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Abstract: This paper proposes an improvement of the 
McEliece asymmetric cryptosystem based on code-based 
cryptography by replacing the permutation matrix with a 
modulo operation and using a finite field GF(q).  

This approach increases the complexity of the decryption 
process for potential attackers, providing a high level of 
cryptographic security without changing the length of the 
key. The article provides a diagram of the improved opera-
tion of the cryptosystem and describes examples of applica-
tion. An analysis of the number of possible combinations of 
matrices has been carried out for different implementation 
options of code (7,4) based on different numerical systems. It 
has been shown that achieving cryptographic security com-
parable to the original McEliece cryptosystem requires the 
use of q ≥ 5. 

Index Terms: asymmetric cryptosystem, code-based cryp-
tography, computational complexity, data encryption, finite 
field.  

I. INTRODUCTION
Asymmetric cryptosystems play a crucial role in en-

suring the security of electronic communications, financial 
transactions, and the storage of confidential information. 
However, with the development of quantum computing 
technologies, standard asymmetric cryptosystems such as 
RSA and ECC become vulnerable to potential attacks 
using quantum computers, which can efficiently solve the 
problems of factorization and discrete logarithms [1]. 
Therefore, the development and research of post-quantum 
cryptographic algorithms are currently a relevant task. 

One of the promising directions in this field is the 
development and improvement of code-based cryptosys-
tems, which are characterized by a high level of security 
due to the complexity of attacks using coding theory. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Code-based cryptography is considered one of the 
potential directions for post-quantum cryptography be-
cause of its resilience to quantum computing. It utilizes 
the properties of algebraic codes to create cryptographic 
algorithms that remain secure even in the face of attacks 
using quantum computers. The McEliece cryptosystem, 
known for its resilience, is one of the most extensively 
researched code-based cryptographic systems. 

The work [2] explores the possibilities of using 
code-based cryptography for multiparty computations and 
digital signatures. The proposed algorithms based on the 
McEliece cryptosystem and its modifications demonstrate 
high resilience to both classical and quantum attacks and 
efficiency in terms of key size and computation time. 

In [3], concrete implementations for representation-
based Information Set Decoding (ISD) algorithms, such as 
May-Meurer-Thomae (MMT) or Becker-Joux-May-
Meurer (BJMM), optimized for the McEliece and quasi-
cyclic schemes like BIKE and HQC are introduced. De-
spite higher memory consumption compared to naive ISD 
algorithms, such as P range, MMT and BJMM offer sig-
nificant speedups for practical cryptanalysis on medium-
sized instances. The paper provides record computations 
for McEliece-1223 and McEliece-1284, as well as for 
quasi-cyclic settings up to a code length of 2918. Based on 
these computations, the paper extrapolates the bit-security 
levels of proposed BIKE, HQC, and McEliece parameters 
in NIST’s standardization process.  

In [4], proposes to use non-cyclic noise-resistant 
codes on elliptic curves in a modified McEliece cryptosys-
tem. The main criteria for constructing a modified crypto 
code based on the McEliece scheme on elongated elliptic 
codes are investigated. 

In [5], an enhancement of the McEliece cryptosys-
tem is presented by using sparse matrices, quantum resis-
tant codes, and quantum key distribution (QKD) algo-
rithms. An improved algorithm is proposed that combines 
various cryptographic methods such as homomorphic 
encryption and salted hashing, contributing to increased 
resilience of the cryptosystem against quantum and classi-
cal attacks. 

In [6], a realization of the McEliece cryptosystem is 
proposed using the construction (C1, C1+C2) to generate 
a new code from two arbitrary linear codes. The proposed 
approach achieves a high level of security and reduces the 
key size by 25% compared to the classical McEliece im-
plementation.  

The paper [7] the algorithm for generating message 
authentication codes using a McEliece’s cryptosystem 
based on universal hashing functions have been investi-
gated. 
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III. SCOPE OF WORK AND OBJECTIVES 
The aim of this work is to improve public key gen-

eration efficiency and cryptographic security by expand-
ing the range of code word combinations through modular 
arithmetic, thereby increasing difficulty for attacks and 
requiring more computing resources. 

