
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 1, 2024

AN APPROACH TO IMPROVING AVAILABILITY OF MICROSERVICES
FOR CYBER-PHYSICAL SYSTEMS

Oleh Chaplia1, Halyna Klym1, Anatoli I. Popov2
1Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine,

2Institute of Solid State Physics, University of Latvia, 8, Kengaraga, Riga, LV-1063, Latvia.
Authors’ e-mails: oleh.y.chaplia@lpnu.ua, halyna.i.klym@lpnu.ua, popov@latnet.lv

https://doi.org/10.23939/acps2024.01.016

Submitted on 15.04.2024

© Chaplia O., Klym H., Popov A. I., 2024

Abstract: The design of modern Cyber-Physical Systems
(CPS) connects physical and digital realms from cloud sys-
tems to edge devices. Microservice architecture has been
widely used for IT solutions and emerges as a promising
approach for supporting CPS that are more efficient, adapt-
able, and interconnected. However, there is an increasing
need to improve the availability, reliability, and resilience of
microservice systems according to the needs. This paper
summarizes the challenges and drawbacks of microservice
architecture used for CPS. Then, the simplified microservice
model has been created, initial properties have been defined,
and an improvement plan has been presented. The microser-
vice model’s availability has been improved using a novel
approach with endpoint containerization. Then, the discus-
sion and conclusions have been offered to explore the full
potential of integrating the physical and digital realms.1

Index Terms: cloud computing, cyber-physical systems,
Industry 4.0, Internet of Things, microservices

I. INTRODUCTION
In modern computing, combining digital technolo-

gies with physical processes has given rise to an intricate
and highly dynamic domain known as cyber-physical
systems (CPS) [1]. These systems integrate computation,
networking, and physical processes, with embedded com-
puters and networks monitoring and controlling the physi-
cal processes, often with feedback loops where physical
processes affect computations and vice versa [1]. CPS's
complexity and critical nature, encompassing sectors such
as autonomous vehicle networks, smart grids, robotic
systems, and industrial automation, demand highly resil-
ient, flexible, and scalable architectural solutions [2].

Adopting Microservices Architecture (MSA) in cy-
ber-physical systems is a strategic move toward address-
ing these demands effectively, especially for the needs of
Industry 4.0 [3]. Microservices have been characterized by
their small, modular, and independently deployable nature

1 This article uses the materials and results obtained by the authors
during the research work "Optimized nanocomposites and sensor
structures for defense systems security control and threat detection,"
state registration number 0122U000807, which is carried out at the
Department of Specialized Computer Systems of the Institute of Com-
puter Technologies, Automation and Metrology of Lviv Polytechnic
National University in 2022-2024.

[3]. This architectural style has gained prominence for its
ability to enhance availability, scalability, resilience, and
reliability [4]. MSA's decentralized nature enhances CPS's
resilience by isolating failures from individual services
without impacting the system [4]. Through patterns such
as circuit breakers, bulkheads, and retries, MSA ensures
that CPS remains operational and responsive, even during
service failures or external disruptions [4]. Containers like
Docker and Kubernetes are often used too [5]. However,
containerization, such as Docker, takes too long to build,
deploy, or restart [5]. This time, it costs money and in-
creases the service downtime. System design patterns are
beneficial but sometimes not implemented when the pro-
ject starts, especially for startups, but issues arise later [5].
Today, cloud computing technologies evolve very fast.
Therefore, it leads to additional expenses on resource
allocation. Thus, resource allocation optimization is wel-
comed [6]. Security incidents also significantly impact
resources and degrade system availability [7].

This paper reviews different microservice architec-
tures and common approaches for Cyber-Physical Sys-
tems and finds techniques that are very commonly used.
The authors propose a novel approach based on “virtual
containers” in the source code for each endpoint described
in the paper [8]. These “containers” handle different errors
on the endpoint level and try to restart when some error
arises. However, this approach integrates into the source
code as a framework. Therefore, previously described
techniques may be omitted, and costs reduced. The main
goal of this research paper is to find an approach that can
improve microservice system availability without addi-
tional costs and overheads on cloud computing infrastruc-
ture tools.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

This section defines and describes microservices'
availability, reliability, and resilience properties. It also
reviews the cloud provider's SLAs and necessary metrics
related to these properties.

