Flight protocol for data transfers.

The research [13] details the impact of SOAP seri-
alization on communication efficiency, particularly in web
services using HTTP and JMS protocols. The study's
limitations include not considering the effect of network
conditions, not testing other serialization formats like

JSON or Protocol Buffers, and focusing only on SOAP
messages.

Research conducted in [14] explores the efficiency
of serialization formats in distributed systems, focusing on
IoT devices.

The study [15] evaluates a wide range of JSON-
compatible binary serialization formats. Schema-driven
specifications, especially ASN.1 PER Unaligned and
Apache Avro (unframed) are identified as the most space-
efficient.

Additionally, for our research, it’s essential to under-
stand the inner workings of various optimized formats,
like Protocol Buffers [16], to understand better the scenar-
ios they are suited for [17].

A recent study [18] highlighted that exploring alter-
native web archival formats, specifically Parquet and
Avro, demonstrated significant performance improve-
ments over the traditional WARC format.

The study [19] highlights the unique advantages of
HatRPC's hint-accelerated approach in optimizing Thrift
RPC services over RDMA transport.

Findings in [20] suggest that Cap’n proto is faster
than Flatbuffers in serialization/deserialization time.

Source [21] suggests that MessagePack (MsgPuck)
excels and beats other libraries with formats like, e.g.,
Flatbuffers and NanoPB (Protobuf).

Considering the issues data serialization can intro-
duce, particularly how it might cancel out the benefits of
zero-copy I/O due to CPU demands for reading, trans-
forming, and sending message data (which leads to extra
memory copies), several studies have investigated how to
make this process more efficient. In several studies, it has
been suggested that special hardware like FPGAs be used,
as mentioned in [1].

These ideas are promising for future exploration.
Yet, this study narrows its focus to exploring space effi-
ciency for each serialization format. It sets aside these
broader considerations to pinpoint the direct impact of
serialization format choice.

III. SCOPE OF WORK AND OBJECTIVES
The objective of this study is to assess whether the

serialized message size can be decreased by at least 30 %,
compared to JSON, by utilizing alternative binary and
textual serialization formats. To achieve this, we will
break the objective into smaller parts. First, we will select
a set of cross-platform serialization formats. Then, we will
develop a real-life data model with sufficient complexity
for space efficiency testing. Then, we will design a test
schema for our benchmarks and convert it to correspond-
ing schemas for each schema-based format, describing our
thought process along the way. Then, we will validate the
consistency of round-trip conversion for each serialization
format to make sure our test is fair. Next, we will measure
space efficiency for each serialization format. The last
step is to perform a comparative analysis of the gathered
metrics and draw conclusions.

Beyond JSON: Evaluating Serialization Formats for Space-Efficient Communication 11

IV. SELECTING SERIALIZATION FORMATS
In our study, we consciously decided to bypass plat-

form-dependent serialization formats such as Java seriali-
zation, .NET Binary Formatter, and Python’s Pickle due to
their lack of universal compatibility and interoperability
across different computing environments. While efficient
within their respective ecosystems, these formats do not
align with our objective of identifying serialization for-
mats that offer broad applicability and optimal perform-
ance for inter-service communication. A combination of
popularity, utility, and performance metrics guided our
selection of serialization formats. We relied on indicators
such as search frequencies on Google and GitHub, library
download statistics, and other studies on performance
evaluations focusing on serialization/deserialization speed,
storage efficiency, and network bandwidth usage. This
approach allowed us to identify theoretically capable
formats validated through widespread practical use. Spe-
cific formats like TSF, Apache Arrow, and PSON were
deliberately excluded from our analysis due to their de-
clared usage patterns, emerging status, or lack of JVM-
based tooling. However, we included JsonBinPack for
specialized testing on storage efficiency, despite its lim-
ited applicability in JVM-based environments, to highlight
its potential in optimizing data storage in serialization
processes. Next follows the summary of some of the cho-
sen formats.

Apache Avro is a compact, fast binary format with
rich data structures and a robust, compact, and efficient
serialization mechanism. It's designed to serialize data
language neutrally and is often used in Apache Hadoop
for big data processing. Protocol Buffers, developed by
Google, are known for their simplicity and efficiency,
allowing for the serialization of structured data. It's widely
used in various Google internal services and external
applications. Facebook originally developed Thrift, which
combines a software stack with a code generation engine
to build services that work efficiently and seamlessly
between many languages. JsonBinPack is an efficient
binary format aimed at minimizing the size of JSON
documents, focusing mainly on storage efficiency, which
is particularly useful for web and mobile applications
where bandwidth and storage are concerns. FlatBuffers
format was Developed by Google; this zero-copy format
is designed for high performance with a cost of decreased
memory efficiency. It allows direct access to serialized
data without parsing/unpacking, making it ideal for real-
time applications in specific scenarios. Cap'n Proto em-
phasizes speed by enabling you to access serialized data
directly without parsing, like FlatBuffers. In this study,
Cap’n Proto with packed encoding will be referred to as
Cap’n (packed) for brevity; correspondingly, we will use
Cap’n (unpacked) for encoding with no packing).