IV. INVESTIGATION OF THE CLASSICAL 
MCELIECE CRYPTOSYSTEM 

The main principles of the McEliece cryptosystem 
involve the utilization of cyclic codes that complicate 
decoding. The classical cryptosystem is implemented 
based on Goppa codes [8], which are efficient in terms of 
algorithmic operations. However, in certain cases, Ham-
ming codes [9-10] may be more efficient or simpler to 
implement compared to more complex Goppa codes. The 
structure of Hamming codes facilitates their implementa-
tion, especially in conditions of limited computational 
resources, and can hinder attacks, which is important in 
the context of cryptographic applications. Hamming codes 
are efficient in error detection and correction, making 
them suitable for applications where data transmission 
encounters interference. 

The message exchange scheme between the sender 
and the receiver in such a system (Fig.1) occurs as follows 
[11,12]. 

 

 
Fig. 1. McEliece coding scheme 

1) Initialization:  
• sender and receiver generate public and private keys; 
• public keys are formed from generator matrices G_s 

and G_r respectively, which are generators of codes for 
the sender and receiver, and from scrambler matrices S_s 
and S_r for altering the characteristics of the transmitted 
message; 

• private keys are represented by the permutation ma-
trices P_s and P_r. 

2) Encryption of message:  
• the sender encrypts the message m for the receiver 

using their public key G'_r and obtains the encrypted 
message x;  

• the sender selects a random error vector e and com-
putes exy += ; 

• the encrypted message y with error vector e is sent to 
the receiver. 

3) Message decryption: 
• the receiver gets the encrypted message y and the er-

ror vector e; 

• the receiver computes 1_ −=′ ryPx , where 1_ −rP  
is a part of their private key used to restore the bit order in 
the received message;  

• by performing 
1_ −′ rSx , the receiver can recover 

the original message m. 
The complexity of the cryptosystem's operation can 

be characterized by the following criteria: 
1) Temporal complexity determines how the execu-

tion time of the algorithm changes depending on the size 
of the input data. In the McEliece system, it is determined 
by the size of matrices and vectors, as well as the need to 
perform computationally complex operations over Galois 
fields. 

2) Hardware complexity determines the amount of 
memory, computational resources required for executing 
the algorithm. In the case of McEliece, the memory re-
quired to store matrices, vectors, and other intermediate 
data can be significant, especially for large key sizes. 

3) Cryptographic complexity determines the algo-
rithm's resistance to cryptographic attacks. This parameter 
in the McEliece system is determined by the complexity 
of recovering the private key based on the public key, 
which is based on solving the code decoding problem, 
which is NP-hard. 

4) Computational complexity is determined by the 
number and complexity of operations required to encrypt 
and decrypt data. Since McEliece is based on algebraic 
operations over matrices and Galois fields, its complexity 
includes algebraic operations such as matrix multiplica-
tion, inversion of elements in the Galois field, etc.  

The listed criteria are important to assess the effi-
ciency and suitability of the algorithm for practical use. 
Each criterion affects the overall complexity of the en-
cryption algorithm. For example, an algorithm with high 
cryptographic complexity may be more costly in terms of 
time and hardware complexity. Therefore, when develop-
ing a cryptographic algorithm, it is necessary to balance 
between different aspects to ensure an effective and secure 
operation. 

Fig. 2 illustrates the operation algorithm of the McE-
liece cryptosystem in its classical implementation using 
Hamming codes. 

The key generation process exhibits the highest tem-
poral and computational complexity among cryptographic 
algorithms. This happens because this process typically 
involves generating a large number of random bits or 
numbers and performing operations with large data vol-
umes. To determine the time required to generate the code 
generator matrix G, the permutation matrix P, and the 
scrambler matrix S, as well as computing the inverse ma-
trices 1−P  and 1−S , algorithmic complexity analysis can 
be used. 

Estimating the complexity of generating an nn×  
matrix takes into account the fact that each element in 
every row and column needs to be modified. Since the 
number of rows and columns is equal to n, the total num-
ber of elements to be modified is 2n . Thus, the complex-
ity of generating such a matrix is assessed as )( 2nO . 
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Fig. 2. Scheme of the operation of the cryptosystem  

in the classical implementation 

To ensure the possibility of decoding a codeword, 
certain conditions must be met:  

− the generated matrix must be square; 
− its determinant must not be zero. 

This condition ensures the existence of an inverse 
matrix, which is crucial to recovering the original message 
during decryption. Various algorithms are used to com-
pute the inverse matrix, such as the Gauss-Jordan method 
or the LU decomposition method.  

The overall complexity of computing the inverse 
matrix amounts to )( 3nO , where n is the size of the ma-
trix or vectors in the respective operations. Therefore, the 
total time to generate the matrix and computing its inverse 
appears as )()()( 332 nOnOnO =+ ,since 3n  dominates 
over 2n  for sufficiently large values of n. 

