
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 1, 2024

CONFIGURING THE STRUCTURE OF THE SERVERLESS SYSTEM
FOR EFFICIENT DATA COLLECTION

Oleksandr Demidov, Oksana Honsor

Lviv Polytechnic National University, 12, Bandera Str., Lviv, 79013, Ukraine.
Authors’ e-mails: oleksandr.s.demidov@lpnu.ua, oksana.y.honsor@lpnu.ua

https://doi.org/10.23939/acps2024.01.039

Submitted on 31.03.2024

© Demidov O., Honsor O., 2024

Abstract: Due to the constant development of infor-
mation technology and the increasing volume of digital
data, the concept of serverless systems has become
relevant and promising in the field of software devel-
opment. Serverless systems, also known as Serverless,
are a new approach to deploying and managing appli-
cations. Developers can focus on developing functions
without spending extra time managing servers and
infrastructure. This approach is appropriate for vari-
ous applications, including data processing, and is
particularly useful for collecting and processing spe-
cialized data. However, there are numerous solutions
and architectures available for data collection that
cater to different data structures and requirements.
The challenge is to select the most appropriate one and
implement it for your specific use case.

Index terms: Data-collecting, Serverless Systems,
AWS, Cloud, Architecture

I. INTRODUCTION
Data collection, aggregation, and storage are essential

components of most programs, projects, or services [1]. The
demand for data from various sources is increasing due to
the emergence of new developments, research, and expan-
sion of existing services. In particular, machine learning
requires the use of large datasets. Even relatively simple
solutions require terabytes of datasets to train their models
[2, 3]. In modern machine learning solutions, the primary
challenge lies not in the algorithms themselves, but in the
efficient collection, transformation, and aggregation of data.

Data collection can be a complex process with many
steps and obstacles to consider. The specific steps vary
depending on the type of data being collected and its in-
tended use. Generally, data collection systems follow a
logical sequence of steps. First of all, any collection starts
with trigger collection execution. This can be initiated by
various sources, ranging from manual triggers to cloud-
based events or web hooks. Then, system usually updates
the state of application (if it exists). Data collection appli-
cations typically have a database for storage of application
status and data collection progress. The next step is execu-
tion the handling logic to obtain data collection parameters
and create a folder or space on disk to store data collected
from an external data source. Also, in this step, transfer

the computation task to the actual workers who collect and
store data, usually occurs. In case of failure, invoke a
handler to check if the retry is possible and necessary at
this time. As a result of its execution application should
get either a new scheduled task or start execution of a new
worker to retry the failed part of data collection. Finally,
when all workers have finished their jobs, there should be
a validation of the data integrity that was just collected. If
everything worked successfully, the application state in
the database should also be updated.

Start data aggregation logic parts, which are more de-
pendent on project specifics. This may include data trans-
formation for the corresponding model or obtaining statis-
tics for the data. Alternatively, submit it to a machine-
learning solution. So, for each of the goals mentioned
above, developers would like to have some clear and sys-
tematic solution. While the data acquisition algorithm may
be case-specific, the overall architecture can be reused and
unified. It is worth noting that serverless systems [4] de-
serve special attention as they offer a new approach to ap-
plication deployment and management. This allows devel-
opers to focus on feature development without spending
extra time on managing servers and infrastructure [5]. This
progressive direction is displacing the approach of installing
physical servers, so when tackling the task of improving
data collection efficiency, it is necessary to focus on im-
plementing it in serverless systems.