The chosen serialization formats and corresponding
JVM libraries and tools used are listed in Table 1.

V. SCHEMA DESIGN
To perform a benchmark with schema-based for-

mats, we need a test schema. We also want to ensure that

the schema mirrors the complexity found in real-world
payloads commonly encountered across various business
scenarios. This schema should feature moderate to high
levels of nesting cases. Additionally, it must be structured
to allow seamless and verifiable conversion into other
serialization formats like ProtoBuf or Thrift. A resulting
test structure is shown in Fig. 1.

Let’s take a look at the key features of the designed
test schema.

The schema has several nested structures, which are
good for evaluating how well a serialization format can
handle hierarchical data. Nested structures, like the ones
between TransactionData and AccountDetail or Transac-
tionData and TransactionMetadata, can create depth in the
data representation, challenging the serialization format to
maintain efficiency.

There are various data types present, such as strings,
lists, maps, sets, doubles, booleans, and custom types (like
GeographicCoordinates). Testing different data types can
show how the serialization format handles type encoding
and whether it uses a schema-based approach (like
Apache Avro) or a schema-less approach (like JSON or
BSON).

There are lists (List<String>, List<Associated Docu-
ment>, List<AuthorizationDetail>), maps (Map<String,
Double>), and arrays (byte[]); the serialization process must
deal with collections efficiently, including the overhead of
item count, type information, and potential redundancy in
item types.

The schema includes both composite types (like Ad-
dress and AmountDetail) and primitives (like double and
long). This allows for testing the serialization format's
handling of flat, simple data versus complex, structured
data.

The AssociatedDocument class includes a docu-
mentContent field of type byte[], which can be used to
simulate the serialization of large binary data blobs. This
tests the serialization format's efficiency in handling large
amounts of binary data, which can significantly impact
space efficiency.

Use of Enumerations: The Currency enumeration
tests how the serialization format encodes symbolic data.
Efficient formats may encode enums as small integers,
while less efficient ones may use full-string representa-
tion.

The customAttributes field is a TreeMap<String,
String>, which adds the dimension of sorted maps. It tests
if the serialization format can leverage the sorted property
to further optimize the data.

Each schema-based format should be adequately
mapped from Test Schema, to have a representative test.
Let’s review several key points and insights from our
mapping procedure.

For instance, Thrift required us to perform a series of
transformations to and from the Test Schema as follows:

• Direct translation of Currency and
TransactionType enums, leveraging native enum support
in Avro and Thrift.

Eduard Maltsev, Oleksandr Muliarevych 12

• Direct translation of Currency and Transaction
Type enums, leveraging native enum support in Avro and
Thrift.

• Complex Avro records like Geographic
Coordinates, Address, AccountDetail, etc., are mapped to
equivalent Thrift structs, preserving nested data structures.

• Direct mapping of Avro primitive types (e.g.,
string, double, long, Boolean) to Thrift's corresponding
types (string, double, i64, bool).

• Avro arrays are mapped to Thrift lists (e.g.,
list<string>), and Avro maps to Thrift maps, maintaining
collection semantics.

• Avro bytes type for binary data are directly
mapped to Thrift's binary type.

• Handling Avro's nullable types via Thrift's
optional field mechanism, leveraging field presence or
absence to manage nullability.

• Assigning unique field identifiers in Thrift for
each struct field is a requirement for Thrift's serialization
and field evolution management.

• Mapping Avro long type for timestamps to
Thrift's i64.