In the case where 0)det( =matrix , the matrix is sin-
gular, and lacks an inverse matrix. This situation may 
occur if one of the matrix rows is a linear combination of 
other rows. 

Considering the possibility of generating singular 
matrices, the time for generating and computing matrices 
for key formation will depend on the specifics of generat-
ing and processing singular cases. Therefore, it is neces-
sary to consider cases where: a valid matrix is generated, 
which can be inverted; a singular matrix is generated, 
which requires additional processing. 

Taking this into account, we can estimate the time it 
takes to generate and compute the inverse matrix, consid-
ering the possibility of generating singular matrices. The 
need for additional checks for singularity may affect the 
generation time. Thus, the formula for the matrix genera-
tion time can be expressed as ))(( nfO , where )(nf  is a 
function that accounts for the additional singularity check. 

So, the general formulas for estimating time for each 
case can be as follows:  

− for matrix generation: ))(( nfO ; 

− for computing the inverse matrix: )( 3nO  or 
))(( ngO , depending on the singularity of the input ma-

trix, where g(m) is the complexity of additional processing 
of the singular matrix. 

Generation of the G code generator matrix is based 
on algorithms that utilize the characteristics of Hamming 
codes to ensure error correction during transmission over 
communication channels. The formation occurs without 
significant time costs and does not affect the overall algo-
rithmic time.  

The scrambler matrix S is formed using random or 
pseudo-random numbers to create variation parameters 
that affect the properties of the transmitted message, with 
the aim of improving the reliability or security of trans-
mission. This matrix must satisfy the invertibility condi-
tion to ensure the possibility of recovering the original 
message during decryption.  

In the case of generating matrices in a modular 
arithmetic system (mod p), with an increase in the base p, 
the number of possible element values also increases. 
Thus, expanding the range of possible values from 0 to 

1−p  promotes diversity in valid matrices, potentially 
reducing the time required for their generation. 

The results of experimental research on the number 
of iterations for forming the matrix S ( kk × ), where k=4, 
with values of p = 2, 5, 7, 13 are presented in Table 1.  

Table 1 

The number of iterations to form the matrix S  
at various values of p  

Experiment mod(2) mod(3) mod(5) mod(7) mod(13) 

1 9 10 1 1 1 
2 17 9 3 2 2 
3 2 4 3 1 1 
4 91 12 1 1 2 
5 12 1 4 3 1 
6 7 3 1 1 1 
7 22 12 4 1 1 
8 14 10 1 1 1 
9 15 1 3 2 1 
10 34 2 3 1 1 
11 38 8 6 5 1 
12 12 3 3 1 2 
13 76 1 1 2 1 
14 6 10 4 3 1 
15 88 5 2 2 1 
 

To analyze Table 1, let us check the average number 
of iterations for each value of p:  

For p = 2: аverage number of iterations: 443/15 ≈ 
≈ 29,533. 

For p = 3: аverage number of iterations: 91/15 ≈ 
≈ 6,07. 

For p = 5: аverage number of iterations: 40/15 ≈ 
≈ 2,67. 
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For p = 7: аverage number of iterations: 27/15 ≈ 
≈ 1,87. 

For p = 13:аverage number of iterations: 18/15 ≈ 1,2. 
Based on the data in Table 1, a graph (Fig.3) depicts 

the average number of iterations to form the matrix S at 
different values of p has been constructed. 

From the graph in Figure 1, the following conclu-
sions can be drawn: the number of iterations is the highest 
when p = 2, and the lowest number of iterations is ob-
served when p = 13, indicating the efficiency of the matrix 
S generation process with increasing p.  

 

 
Fig. 3. Average value of the number of iterations  

of the formation of the matrix S at different values p. 

The analysis demonstrates that the generation of ma-
trix S depends on the size of the field represented by the 
parameter p. According to the experimental results, as the  

value of p increases (from 2 to 13), the generation time of 
the scrambler matrix decreases. This can be explained by 
the fact that with an increase in the size of the field, the 
number of available elements to form the matrix S in-
creases.  

The increased possibilities for selecting element val-
ues in the field allow for more effective creation of the 
scrambler matrix, leading to reduced computational and 
time complexity, and consequently requiring fewer com-
putational resources. Generation of the permutation matrix 
P, designed to change the order of bits of the codeword 
before processing or transmission, is typically carried out 
using random or pseudorandom methods. This ensures an 
effective shuffling of elements in the input vector or mes-
sage. Regardless of the base of the numbering system, the 
elements of this matrix usually take values of 0 or 1. Ma-
trix P must also satisfy the invertibility condition to allow 
the restoration of the original vector or message after 
permutation. 