Availability, reliability, and resilience are critical at-
tributes of a microservices architecture that ensure ser-
vices are robust, perform as expected, and are accessible

An Approach to Improving Availability of Microservices for Cyber-Physical Systems 17

when needed, contributing significantly to the overall
system's quality of service [9]. They are tightly related to
the DevOps Metrics and KPIs [10]. These properties are
related to each other.

Availability measures the system’s operational time
when it can execute all necessary operations without fail-
ures [9]. It is often expressed as an uptime percentage
against overall execution time [10]. High availability in
microservices is attained through practices like auto-
scaling, load balancing, and deploying services across
multiple zones or regions to withstand failures [11].

Reliability concerns the system's capability to per-
form its required functions under stated conditions for a
specified period [9]. It is about the consistency and accu-
racy of the service outputs. Techniques such as retries
with exponential backoff and deploying redundant in-
stances of services can enhance reliability [9].

Resilience refers to a system's ability to handle and
recover from failures, ensuring minimal impact on per-
formance and user experience [9]. In microservices, resil-
ience can be achieved through patterns like Circuit
Breaker, which prevents a network or service failure from
cascading to other services, and Bulkhead, which isolates
failures within one from affecting others [9].

Reliability and resilience critically impact availabil-
ity time [9]. By enhancing reliability, a system reduces the
probability of failures. This improvement directly contrib-
utes to increased operational time, boosting the system's
availability [11]. This approach could mean implementing
robust error handling, effective load balancing, and thor-
ough testing for microservices to ensure each service
performs reliably under various conditions [9].

Even with high reliability, failures can occur due to
unforeseen issues [9]. Resilience ensures that when fail-
ures happen, the system's recovery mechanisms activate
swiftly to minimize downtime. In a microservices archi-
tecture, resilience might involve practices like automatic
failover, replication, circuit breakers, and quick rollback
capabilities for deployments that do not go as planned
[11]. The faster a system can recover from failure, the less
its overall downtime, thus enhancing availability [10].

A Service Level Agreement (SLA) for a cloud pro-
vider is a contractual document that outlines the expected
level of service and specifies performance metrics such as
uptime, response times, and data integrity [12]. It details
scheduled and unscheduled downtime procedures, data
management policies, security, backup, recovery proc-
esses, and compliance standards to ensure data protection
[12].

 The SLA also defines customer support parameters
and additional agreement notes, providing a comprehen-
sive framework for service delivery between the cloud
provider and the customer [12]. Service Level Agreements
(SLAs) often quantify these attributes in metrics.

Standard SLA metrics include availability (uptime),
performance (response time), error rates, and latency.
Availability is when services are expected to be available
and operational within a given period, such as a month or
year, typically expressed as a percentage (e.g., 99.9 %

uptime). Performance (response time) is the expected
performance level regarding response times. Error Rate is
the acceptable rate of errors or faults in the service. La-
tency specifies the maximum delay that can be expected
when processing requests.

It is essential to recognize that SLAs ensure reliabil-
ity, resilience, and availability from the cloud provider's
side concerning their infrastructure. Software engineers
and DevOps teams can control only some of the provided
components [12]. However, these properties improve
system reliability. Even when the cloud provider handles
different cases of failures of his hardware and software,
the system may still fail on network connections, applica-
tion errors, third-party issues, service integration, and
deployment issues, among others [12]. Microservice ar-
chitecture is complex, often connecting many services and
third-party dependencies. Each of the microservice sys-
tem’s components may fail. In the context of CPS and
IoT, the chances of additional complexity and error rate
increase. Testing and validating complex systems are
necessary to cover most error cases [13]. MSA architec-
ture also fits well for testing CPS, including reliability
properties [13].

Many research papers are oriented toward the pre-
cise design of Cyber-Physical Systems and IoT, which is
essential in their scope of work. For example, a cloud and
IoT-based green healthcare system provides a solution to
facilitate remote monitoring and support for patients [14].
The paper about emergent CPS systems mentions the
wide usage of containerized microservices [15]. Docker is
a popular solution, but additional infrastructure costs and
deployment time are needed. Another interesting approach
is chaos engineering, which improves system reliability by
adapting and self-healing [16]. Chaos Engineering is a
methodology that integrates unexpected failures into a
system. Self-healing means that microservices can restore
themselves automatically.