The following architecture and results of its imple-
mentation can also be used in cyber-physical systems
since they also frequently require data collection. Modern
cyber-physical systems are usually integrated with the
cloud, if it’s possible, so a lot of them are using serverless-
like systems to operate. For those systems, proposed ar-
chitecture may bring high level of integration and better
reliability, security and traceability. For example, a lot of
cyber-physical real-time data devices want to fetch data
and with the usage of proposed data collection architec-
ture and real-time data streams (such as Amazon Kinesis
Datastream for example) can bring fully working solution
to mentioned use case.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

When designing a quality data collection system, it is
important to consider two key areas: architecture and

Demidov Oleksandr, Honsor Oksana 40

algorithms for data processing and aggregation. Algo-
rithms are more case-specific and cannot be generalized as
they change depending on different circumstances. There-
fore, it is advisable to focus on architecture and its com-
ponents.

To improve data collection, it is recommended to
start by considering a flawed solution. Using basic and
non-adaptive examples can help identify the problems that
need to be addressed. For instance, let's consider a sce-
nario where a user needs to collect data from various
Internet resources using a public API and their own set of
servers. In this case, data is collected using the default
HTTP client and stored randomly in chunks named with a
timestamp when the data is downloaded. The data is then
saved on the hard drives of the servers. Assuming that the
data collected must be transferred to another system in a
structured manner for the machine learning process. It is
important to consider potential issues that may arise with
this approach. Therefore, it is worth considering them in
more detail and exploring possible solutions through a
better-structured architecture.

Scalability – almost each architecture solution
should worry about it. Without scalability, sooner or later
architecture becomes irrelevant, especially in field of
modern data collection systems. As mentioned in the
previous section, serverless technologies are replacing the
traditional on-premise approach. This enables flexible
adaptation to the required data volume. Physical servers
cannot provide rapid deployment of new computing
power [4] when needed. Additionally, if these servers are
not required for a certain period of time, they still require
maintenance, which can result in additional costs depend-
ing on the scale [6].

Efficiency or, in this case, adaptability to demands.
When using local servers, it is impossible to adjust both
horizontal and vertical settings. In case there is a need for
more CPU or RAM, an immediate increase of these pa-
rameters is impossible [7]. Some data collection, aggrega-
tion, or transformation tasks require more free space,
while others require multithreading for better perform-
ance. The ability to identify and adapt to these needs will
greatly improve the overall performance of the architec-
tural solution [6].

Tracking and testing, having it onboard, makes
products more stable and predictable. Applying the right
software components and effort allows one to track almost
all indicators on the server. This enables the collection of
statistics on time, memory, load, traffic, number of errors
during data collection, missing data and so on. However,
collecting, summarizing and analyzing this data requires a
lot of work. Cloud solutions provide these indicators with
the help of unified server agents [8], which can even ana-
lyze data and identify bottlenecks in the system used. In
addition, because they return data in the same structure for
many applications worldwide, the user has access to nu-
merous third-party open-source solutions for processing
this data.

Reliability, not the most important part particularly
in data collection use case, but generally required for good

architecture solutions. During the actual storage of data on
only one device, there is a risk of losing the data that is
being collected at the moment and the data that was previ-
ously collected, structured and prepared for transmission.
Therefore, a backup copy for the storage is required.
Cloud solutions eliminate this problem by duplicating
servers that store data [8], providing protection against
events such as power outages and natural disasters.

Security. This one is truly needed, especially when
collecting data, as some of it can be private or even confi-
dential. Ensuring data security during collection and proc-
essing, as well as protecting servers and the system as a
whole, is a crucial issue. Physical servers are more secure
due to their isolation. However, tasks related to data col-
lection require interaction with external resources, which
negates this advantage as a network gateway is used any-
way [9]. Cloud technologies offer enhanced security by
enabling the storage of private variables, such as creden-
tials and API keys, in secure cloud systems. These vari-
ables can be extracted from the system without going
through an internet gateway. In addition, roles can be
assigned to each part of the deployment architecture to
restrict access to specific resources, and access to infra-
structure resources can be controlled. Furthermore, access
to infrastructure resources can be blacklisted or whitel-
isted through the implementation of network rules. Secu-
rity analysis tools are available to detect security issues
and suggest solutions to problems in a particular architec-
ture [9].