The size of matrix P, nn ×  where n is the length of 
the codeword, is the largest among the necessary matrices, 
since this size allows for a complete permutation of all 
elements of the codeword. 

Table 2 presents the results of the experimental re-
search on the duration t (seconds) and the number of itera-
tions i required to find the necessary matrix P at different 
values of n=7, 8, 9, 10, 15. 

 

Table 2 

Parameters for generating matrix P at different values of n 

n=7 n=8 n=9 n=10 n=11 n=12 n=14 n=15 № 
t i t i t i t i t i t i t i t i 

1 0,018 278 0,005 94 0,017 356 0,470 5010 0,304 2899 2,36 21874 35,253 251407 10,657 68506 
2 0,008 183 0,030 717 0,019 373 0,003 12 0,142 1333 0,164 1495 2,242 15888 91,810 584384 
3 0,007 156 0,028 630 0,095 2140 0,159 1669 0,400 3864 3,442 32225 2,6 18665 26,059 166279 
4 0,005 137 0,009 200 0,007 143 0,657 7037 1,944 18893 5,445 50780 6,548 44968 5,081 32724 
5 0,013 308 0,020 460 0,043 948 0,312 3343 1,535 14889 1,1 10292 9,600 65684 84,027 538807 
6 0,005 108 0,023 525 0,022 457 0,899 9581 1,207 11609 3,445 31888 10,978 79292 19,478 125218 
7 0,004 91 0,006 125 0,067 1422 0,142 1510 0,584 5665 1,52 14052 3,553 25507 16,422 105311 
8 0,002 58 0,004 73 0,037 778 0,283 3009 0,587 5694 0,447 4175 34,764 249912 211,017 1354150 
9 0,003 56 0,011 249 0,047 1049 0,168 1764 1,473 14193 1,72 15941 12,672 90782 31,401 202215 

10 0,007 151 0,014 312 0,037 796 0,843 8891 2,948 28539 0,341 3159 19,526 140877 21,198 132289 
11 0,013 143 0,073 1789 0,057 1218 0,086 917 0,116 1074 1,437 13363 15,71 111937 42,331 301174 
12 0,002 13 0,012 284 0,090 1952 0,426 4626 2,681 27199 0,041 364 42,331 301174 42,756 305723 
13 0,002 52 0,030 713 0,060 1243 0,245 2630 0,440 4469 0,801 7517 42,756 305723 12,24 88117 
14 0,014 356 0,004 67 0,014 288 0,464 5052 0,309 3130 4,005 37687 12,24 88117 37,864 270913 
15 0,007 151 0,014 312 0,037 796 0,843 8891 1,113 11278 0,892 8336 37,864 270913 42,331 301174 

 
The data in Table 2 demonstrate the dependence of 

time and computational complexity on the size of matrix 
n. As it is evident from the data, for smaller values of n (7, 
8, 9), the duration t is insignificant, but it increases with 
increasing n. For example, for n = 7, the duration varies 
from 0,002 to 0,018 seconds, whereas for n = 15, it ranges 
from 5,081 to 211,017 seconds. Judging from this, it can 
be concluded that increasing the size of the n matrix P 
leads to an increase in the time complexity of the algo-
rithm. 

Table 2 also illustrates that the number of iterations i 
increases with the increase in n. For example, for n = 7, 
the number of iterations required to generate matrix P 
ranges from 13 to 356, while for n = 15, it ranges from 
32,724 to 1,354,150. This is explained by the fact that as 
the value of n increases, the complexity of searching for a 
valid permutation matrix P also increases, requiring more 
iterations to find the optimal solution. Consequently, this 
leads to an increase in the computational complexity of 
the encryption algorithm. 
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To analyze Table 2, let us calculate the average 
value of the number of iterations for each value of n. 