However, they use widespread techniques and tools
to support microservices architecture. The provider’s
SLA, containers, and tools like load balancers, proxies,
and service meshes cover some reliability. This approach
works well for ideal cases or testing environments when
the system state is controlled and observed. Reviewed
papers also show a tendency to use containers (Docker;
Kubernetes).

III. SCOPE OF WORK AND OBJECTIVES
This section highlights the central research questions

guiding our investigation of reliable and resilient Micros-
ervice Architecture (MSA) within Cyber-Physical Sys-
tems (CPS). First, the paper provides the context and
drawbacks for the MSA, challenges, and applications in
CPS, specifically for microservices' resilience, reliability,
and availability properties and patterns. The main research
question answers how the availability of microservices
used for CPS systems may be improved by at least
99,99 % for 24 hours of uptime. The default availability of
microservice provided by SLA from cloud providers is
near 99,95 %, which can be increased. All additional

Oleh Chaplia, Halyna Klym, Anatoli I. Popov 18

features provided by the cloud provider cost money, im-
pacting the overall cost of the CPS system. Cost optimiza-
tion may also be helpful.

IV. THE MODEL DEFINITION OF THE
MICROSERVICE SYSTEM

This section defines a simplified microservice model
to evaluate further the microservice architecture com-
monly used in CPS systems.

As it has been expected, in real-life cloud systems,
networks and designed microservice architectures may
face increased errors because Cyber-Physical Systems
include hardware devices and edge computing tools
within an unstable environment. These unstable environ-
mental properties increase the need for reliable microser-
vice architectures in these systems.

Fig. 1 presents the system architecture layers from
application to edge layers. This figure depicts the place of
microservice architecture within the overall CPS system.

Fig. 1. Overall system architecture

Before proposing improvements, a simplified mi-
croservice system model has been defined. The model
contains common properties described in most reviewed
papers but does not contain specific or unique compo-
nents. Cloud provider availability and reliability provided
by SLAs and DevOps deployment practices before the
system starts are omitted. Chaos engineering, a non-
deterministic way of testing microservices, is excluded
from the model. Microservice system design and patterns
are the focus of the improvement. The model’s basic
blocks will be microservices within Docker containers.
Load balancer, replication, and health checks are com-
monly used patterns for reliability and are often imple-
mented on the cloud provider’s side.

Fig. 2 presents a simplified model consisting of mi-
croservices.

This model will be used for further evaluation, vali-
dation, and calculations. MS stands for microservice, and
the number stands for its ID. For example, MS1 means
microservice number 1.

Fig. 2. A simplified model of microservice architecture

V. IMPROVING THE RELIABILITY OF
MICROSERVICES FOR CYBER-PHYSICAL

SYSTEMS
This section provides methods and approaches for

improving the reliability of microservices in cyber-
physical systems based on the simplified microservice
model. The improvements provided in this section are
expected to answer the main research question.

Main terms, formulas, and definitions are provided
to calculate a microservice system's availability, reliabil-
ity, and resilience. It is essential to state that these proper-
ties may be calculated differently for different cases, but
common intuition is similar overall.

Availability is the leading property of these systems
because it states how much time the system works against
the total system working time. Reliability, resilience, and
fault tolerance for microservices are components of total
availability. Total availability (Availability) is often calcu-
lated as follows % 100TotalOperatingTimeAvailability TotalTime

= ×

. (1)

Based on this formula, availability is calculated in
percentages by dividing operating time (TotalOperating-
Time) by total measurement time (TotalTime). Very of-
ten, when system models, prototypes, and new approaches
are designed, they are assumed always to work, almost
like in an ideal world. However, in real life, errors and
failures are widespread, especially for IoT and CPS sys-
tems, because these systems depend on unstable condi-
tions of the real world. Each failure has a different level at
which it appears. Achieving 100 % is almost impossible.
That is why SLAs provide percentages like 99,9 %,
99,99 %, and 99,999 %.