Process orchestration. By taking care of this re-
quirement, one can provide a lot of scalability and reliabil-
ity advantages to architecture solutions. In the example of
the bad decision described above, no plan for data collec-
tion orchestration was proposed. Therefore, if specific
data needs to be collected, the action must be run manu-
ally, and any unsuccessful actions must be repeated if
necessary. This may occur if the data fails to load or if an
inconsistency is detected. Furthermore, if this process is
not properly orchestrated, it can result in a significant
performance loss. Unintentionally causing a DDOS attack
on a server can trigger a threshold of API responses, lead-
ing to the blocking of each request until the server recog-
nizes your eligibility for the data. To prevent this, patterns
such as Circuit Breaker [10] can be useful. However, a
well-organized infrastructure system is necessary for their
application. This includes not only data collection but also
every other part of the system. Good orchestration can be
achieved by triggering actions based on events or
webhooks that are called according to the user applica-
tion's state stored in a database.

Place of data storage. Depending on the goals, data
can be stored on different types of equipment. Certain data
should be archived and stored on simple hard drives as a
backup, as it does not require high efficiency to function.
Other types of data may need to be stored on faster SSDs
or even in RAM [11] because they are required frequently
to fill in other pieces of data. The user may not immedi-
ately know where to store the data. With the use of cloud
solutions, data can be stored in the most appropriate space,

Configuring the Structure of the Serverless System for Efficient Data Collection 41

providing the necessary level of flexibility. Additionally,
cloud solutions like EFS (Elastic File System) or EBS
(Elastic Block Store) can facilitate data sharing among
multiple servers and processes [11], leading to improved
parallelization for data reading and storage. In this case,
correct multi-source writing is important, but it can sig-
nificantly improve system performance [12].

Other improvements. An important advantage of
utilizing cloud solutions is their cost-effectiveness while
maintaining high work efficiency. Additionally, a variety
of other services can be provided within a single cloud.
These services can be used for real-time data collection,
data aggregation from large files, and customizing ma-
chine learning scripts for processing newly added data.

After discussing common issues that may arise when
using standard data collection methods, it is important to
note that these problems are unique and, in some cases,
standard solutions may be effective. However, creating
flexible solutions requires a different approach that can
address the aforementioned problems. The following
section proposes solutions to these issues. This fragment
represents a fundamental approach to data collection ar-
chitecture.

III. SCOPE OF WORK AND OBJECTIVES
The aim of this research is to develop and compare

serverless architectures, solutions, and data collection
methods using cloud computing. The subsequent step is to
generalize the findings to select the appropriate architec-
ture for various cases based on variables such as data,
scale, format, and cost. The design and architecture of
potential data collection solutions were created using the
Amazon Web Services cloud platform. Different AWS
services were utilized for various aspects of data collec-
tion, such as Lambda, ECS, and EC2 for computing
power, MongoDB, Athena, and S3 for data aggregation,
and IAM and AWS System Manager for security con-
cerns. Additionally, CloudFront, Route 53, API Gateway,
and Event Bridge were employed. The primary objective
was to evaluate the outcomes of various architecture and
design combinations to determine the optimal solution for
specific data collection scenarios. The proposed architec-
tural solutions analyze issues such as efficiency, data
overflow, security, resilience to server errors, and data
inconsistencies, and provide ways to resolve them.

The purpose of data collection may differ depending
on different purposes and specifics, but in most cases,
clear and structured data are necessary. It is important to
understand their structure, or at least to have an algorithm
that can structure them in the desired way. Most modern
data sources and APIs provide this structure. When col-
lecting and aggregating data for user needs, it is important
to consider not only the methods of downloading and
storing it but also selecting an environment that enables
efficient data aggregation. Additionally, when working
with large amounts of data, prioritizing the performance of
the data aggregation environment is crucial.