For n = 7: 
аverage number of iterations: 2222/15 ≈ 148,133. 
For n = 8: 
аverage number of iterations: 6281/15 ≈ 418,733. 
For n = 9: 
аverage number of iterations: 14730/15 ≈ 982,0. 
For n = 10: 
аverage number of iterations: 65871/15 ≈ 4391,4. 
For n = 11: 
аverage number of iterations: 154728/15 ≈ 10325,2. 
For n = 12: 
аverage number of iterations: 253148/15 ≈ 16876,53. 
For n = 14: 
аverage number of iterations: 2060846/15 ≈ 

≈ 137389,7. 
For n = 15: 
аverage number of iterations: 4486117/15 ≈ 

≈ 299074,467. 
Based on the data in Table 2, a graph (Fig.4) shows 

the average number of iterations to form the matrix P at 
different values of n has been constructed. 

 

 
Fig. 4. Average number of iterations form matrix P  

at different values of n is shown below. 

From the graph in Fig. 2, it can be observed that in-
creasing the value of n leads to a significant increase in 
the number of iterations required for generating the per-
mutation matrix P. This can pose significant challenges in 
computational tasks, especially at large values of n, and 
may require substantial computational resources for effi-
cient matrix generation. 

The increase in time and computational complexity 
with the increase in the size of the codeword leads to 
higher hardware complexity, necessitating greater compu-
tational power and resources for the generation process. 

The analysis carried reveals that the operation of 
forming matrix P is characterized by the highest temporal 
and computational complexity between all stages of the 
algorithm. This is due to additional requirements for the 
matrix, including having only one unit in each row, and all 
other elements being zeros.  

The formation of such a matrix requires random or 
pseudo-random selection of combinations and permuta-
tions, which can lead to significant computational over-
head. Therefore, optimizing this stage of the algorithm can 
improve the overall speed of the encryption or transmis-
sion system. 

V. IMPROVEMENT OF THE ENCRYPTION METHOD  
Replacing the operation of forming the permutation 

matrix, which requires the most resources, with the opera-
tion of modulo and computing the inverse matrix of the 
scrambler  

)(mod1 pS − ,     (1) 

allows for ensuring high cryptographic security of the 
encryption algorithm. This approach complicates the 
decryption process for potential attackers. 

The following is the scheme of the enhanced opera-
tion of the cryptosystem as illustrated in Fig.5. 

Replacement of the operation of forming the permu-
tation matrix P with the operation of modulo p brings 
several advantages. Computing (1) is a less resource-
intensive process compared to generating the permutation 
matrix P, leading to improved encryption efficiency. 

 

 
Fig. 5. The scheme of the proposed encryption method 

The utilization of modular operations and computing 
inverse matrices modulo p is based on the properties of 
algebraic structures, ensuring a high level of mathematical 
security in the encryption system. 

Modular operations can be applied across a wide 
range of cryptographic algorithms and encryption sys-
tems, providing versatility and universality. 

Example: Let the original message have a length of k 
= 4 information bits 

m = [10, 5, 7, 2]. 
To transmit it, we will use a Hamming code (7, 4). 

For this, it is necessary to add r = 3 parity bits to each 
four-bit block, as this satisfies the condition  

12 ++≥ rkr ,      (2) 

to ensure detection and correction of errors in the mes-
sage 13424 ++≥ . 

Therefore, the original message m will be trans-
formed into a codeword x with a length of 7 bits. 
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At the initialization stage, we generate matrices G 
and S using a number system with a base of 13. As a re-
sult, we obtain the following: 



















=

1001011
0101010
0011001
0000111

G

, 



















=

1210
11983
31059
0402

S

. 
To form the public key, we need to compute  

)(mod pSGG =′      (3). 

As a result (3), we obtain the following: 



















=′

1214032
119823109
31055994
0404262

G

. 
To create the private key, we will compute (1), and 

we will obtain: 



















=−

6906
91255
36310
82310

1S

. 
During the encryption stage, after the encryption  

Gmx ′= ,   (4) 

we obtain the codeword 
x = [107, 181, 86, 87, 83, 157, 94]. 
After adding the error vector e = [0, 0, 0, 0, 0, 0, 8] 

by exy += , we get: 
y = [107, 181, 86, 87, 83, 157, 101]. 
During the decryption stage, we perform the opera-

tion )(modpy  and obtain: x ′ = [3, 12, 8, 9, 5, 1, 10]. 
The determination of the position ai and the error 

size v is performed by computing the checksums, resulting 
in ai = 7 and v = 5.  

After correction of error, we obtain the following  
x ′  = [3, 12, 8, 9, 5, 1, 3]. 
By performing  

)(mod1 pSxm −′= ,       (5) 

we obtain the original message. 