Fig. 2 represents a system of seven microservices. A
system is a set of connected microservices in a specific
way. Each microservice may be dependent on another
service. A set of microservices M where each microser-
vice is represented as mi, and i ranges from 1 to n, where n
is the total number of microservices. Therefore, the set M
can be defined as

{ }1 2 3, , ,..., nM m m m m= . (2)

With a set of microservices (M), the total operating
time (TotalOperatingTime), is the sum of the operating

An Approach to Improving Availability of Microservices for Cyber-Physical Systems 19

times (OperatingTime) for each microservice (i) divided
by the number of all microservices (n), which is calculated
as follows

1n ii OperatingTimeTotalOperatingTime n== ∑ . (3)

Total time is the timeframe for a system to operate
from start to end. Each microservice runs in parallel.
Therefore, a microservice's maximum operating time
equals the total time. The sum of operating times for each
microservice will exceed the total operating time by the
number of microservices. Therefore, a correction for this
is included – a sum of operating times for each microser-
vice is divided by the count of microservices (n).

The operating time (OperatingTime) for microser-
vice is the time it successfully executes during the total
timeframe of measurement or system execution. Operat-
ing time is represented as a difference between total time
(TotalTime) and total downtime (TotalDowntime), as
follows

= −OperatingTime TotalTime TotalDowntime . (4)

Downtime is the time when a microservice is un-
available due to planned or unexpected reasons.

Total downtime (TotalDowntime) for the microser-
vice due to unplanned reasons, incorporating various
unexpected events and failures, is a sum of all downtime
events (m), as follows

1m jjTotalDowntime DowntimeEvent
=

= ∑ . (5)

An unplanned failure causes downtime. M is the to-
tal number of unplanned downtime events (Down-
timeEvent) considered over a defined period (TotalTime).
DowntimeEventj is the downtime of one event (j).

Reasons for downtime may be planned or un-
planned. Planned reasons for downtime are testing, de-
ployment, or maintenance. During planned reasons of
downtime, developers and DevOps engineers optimize the
cloud infrastructure and service architecture in a way that
will not impact the system or impact only when it is not
critical to the end users. Unplanned reasons include unex-
pected events, failures, dependency, network, infrastruc-
ture, system, or even microservice runtime errors. Down-
time is also called inactivity time. Downtime also consists
of an automatic or manual restoration microservice proc-
ess because the service is still unavailable during the res-
toration. Service operation time during the overall execu-
tion time includes deployment, execution, failure event,
downtime, restore process event and execution. Execution
is a prosperous state of microservice execution. Deploy-
ment, failure event, downtime, and restore event are states
when the microservice is inactive, e.g., states the micros-
ervice downtime.

Each microservice has a chance of failure, and its
operability is independent. The operability of each mi-
croservice affects the system's overall availability. The

system is considered fully operational only when all re-
quired microservices are functioning.

Failure events include several levels: cloud provider
failures, cloud infrastructure failures, virtualization fail-
ures, OS system-level failures, microservice failures,
unexpected events, failures, dependency issues, network
problems, infrastructure issues, third-party dependency
issues, failures due to security vulnerabilities, configura-
tion errors, failures due to high-load, deployment issues,
system errors, or microservice runtime errors. The micros-
ervice developer, DevOps, and IT expert can control and
manage the cloud infrastructure resources, custom virtual-
ization configurations, and microservices. However, they
cannot maintain cloud infrastructure and all components
related to the cloud provider software, hardware, and data
center.

Table 1 shows the availability results for seven
cases. Each row presents one case with an increased
amount of failed microservices. The total measurement
time is 24 hours, which is 1440 minutes. Each failed mi-
croservice has one downtime event. The downtime
event is taken as 5 minutes for these calculations for each
failed microservice. In real life, downtime depends on
many factors, such as the event's cause, whether the server
was redeployed, restarted, or even the underlying VM
failed. Operating time per microservice is the difference
between this microservice's total time and total downtime.
For example, a total operating time for a set of seven
microservices, where one failed with one downtime event,
which takes 5 minutes, will consist of 1435 minutes for
one failed microservice and 1440 minutes for the other six
microservices. The same calculation approach applies to
other cases.