IV. RESULTS AND DISCUSSION
A cloud-based architecture was developed to address

common issues encountered by data collection systems.
The first step was selecting the cloud platform for this
solution, and the AWS cloud was chosen due to its popu-
larity, large scale, and cost efficiency [13]. Additionally, it
boasts the widest network and the greatest number of data
centres worldwide, ensuring high availability and elastic-
ity for both the user and the system as a whole.

A. GENERAL ARCHITECTURE AND SERVICE
CONNECTIONS

AWS is a collection of services that can be used for
various purposes, including creating short-term functions
with computing power, data storage design, and tracing.
With over 200 services available, AWS can provide sig-
nificant assistance in any area of cloud computing. Only
about 10 services are needed for a data acquisition system
of moderate complexity. The remaining 10 services will
be used under the hood.

When considering the communication between ser-
vices, it is important to also consider their respective respon-
sibilities. The next section will provide the working algo-
rithms for this infrastructure, but here is a brief overview of
the general architecture. It is crucial to configure the architec-
ture for most data acquisition systems, as the algorithms may
change. The structure of AWS is shown in Fig. 1

1) AWS VPC: The AWS infrastructure is encapsu-
lated by the wrapper. It defines a virtual private cloud for
all infrastructure, created within data-collection systems
[14]. The only resources that are not included in this en-
capsulation are those for monitoring and the database.

2) MongoDB (database). MongoDB was selected as
one option, but it can be substituted with any other data-
base for this architecture. Alternatively, it can be a data-
base hosted on AWS. However, to demonstrate the feasi-
bility of this solution, it is recommended to use a database
external to AWS.

3) Event Bridge. This service triggers events for
various AWS services, such as SQS and Lambda. It can
also trigger events based on a cron expression, which acts
as a timer. This is the starting point for all data collection
processes.

4) SQS (Simple queue service). SQS is a crucial
component of our architecture, providing significant effi-
ciency and parallelization. It stores messages containing
payloads, such as query parameters for data collection.
SQS then waits for available computation power, specifi-
cally our Lambda function, to process the message. As an
orchestrator of computation processes in our system, SQS
ensures a logical flow of information with causal connec-
tions between statements.

5) Lambda Function. The choice of service used to
obtain the necessary computing power is crucial in devel-
opment. Its choice depends on the requirements of a spe-
cific task [15]. Lambda function, for example, offers fast
and efficient execution of cloud functions with minimal
memory usage. Its availability and speed allow it to in-
voke hundreds of thousands of containers while loading

Demidov Oleksandr, Honsor Oksana 42

data, achieving high levels of parallelism. The main func-
tion of a Lambda is to collect and load data into storage.

6) STS and Secret Manager. Lambda is supported by
STS and Secret Manager services [15]. STS provides roles

for the Lambda function, allowing it to write files to the
storage or get and delete messages from SQS. Secret Man-
ager allows you to securely store API keys or passwords
for use by Lambda at runtime.

Fig. 1. AWS architecture of data collection system

7) S3. It’s a large storage of files that allows for the

storage of an unlimited amount of data with different
access performance and pricing policies [15]. All col-
lected data files will be stored there after they have been
transformed. While other services such as EBS or EFS
may offer better performance, S3 is sufficient for most
cases.

8) Athena. This service enables SQL queries and data
aggregation from previously collected data stored on S3. It
has the capability to query almost any file type [15].

9) SNS (Simple Notification Service). This service is
comparable to SQS, but it allows for multiple consumers
of messages instead of just one. It operates in a Pub-
lisher/Subscriber model, meaning that the number of lis-

Configuring the Structure of the Serverless System for Efficient Data Collection 43

teners does not affect its functionality. Each subscribed
service receives a notification.

10) Other consumers, Sagemaker, Kinesis. These two
services, an ML solutions service in AWS and a real-time
data stream service are used as examples of end users of
the data provided by our system. They receive the aggre-
gated data to proceed with other parts of their business
logic.