VI. THE CRYPTOGRAPHIC RESILIENCE  
OF THE PROPOSED METHOD 

The number of possible codewords during data 
transmission in the McEliece cryptosystem depends on the 
number of information bits and can be calculated using the 

formula kp , where k is the number of information bits, 
and p is the base of the numeral system. The scrambler 
matrix S and the permutation matrix P are used to enhance 
the resilience of the code. They affect the number of pos-
sible codewords by changing the structure and properties 
of the codeword. 

The total number of scrambler matrices S with size 
kk × , where k is the number of information bits in the 

original message, is kkp × , since each element of the 
matrix can take any possible value from 0 to 1−p .  

The size of the permutation matrix P of size nn × , 
where n is the number of bits in the codeword, has a spe-
cific structure where there is only one unity in each row of 
the permutation matrix and the rest of the elements are 
zeros. This condition, allows for an efficient permutation 
of the code word bits. This is particularly useful in crypto-
graphic applications where ensuring the security of infor-
mation transmission is crucial. 

Such a structure enables the permutation of code 
word bits to be performed easily without loss of informa-
tion. Each unity in a row of the matrix indicates the posi-
tion at which the corresponding position in the output 
vector will be moved. Other positions containing zeros 
remain unchanged. 

This condition is essential for ensuring the proper 
functioning of encryption and decryption algorithms, such 
as the McEliece cryptosystem, where the permutation 
matrix is used to shuffle bits before transmission and to 
restore them on the receiver's side. To find the maximum 
possible number of such permutation matrices, we need to 
consider the number of ways we can arrange the 1s in 
each row so such that only one 1 appears, and the rest are 
0. 

For the first row, there are n options to place 1. Once 
the position of the 1 in the first row is determined, there 
are (n-1) options left for placing the 1 in the second row 
(since it cannot occupy the same column as the 1 in the 
first row). Continuing this pattern, the number of options 
placing of the 1 in each subsequent row decreases by 1. 

Therefore, the total number of such permutation ma-
trices is the product of the number of options for each row, 
which can be expressed as: 

1...)2()1( ⋅⋅−⋅−⋅ nnn .    (6) 

Expression (6) is equivalent to n! 
The total number of possible combinations of matri-

ces S and P, without considering the condition of their 
invertibility, is  

!np kk ⋅× .     (7) 

Comparison of implementation options for the (7,4) 
code: 

- Base 2 numbering system:  
The number of possible combinations for the scram-

bler matrix 6553622 1644 === ×S , as each element of 
the matrix can be 0 or 1, and the scrambler matrix has a 
size of 4×4. 



Alina Davletova, Vasyl Yatskiv, Stepan Ivasiev, Mykola Karpinskyі 30 

The number of possible combinations for the permu-
tation matrix 50407!P == , since for the 7×7 permuta-
tion matrix, each row can contain only one 1, and this 1 
can be in any of the 7 positions. 

- Base q numbering system:  
The number of possible combinations for the scram-

bler matrix 1644 qqS == × , as each element of the matrix 
can take values from 0 to 1−q , and the scrambler matrix 
has a size of 4×4.  

To achieve a greater number of possible combina-
tions than (7), it is necessary to choose a value for q that 
satisfies the condition  

!nkkpkkq ×>× .     (8) 

For example, for the (7,4) code, where p = 2 (for the 
binary numbering system), the size of the scrambler ma-
trix k = 4, and the size of the permutation matrix n = 7. 
Therefore, after substituting the known values, we get the 
following inequality: !72 4444 ⋅> ××q  

Now we need to find the value of q that satisfies this 
inequality:  

50406553616 ⋅>q ; 056088,416 >q . 
Therefore, to achieve a greater number of possible 

combinations in the proposed implementation of the 
cryptosystem compared to the classical McEliece crypto-
system, we need to choose a value of 5=q . 

VII. CONCLUSION 
The paper proposes an enhancement to the McEliece 

asymmetric cryptosystem by replacing the permutation 
matrix with modulo operation and using a finite field 
GF(q). It is demonstrated that achieving cryptographic 
security analogous to the McEliece cryptosystem requires 
using 5≥q .  

This enhancement aims to improve the efficiency of 
public key generation operations and increase crypto-
graphic security by expanding the number of possible 
combinations of codeword elements. The use of modular 
arithmetic extends the space of possible combinations, 
making attacks more difficult and requiring greater com-
putational effort. 

The proposed approach combines technical effi-
ciency with a high level of security, making it potentially 
promising for practical applications in various fields of 
information security, particularly for data protection in 
cyber-physical and embedded systems. 
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