Given the same DowntimeEventTime for each failed
microservice, a simplified formula was used to calculate
TotalOperatingTime the Table 1, as follows

=TotalOperatingTime
⋅

= −
DowntimeEventNum DowntimeEventTimeTotalTime n . (6)

Table 1

Availability for the simplified model with n=7
microservices, TotalTime=1440 minutes

and DowntimeEventTime=5 minutes
Down-

timeEventNum
TotalOperatingTime

(minutes) Availability

0 1440 100 %
1 1439,28 99,95 %
2 1438,57 99.90 %
3 1437,85 99.85 %
4 1427,14 99.80 %
5 1436,42 99.75 %
6 1435,71 99.70 %
7 1435 99,65 %

DowntimeEventNum is the number of all downtime

events that occurred for each microservice.

Oleh Chaplia, Halyna Klym, Anatoli I. Popov 20

Improvements to reliability and resilience have been
added to increase the availability of microservice systems.
The model can only cover some existing cases. However,
essential failure cases can be mitigated. Outage and recov-
ery times should be minimized as much as possible.

The first approach is to containerize each microser-
vice execution code within its execution framework. This
approach is described in “An approach for automatic self-
recovery for a Node.js microservice” [8]. These containers
are special “wrappers” around the API endpoints inside
the execution framework. They exist within the microser-
vice application itself without the additional infrastructure
overhead of managing VMs, machines, and networking
traffic.

This approach covers the cases when dependency
microservice fails or unexpected errors for specific end-
points appear. When one container fails, the system tries
to execute the code in the next available container by
switching the containers in the runtime. The service re-
mains operational, ensuring no downtime. This method
significantly reduces outage time without affecting the
time required for redeployment or recovery. According to
the “container” design, the switch time is less than one
second [8]. Therefore, an assumption is made for calcula-
tion purposes that the switch time is 1 second. Applying
this approach also reduces costs to the cloud infrastruc-
ture. However, each framework needs additional devel-
opment if the system is developed using different pro-
gramming languages and frameworks. Recovery time will
be zero because everything works. The pessimistic case
may impact the microservice when it fails to execute all
three or more “containers,” and the error bubbles through
the service to the bottom layer of the system, causing the
microservice process to crash. According to the model,
this approach is applied to each microservice (from MS1
to MS7). The time measure is in minutes, so conversion to
seconds is practical. Twenty-four hours is 86400 seconds.
One second is 0.016 minutes.

Table 2 presents calculation results using the formula
for availability for this approach. For a system of seven
microservices, where one of them has a slight delay of one
second because of container switching, the availability
time is 99,99 %.

So, the availability of the microservices system with
one failed microservice increased from 99,95 % to
99,99 %. Similar calculations will show that the overall
downtime is reduced when more microservices fail.

The second microservice pattern that helps improve
the system reliability is the Retry pattern. Retry will try to
execute some endpoint several times (in this case, three
times are selected). When the first execution fails, some
time is given to the dependency microservice to switch the
execution container and try to execute the endpoint one
more time. The subsequent execution will likely be suc-
cessful. At least three tries are expected. There is no out-
age time in this case because the system tries to execute
the dependency code. This pattern works well with the
previous one. According to the model, this pattern is ap-
plied to each microservice with a dependency - MS1,
MS2, MS4, and MS6.

Table 2

Availability for the improved model with n=7 micros-
ervices, TotalTime=1440 minutes and Down-

timeEventTime=0.016 minutes
Down-

timeEventNum
TotalOperatingTime

(minutes) Availability

0 1440 100 %
1 1439,99 99,99 %
2 1439,99 99.99 %
3 1439,99 99.99 %
4 1439,99 99.99 %
5 1439,99 99.99 %
6 1439,99 99.99 %
7 1439,99 99,99 %

The third helpful pattern is the Response Caching

with predefined responses when failure appears. The data
may be prefetched and cached for specific cases for each
microservice. When some API endpoints do not need to
provide real-time updates or actual data at a particular
moment, this API may degrade functionality in a tradeoff
of reducing outage time. When some failure happens, or
even after the switch of containers, the system responds to
the client microservice with a cached response. The ser-
vice does not have an outage and recovery time in this
case. Only a network delay will happen to prefetch cached
response. As an assumption, it may take up to several
seconds or even less. For example, Redis provides high
throughput and access rates, so only network latency may
impact the overall cache request turnaround time. Accord-
ing to the model, this pattern is applied to each microser-
vice with a dependency - MS1, MS2, MS4, and MS6.
Therefore, availability is not impacted for microservices,
which have caching instances. On the other hand, this
approach impacts data consistency because the data in the
cache may not be up to date compared to the database
storage.