B. WORKING SOLUTION BASED ON
ARCHITECTURE

After presenting the basic architecture of the cloud
and its connections, the next step is to examine its overall
functionality. The following section describes how the
aforementioned services are utilized to complete the entire
data collection cycle within the system.

The initial step of any data collection process is the
trigger phase. Depending on needs of each individual user
it can be developed in various ways. But to build inde-
pendent abstract architecture, we will need to support any
possible implementation of this step. In the proposed
architecture there is no difference between user-created
data collection requests, timer event triggers, or even most
of the other events which can be integrated with external
services, such as IoT device sensors, and data scrapers,
which check for new information that appeared on various
3rd party resources.

They all are going to generate simple SQS messages
with some payload. Payload is a vital part of this process,
it should specify all the details, parameters and data types
for data source, which user wants to collect data from. At
this stage, we got to 1st Lambda function (orchestration
one).

It should be noted that at this stage orchestration
lambda can return either new formatted message for
worker lambda (through SQS service) or even invoke
another orchestration lambda to continue the orchestration
process (Fig 2.).

Next, we’re coming to the actual core of the data
collection process. It’s an interaction between
orchestration labmda, woker lambda an s3, which is our
data storage itself.

It’s also orchestrated by SQS, as in all other cases
when we need to pass some sort of data or callback
between AWS services.

When it comes to worker lambda, it’s not as simple
as one might think. It requires high level of abstraction to
adapt to different cases. First of all, we need to receive
and process SQS messages and extract information from
them. It’s usually done in vendor section of lambda
controller. In this stage we should also pass expected data
interface to match all received values, for instance,
transform data types, merge some fields or events make
HTTP calls for some required information if needed.

In controller section of lambda, we have an enum of
possible data collectors. By analyzing payload we
distinguish which one we should use. In this step, we also

have circuit breaker [16]. It’s a pattern that allows us to
handle errors in various ways and more importantly – deal
with server giving us timeout due to too many requests
sent in some period of time. Most API don’t specify max
amount of calls to be made within some period of time, so
we will frequently encounter the mentioned issue. In a few
words, circuit breaker allows us to open and close flow of
requests with fallback system to reschedule http calls
sequences. This process is displayed on the individual
requests example (Fig 3).

Fig 2. Proces trigger sources

Fig 3. Circuit breaker process

Then after controller we have abstract.collector
which specifies abstract class for collecting process from
certain data collection type from enum. In this stage we
reach out for all required credentials, initialize requesting
client and do all needed steps to prepare for data
collection. It also should be reusable for every data
collection option, so there should be nothing specific
about some data collection method itself.

Another abstract.repository entity is for data storing
process. Just as abstract collector it should do all prepa-
rations for storing collected data in its implementations.
Here, for example, we specify methods to identicate

Demidov Oleksandr, Honsor Oksana 44

where we should store collected data, filename, position,
data type and make some trasformation to uploading data
if needed.

On top of all mentioned entities [17], we also have
folder for each data collection method from enum. It
contains 2 files with actual exact implementations of data
collection and storage logic parts. They are called <data-
collection-type>.collector and <data-collection-
type>.repository. As you can expect here we work
directly with API’s to download, transform and store data.
In Fig 4, you can see detailed representation of data
structure and communications for controller architecture.

Fig 4. Controller architecture

Now, when controller architecture is fully covered,
we will step forward to the moment when it’s already
executed and needed data is written to s3 bucket.

In this stage, there are various other methods to
structure, archive and analyze data. For example, let’s
imagine that we want to aggregate newly collected data
and extract some statistics data from it. For that, we can
use Athena or some other data aggregator. Needed params
can be passed into SQS with specific step, called “post-
processing”. They make any sort of query requests to
collected data.