Table 1

Selected serialization formats
Format Library version used

Apache Avro 1.11.0

Protocol Buffers protobuf-java, 3.22.2

Thrift libthrift, 0.19

JsonBinPack npm, jsonbinpack@1.1.2

Flatbuffers flatbuffers-java 23.5.26

Cap'n (un-
packed)

java, org.capnproto.runtime 0.1.16,
capnp 1.0.2

Cap'n (packed) java, org.capnproto.runtime 0.1.16,
capnp 1.0.2

MessagePack jackson-dataformat-msgpack, 0.9.8

BSON bson4jackson, 2.15.0

CBOR jackson-dataformat-cbor, 2.14.2

AmazonIon jackson-dataformat-ion, 2.14.2

Smile jackson-dataformat-smile, 2.14.2

 JSON jackson, 2.14.2

XML jackson-dataformat-xml, 2.14.2

YAML jackson-dataformat-yaml, 2.14.2

The Cap’n Proto approach was similar to the one we

used for Thrift; mapping from Avro to Cap'n Proto in-
volves explicit field numbering, transforming Avro maps
into Cap'n Proto lists of custom structs due to the absence
of a direct map type, and assigning integer values to Enum

symbols. Key differences include handling optional fields
implicitly in Cap'n Proto versus Avro's nullable fields and
the bytes type in Avro mapping to Data in Cap'n Proto.

For JsonBinPack, the approach follows the official
benchmark. The matching schema is generated from an
example JSON file. A complete testing JSON record was
provided as input to the jsonbinpack compile command to
create a schema. At the time of writing, there’s no offi-
cially supported library for JVM-based environments, so
the console tool was used instead.

Mapping between Avro and ProtoBuf schemas in-
volves translating data types and structures to maintain
semantic integrity and consistency. Basic types like string,
bytes, and double are directly compatible between Avro
and ProtoBuf, ensuring straightforward mappings for
fields such as amount and documentContent. Compound
types like arrays and maps are handled differently: Avro's
array maps to Protobuf’s repeated fields, and Avro's map
type directly corresponds to Protobuf’s map for key-value
pairs. Nested structures are preserved in the translation,
with nested records/messages (e.g., AccountDetail includ-
ing Address, which includes GeographicCoordinates)
maintaining hierarchical data relationships.

Converting the Base Schema to the FlatBuffers
structure involves mapping Avro's enums directly to Flat-
Buffers enums, ensuring compatibility in their byte repre-
sentation. Avro's primitive types and arrays translate to
FlatBuffers' scalar types and vectors, respectively, requir-
ing type alignment. Avro records, representing complex
and nested structures, are converted into FlatBuffers ta-
bles, with each nested record becoming a corresponding
table. Avro maps are represented as vectors of key-value
pair tables in FlatBuffers, such as StringDoublePair and
StringStringPair, simulating map structures by converting
each map entry into instances of these tables.

Optional fields in Avro, which lack direct support for
nullability in FlatBuffers, necessitate management to
reflect data absence accurately. The Avro bytes type for
binary data, seen in document_content, is directly con-
verted to a [ubyte] array in FlatBuffers, ensuring proper
data encoding and decoding. Timestamps represented by
Avro's long type are mapped to int64 in FlatBuffers, main-
taining precise time value representation. Custom attrib-
utes modeled as a map in Avro require conversion to a
vector of StringStringPair in FlatBuffers.

VI. SPACE EFFICIENCY BENCHMARK
This section will analyze the space efficiency results

for the selected formats and will show the reduction in
comparison with JSON.

The methodology for this benchmark is as follows.
The first test will evaluate space efficiency for test mes-
sages generated from epochs 1 to 30 and the second from
1 to 15. The message size will vary pseudo-randomly
from ~1 kB to ~30 kB for the first test, and for the second
test, the size will range from ~1 kB to ~4 kB; the size of
the serialization output array will be measured and re-
corded. Gathered metrics will be presented as a table
ordered by median serialized size in ascending order.

Beyond JSON: Evaluating Serialization Formats for Space-Efficient Communication 13

Fig. 1. A designed model for space efficiency testing

Space usage reduction in comparison with JSON (Ri)
is calculated as follows:

 −
= ×100%json ii json

S SR S

 (1)

where Sjson is the median serialized size for JSON and Si is
the median serialized size for the format in row i.

 Let’s look at our results presented in Table 2. Avro
leads with a reduction of Ri=38.34 %. JsonBinPack fol-
lows at 36.81 %, with Thrift close behind at 35.97 %. This
contradicts findings from [10] suggesting that JsonBin-
Pack outperforms Avro in space efficiency.