Load balancing will help with the availability of mi-
croservices. This approach needs additional deployments,
network configuration, and costs to balance. It forwards
the traffic to a set of replicated microservices instead of
one microservice, adding further complexity to the system
and maintaining the load balancer service and replicas of
the microservice. It distributes network traffic and bal-
ances resources across each microservice, enhancing
performance and availability. Load balancers are often
placed before a system's critical services or entry points.
As an assumption, load balancing may be used for MS4
because it has dependencies and may need more process-
ing power. A load balancer is a well-defined microservice
with its own configuration time.

A Rate limiter is a mechanism or software compo-
nent designed to control the rate of operations or requests
sent to or processed by a system, microservice, or API. Its
primary purpose is to ensure that the throughput of re-
quests does not exceed the system's capacity to handle
them, which can prevent system overload, ensure fair
usage, and maintain service availability. Rate limiting is
essential in scenarios where resources are limited and

An Approach to Improving Availability of Microservices for Cyber-Physical Systems 21

costly or when a sudden surge in traffic could lead to
service degradation or failure. The Rate limiter pattern
should be implemented within the microservice applica-
tion. As it is difficult to calculate the rate limiter's impact
on the system's availability without monitoring the spe-
cific details of the model in runtime, it is excluded from
the current calculation.

Fig. 3 presents the improved microservice architec-
ture for the model. Fig. 3 depicts that MS1, MS2, MS4-1,
MS4-2, MS4-3, and MS6 microservices contain a cache
instance for response caching, and a load balancer is
added before MS4-1, MS4-2, and MS4-3. Each microser-
vice contains logical containers within the application and
framework layer. Rate limiting and retry patterns should
be implemented within the code of the microservice appli-
cation.

In addressing the challenge of enhancing microser-
vice availability, reliability, and resilience, this work em-
phasizes the critical role of integrating resilience patterns
and strategies at the stage of new prototyping approaches
for CPS. Focusing on microservice and dependency fail-
ures proposes a robust approach to effectively minimize
outage and recovery times. The critical strategy involves
using specific containers within the framework, signifi-
cantly reducing outage times to nearly zero, and limiting
recovery times to about 1 second per instance. This ap-
proach is complemented by implementing patterns such as
Retry, Response Caching, and Load Balancing, each con-
tributing to the system's ability to maintain high availabil-
ity and withstand failures.

Fig. 3. Improved microservice architecture

Retry patterns eliminate outage times by facilitating
multiple execution attempts, ensuring service continuity.
Response Caching is an immediate fallback mechanism,
and load balancing distributes workload and prevents
resource saturation. Together, these strategies form a
comprehensive model for developing resilient microser-
vice architectures that are both highly available and cost-
effective.

VI. DISCUSSION
The inherently distributed nature of MSA introduces

significant complexities in service coordination, requiring
advanced orchestration tools and expertise to manage
inter-service dependencies and communications effec-
tively. Such complexities are compounded by CPS's real-
time and near-real-time operational demands, where net-
work latency and the need for instantaneous data consis-
tency and synchronization pose substantial obstacles to
maintaining system responsiveness and reliability.

Each of the proposed approaches and patterns pro-
vides some improvements to the system. However, they
also need some time for integration and experience in
system design to adapt and integrate them into the micros-
ervice system. Development time will be increased in
containerized code execution within the framework de-
scribed in the paper “An approach for automatic self-
recovery for a Node.js microservice” [8]. Caching pro-
vides faster responses even when a third-party service fails
but needs additional infrastructure management, including
machines and deployed instances of cache databases like
Redis. These additional overheads lead to increased costs.
Load balancing is similar in terms of infrastructure over-
head. Retry and rate-limiting patterns are commonly im-
plemented within the microservice code. Therefore, addi-
tional development and testing time is needed. These
challenges underscore the need for a deliberate, well-
considered approach to implementing MSA in CPS, bal-
ancing the architecture's inherent benefits with the com-
plexities it introduces.