Eduard Maltsev, Oleksandr Muliarevych 14

Table 2

Serialized size over 30 epochs
Format Mean Median R(%)

Avro 4871.73 2368.50 38.34

JsonBinPack 4999.93 2427.00 36.81

Thrift 5002.67 2459.50 35.97

Protobuf 5225.00 2571.00 33.06

Smile 5685.87 3016.00 21.48

Cap’n (packed) 6022.93 3020.00 21.37

MessagePack 6486.03 3250.50 15.37

CBOR 6511.77 3265.50 14.98

AmazonIon 7418.33 3747.50 2.43

JSON 7542.80 3841.00 0.00

BSON 7728.03 3974.50 -3.48

Flatbuffers 7658.40 4060.00 -5.70

Cap’n (unpacked) 7681.07 4076.00 -6.12

YAML 8251.33 4226.50 -10.04

XML 15040.80 8082.50 -110.43

Table 3

Serialized size over 15 epochs

Format Mean Median R(%)

Avro 862.93 160.00 83.74

JsonBinPack 890.47 175.00 82.22

Protobuf 945.87 186.00 81.10

Thrift 932.67 217.00 77.95

Cap’n (packed) 1173.67 307.00 68.80

Smile 1403.00 631.00 35.87

Flatbuffers 1803.73 632.00 35.77

Cap’n (unpacked) 1801.07 640.00 34.96

MessagePack 1655.27 744.00 24.39

CBOR 1670.00 756.00 23.17

AmazonIon 1951.27 898.00 8.74

BSON 2073.40 954.00 3.05

JSON 2048.07 984.00 0.00

YAML 2223.53 1038.00 -5.49

XML 3788.73 1297.00 -31.81

In this case, JsonBinPack was also inferior to Avro
in median space efficiency by 2.41 % and mean by 2.56 %
when measured across all message variations.

Protobuf comes next, achieving a 33.06 % reduction.
Smile and Cap’n (packed) show competitive efficiencies
at 21.48 % and 21.37 %, respectively.

 Now, let’s take a look at Table 3. The results for
smaller sample messages are slightly different. Avro per-
forms significantly better in this case, with a reduction of
Ri=83.74 %. Another important change is that Protobuf
and Cap’n (packed) moved up the table. That might sug-
gest that Protobuf is more efficient than Thrift in smaller
message sizes. We can also see that Cap’n (packed), with
a reduction of 68.8 %, significantly outperforms Smile as
opposed to previous results in Table 2.

VII. CONCLUSION
Our results indicate that by switching to alternative

serialization formats, it's possible to achieve more than a
30 % median reduction in serialized size compared with
JSON. Specifically, utilizing the Avro format leads to size
reductions of Ri=38.34 % and 83.74 % under various
scenarios. Such significant reductions underscore the
potential for more efficient use of network resources. By
adopting these more compact formats, we can signifi-
cantly decrease the amount of data transmitted over the
network, potentially leading to reduced latencies and
improved performance in inter-service communication.

References

[1] Marii B., Zholubak I., (2022). Features of Development
and Analysis of REST Systems, Advances in Cyber-
Physical Systems, vol. 7, no. 2, pp. 121–129, DOI:
10.23939/acps2022.02.121.

[2] Weerasinghe S., Perera I., (2024). Optimized Strategy in
Cloud-Native Environment for Inter-Service Communica-
tion in Microservices, International Journal of Online and
Biomedical Engineering, vol. 20, no. 01, pp. 40–57, DOI:
10.3991/ijoe.v20i01.44021.

[3] Proos D. P., Carlsson N., (2020). Performance Comparison
of Messaging Protocols and Serialization Formats for Digi-
tal Twins in IoV, 2020 IFIP Networking Conference (Net-
working), Paris, France, pp. 10–18, [Electronic resource]. –
Available at: https://ieeexplore.ieee.org/document/9142787
(Accessed: 03/22/2024).

[4] Buono V., Petrovic P., (2021). Enhance Inter-service
Communication in Supersonic K-Native REST-based Java
Microservice Architectures (Dissertation). urn
https://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-22135

[5] Morschel L., (2020). dCache – Efficient Message Encod-
ing For Inter-Service Communication in dCache: Evalua-
tion of Existing Serialization Protocols as a Replacement
for Java Object Serialization, EPJ Web Conf., vol. 245,
p. 05017, DOI: 10.1051/epjconf/202024505017.

[6] Friesel D., Spinczyk O., (2021). Data Serialization Formats
for the Internet of Things, Electronic Communications of
the EASST, vol. 20, pp. 1–4, DOI:
https://doi.org/10.14279/tuj.eceasst.80.1134.

[7] Luis Á., Casares P., Cuadrado-Gallego J. J., Patricio M. A.,
(2021). PSON: A Serialization Format for IoT Sensor

Beyond JSON: Evaluating Serialization Formats for Space-Efficient Communication 15

Networks, Sensors, vol. 21, no. 13, p. 4559, DOI:
10.3390/s21134559.

[8] Viotti J. C., Kinderkhedia M., (2022). A Survey of JSON-
compatible Binary Serialization Specifications, DOI:
10.48550/arXiv.2201.02089.

[9] Kumar P. K., Agarwal R., Shivaprasad R., Sitaram D.,
Kalambur S., (2021). Performance Characterization of
Communication Protocols in Microservice Applications, in
International Conference on Smart Applications, Commu-
nications and Networking (SmartNets), pp. 1–5, DOI:
10.1109/SmartNets50376.2021.9555425.

[10] Viotti J. C., Kinderkhedia M., (2022). Benchmarking
JSON BinPack, DOI: 10.48550/ARXIV.2211.12799.

[11] Huang B., Tang Y., (2021). Research on optimization of
real-time efficient storage algorithm in data information se-
rialization, PLoS ONE, vol. 16, no. 12, p. e0260697, DOI:
10.1371/journal.pone.0260697.

[12] Ahmad T., Ars Z. A., Hofstee H. P., (2022). Benchmarking
Apache Arrow Flight - A wire-speed protocol for data
transfer, querying and microservices. arXiv, DOI:
10.48550/arXiv.2204.03032.

[13] Dauda A. B., Adam M. S., Mustapha M. A., Mabu A. M.,
and Mustafa S., (2020). Soap serialization effect on com-
munication nodes and protocols, DOI:
10.48550/ARXIV.2012.12578.

[14] Evans D., (2020). Energy-Efficient Transaction Serializa-
tion for IoT Devices, Journal of Computer Science Re-
search, vol. 2, no. 2, pp. 1–16, DOI:
10.30564/jcsr.v2i2.1620.

[15] Viotti J. C., Kinderkhedia M., (2022). A Benchmark of
JSON-compatible Binary Serialization Specifications,
DOI: 10.48550/ARXIV.2201.03051.

[16] Protocol Buffers Version 3 Language Specification. [Elec-
tronic resource]. – Available at:

https://protobuf.dev/reference/protobuf/proto3-spec/ (Ac-
cessed: 03/22/2024).

[17] Hummert, C., & Pawlaszczyk, D. (Eds.). (2022). Mobile
Forensics–The File Format Handbook: Common File
Formats and File Systems Used in Mobile Devices.
Springer Nature. pp. 223–260, DOI: 10.1007/978-3-030-
98467-0_9.

[18] Wang X. and Xie Z., (2020). The Case For Alternative
Web Archival Formats To Expedite The Data-To-Insight
Cycle, in Proceedings of the ACM/IEEE Joint Conference
on Digital Libraries in 2020, in JCDL ’20. New York, NY,
USA: Association for Computing Machinery, pp. 177–
186, DOI: 10.1145/3383583.3398542.

[19] Li T., Shi H., Lu X., (2021). HatRPC: hint-accelerated
thrift RPC over RDMA, in Proceedings of the Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis, in SC ’21. New York, NY,
USA: Association for Computing Machinery, pp. 1–14.
DOI: 10.1145/3458817.3476191.

[20] Sorokin K., (2023). Benchmark comparing various data
serialization libraries, [Electronic resource]. – Available at:
https://github.com/thekvs/cpp-serializers. (Accessed:
03/22/2024).

[21] Hamerski J. C., Domingues R. P., Moraes F. G., Amory
A., (2018). Evaluating Serialization for a Publish-
Subscribe Based Middleware for MPSoCs, in 25th IEEE
International Conference on Electronics, Circuits and Sys-
tems (ICECS), Bordeaux, France, pp. 773–776, DOI:
10.1109/ICECS.2018.8618003.

[22] Peltenburg J., Hadnagy Á., Brobbel M., Morrow R., Al-
Ars Z., (2021). Tens of gigabytes per second JSON-to-
Arrow conversion with FPGA accelerators, in 2021
ICFPT, pp. 1–9. DOI:
10.1109/ICFPT52863.2021.9609833.

Maltsev Eduard obtained his Mas-
ter’s in Computer Engineering, spe-
cializing in Computer Systems and
Networks, at Lviv Polytechnic Na-
tional University in 2013. In 2021, he
became a Certified Cloud Architect
and is currently working towards a
Ph.D. in Computer Engineering.

Oleksandr Muliarevych is an asso-
ciate professor at the Computer
Engineering Department at Lviv
Polytechnic National University. He
earned his PhD degree in Computer
Systems and Components at Lviv
Polytechnic National University in
2016.