VII. CONCLUSION
Maintaining availability and resilience against vari-

ous failures is paramount in the evolving the landscape of
microservices. This work has dissected the layers of po-
tential failure events within a microservice architecture,
ranging from cloud provider and infrastructure failures to
more granular levels, such as OS system-level failures,
microservice failures, and dependency issues. It shows
that while developers may have limited control over ex-
ternal cloud failures, they significantly influence micros-
ervice configurations, cloud resource management, and
implementing resilience patterns that can dramatically
enhance system reliability and availability.

An approach introduced is the wrapping (like a vir-
tual container) of the executed code within the microser-
vice framework, allowing for an automatic failover
mechanism that ensures minimal outage times by swiftly
switching execution to backup containers upon failure.

Oleh Chaplia, Halyna Klym, Anatoli I. Popov 22

According to the availability of the microservices system
with one failed microservice, it increased from the default
value of 99,95 % to at least 99,99 %. This strategy signifi-
cantly reduces outage time and offers a cost-effective
solution to infrastructure redundancy without requiring
extensive redevelopment across different programming
frameworks.

Integrating resilience patterns such as Retry, Re-
sponse Caching, and Load Balancing fortifies the system
against failures. The Retry pattern eliminates outage time
by attempting operation executions multiple times, allow-
ing dependent services to recover seamlessly. Similarly,
Response Caching provides immediate fallback responses
to ensure uninterrupted service, even during backend
failures. Load Balancing distributes traffic and computa-
tional load evenly across service instances, thereby pre-
venting outages due to resource overutilization and en-
hancing overall system performance and availability.

This comprehensive model of incorporating patterns
into microservice architectures offers a robust framework
for developing highly available and resilient systems. It
underscores the necessity of adopting a multi-faceted
approach to system design that anticipates and mitigates
potential failures at every level of the service stack. By
doing so, developers can ensure that microservices survive
in the face of disruptions and thrive, maintaining opera-
tional integrity and providing uninterrupted service to
users. This model, represented by an improved architec-
ture diagram, serves as a blueprint for future develop-
ments in microservice resilience, promising a more stable,
efficient, and reliable ecosystem for software applications.

References
[1] Tyagi A. K., N. Sreenath., (2021). Cyber physical systems:

analyses, challenges and possible solutions, Internet of
Things and Cyber-Physical Systems, vol. 1, pp. 22–33,
DOI: 10.1016/j.iotcps.2021.12.002.

[2] Serôdio C., Mestre P., Cabral J., Gomes M., Branco F.,
(2024). Software and architecture orchestration for process
control in Industry 4.0 enabled by cyber-physical systems
technologies, Applied Sciences, vol. 14, p. 2160, DOI:
10.3390/app14052160.

[3] Pontarolli R. P., Bigheti J. A., De Sá L. B. R., Godoy E. P.,
(2023). Microservice-oriented architecture for Industry 4.0,
Eng, vol. 4, no. 2, pp. 1179–1197, DOI:
10.3390/eng4020069.

[4] Mena M., Criado J., Iribarne L., Corral A., Chbeir R.,
Manolopoulos Y., (2023). Towards high-availability cy-
ber-physical systems using a microservice architecture,

Computing, vol. 105, no. 8, pp. 1745–1768, DOI:
10.1007/s00607-023-01165-x.

[5] Fritzsch J., et al., (2023). Adopting microservices and
DevOps in the cyber‐physical systems domain: A rapid
review and case study, Software: Practice and Experience,
vol. 53, no. 3, pp. 790–810, DOI: 10.1002/spe.3169.

[6] Kniazhyk T., Muliarevych O., (2023). Cloud computing
with resource allocation based on ant colony optimization,
Advances in Cyber-Physical Systems, vol. 8, no. 2,
pp. 104–110, DOI: 10.23939/acps2023.02.104.

[7] Malik M. I., Ibrahim A., Hannay P., Sikos L. F., (2023).
Developing resilient cyber-physical systems: a review of
state-of-the-art malware detection approaches, gaps, and
future directions, Computers, vol. 12, no. 4, p. 79. DOI:
10.3390/computers12040079.

[8] Chaplia O., Klym H., (2023). An approach for automatic
self-recovery for a Node.js microservice in 2023 13th In-
ternational Conference on Dependable Systems, Services
and Technologies (DESSERT), Athens, Greece, pp. 1–4.
DOI: 10.1109/DESSERT61349.2023.10416461.

[9] Yin K., Du Q., (2020). On representing resilience require-
ments of Microservice Architecture Systems, arXiv. DOI:
10.48550/arXiv.1909.13096

[10] Amaro R., Pereira R., Da Silva M. M., (2024). DevOps
metrics and KPIs: a multivocal literature review, ACM
Computing Surveys, vol. 56, no. 9, pp. 1–41. DOI:
10.1145/3652508.

[11] Boor M. V., Borst S. C., Van Leeuwaarden J. S. H., Muk-
herjee D., (2022). Scalable load balancing in networked
systems: a survey of recent advances, SIAM Review, vol.
64, no. 3, pp. 554–622. DOI: 10.1137/20M1323746.

[12] Bernal A., Cambronero M. E., Núñez A., Cañizares P. C.,
Valero V., (2022). Evaluating cloud interactions with costs
and SLAs,” The Journal of Supercomputing, vol. 78, no. 6,
pp. 7529–7555. DOI: 10.1007/s11227-021-04197-2.

[13] Aldalur I., Arrieta A., Agirre A., Sagardui G., Arratibel M.,
(2024). A microservice-based framework for multi-level
testing of cyber-physical systems, Software Quality Jour-
nal, vol. 32, no. 1, pp. 193–223. DOI: 10.1007/s11219-
023-09639-z.

[14] Islam Md. M., Bhuiyan Z. A., (2023). An Integrated scal-
able framework for cloud and IoT based green healthcare
system, IEEE Access, vol. 11, pp. 22266–22282, DOI:
10.1109/ACCESS.2023.3250849.

[15] Ward G., Janczewski L., (2022). Investigating data risk
considerations in emergent cyber physical production sys-
tems, Journal of Systemics, Cybernetics and Informatics,
vol. 20, no. 2, pp. 51–62, DOI: 10.54808/JSCI.20.02.51.

[16] Naqvi M. A., Malik S., Astekin M., Moonen L., (2022).
On evaluating self-adaptive and self-healing systems using
chaos engineering, in 2022 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems
(ACSOS), pp. 1–10. DOI:
10.1109/ACSOS55765.2022.00018.

Oleh Chaplia was born in
Lviv, Ukraine. He is a PhD student in
the Specialized Computer Systems
Department at Lviv Polytechnic
National University, where he re-
ceived his B.S. and M.S. degrees in
Computer Engineering.
After completing his master's degree
in 2015, he has been working in the
software engineering field. He has
extensive commercial experience

designing and developing enterprise-grade cloud solutions in-
corporating innovative technologies, state-of-the-art approaches,
and high-quality system architecture.

His research interests include emerging cloud computing
technologies, distributed systems, microservices, artificial intel-
ligence, and software architecture.

An Approach to Improving Availability of Microservices for Cyber-Physical Systems 23

Halyna Klym - doctor of tech-
nical sciences, professor, professor of
the department of Specialized Com-
puter Systems of the Institute of
Computer Technologies, Automation
and Metrology of Lviv Polytechnic
National University.

In 2008, she received a degree
of Doctor of Philosophy in the spe-
cialty: Physical and Mathematical
Sciences at Ivan Franko Lviv Na-
tional University.

In 2016, she received a Doctor of Science degree in Tech-
nical Sciences at Lviv Polytechnic National University. She
conducts lecture courses on the design of ultra-large integrated
circuits and methods and means of automated design of com-
puter systems. She is an author of more than 170 scientific arti-
cles in international publications.

Anatoli I Popov is a Doctor of
Physics, Senior scientist at the Insti-
tute of Solid State Physics, Univer-
sity of Latvia, one of the world’s
leading experts in the field of solid-
state radiation physics, sensor mate-
rials for cyber-physical systems, a
board member of Crystal Clear Col-
laboration at CERN, board member
of Enabling Research Projects on
Materials, EUROfusion, is an author

and co-author of more than 250 articles (Scopus), including
articles from the first quartile Q1 (Scientific Reports, Ceramics
International, Surfaces and Interfaces, Journal of Materials
Chemistry C, Nanomaterials, Symmetry, Journal of Materials
Research and Technology, Journal of Nuclear Materials). In
total, over the past 5 years, according to SCOPUS, 104 articles
have been published.