There are a lot of variations for this architecture, but
the core problem solutions should be resolved. So, for
mentioned case, we can just combine some parts of archi-
tecture with solutions that match our needs. Also, in some
specific cases, some architecture steps may be redundant,
thus removed to have less complexity. Such examples can
be data aggregation if it’s not needed, or even circuit
breaking, in case user knows that he can’t face cases of
API blocking incoming requests.

The architectural solution developed was tested and
demonstrated great potential as a common base for small
and medium-sized data collection systems. Most of the
issues listed in this article have been resolved in various
ways. The architecture has achieved better performance in

many key areas important to data collection systems with
cloud computing and serverless technologies.

The suggested architectural solution provides a gen-
eral approach to addressing common issues. It is recom-
mended to tailor the structure to each specific system. De-
pending on the data being collected, the APIs used to load
the data, and the method of data transformation, various
architectural components may require modification. These
components may include the source of computing power,
the work coordinator, and data storage. Additionally, minor
adjustments may be made depending on the end user of this
data, and some parts of the architecture may be modified for
services outside of the AWS cloud.

Due to high level of abstraction, almost any part of
the process can be extended, but not modified. Taking into
account the load system can face with such kind of archi-
tecture solution, it can be argued that this is a great work-
ing solution or starting point for most applications' needs.
The only possible downside of the proposed architecture
is its incompatibility with real-time data collection. This
would reduce some other advantages of the proposed
solutions, thus the decision to ignore real-time data collec-
tion was made.

This research demonstrates the advantages of a gen-
eral architectural view for data collection. It also high-
lights common issues and pitfalls when designing archi-
tecture for a data collection system. It also proposes a
solution using a cloud-based serverless architecture.

V. CONCLUSION
This paper presents a novel architectural solution for

serverless data collection systems. The proposed architec-
ture addresses common issues and provides benefits in
crucial areas of data collection. It demonstrates excellent
scalability and efficiency by leveraging cloud computing
(AWS), which offers modern cloud features such as stor-
age, computing power, orchestration, and more.

Another important aspect to consider is tracking and
security. Tracking allows for precise testing of systems
under different loads while working with various data
sources and APIs. This can be a significant advantage for
further investigations into improving cloud-based archi-
tectures. Additionally, it enables detailed reports on possi-
ble failure points and suboptimal usage of hardware.

A limitation of this investigation is the inability to
work with vast amounts of data resources and external
consumer systems. Gathering reliable data for numerous
scenarios requires significant effort. However, the tested
data volume is sufficient for the initial stages of this inves-
tigation. It provides enough insight to identify general
bottlenecks and problems, as well as alternative solutions.

Further research entails collecting additional data on
working with diverse data sources and aggregating data
for various external consumers. This will provide a more
profound comprehension of developing either a more
generalized solution with multiple variables depending on
the end goal or creating different types of cloud serverless
solutions adapted to different data collection systems and
their requirements.

Configuring the Structure of the Serverless System for Efficient Data Collection 45

References
[1]. Müller, I., Marroquín, R., Koutsoukos, D., Wawrzoniak,

M., Akhadov, S., Alonso, G. (2020) The collection Virtual
Machine: An abstraction for multi-frontend multi-backend
data analysis. Proceedings of the 16th International Work-
shop on Data Management on New Hardware, DaMoN
‘20. DOI: 10.1145/3399666.3399911

 [2] Yuji Roh, Geon Heo, Steven Euijong Whang (2019). A
Survey on Data Collection for Machine Learning: A Big
Data - AI Integration Perspective. IEEE Transactions on
Knowledge and Data Engineering, Vol 33, pp. 1328 –
1347. DOI: https://doi.org/10.1109/TKDE.2019.2946162

 [3] MN Sarkies, KA Bowles, EH Skinner (2016). Data collec-
tion methods in health services research. Applied Clinical
Informatics. 6(1). pp. 96-109. DOI:
https://doi.org/10.4338/ACI-2014-10-RA-0097

[4] Sam Newman, Building Microservices: Designing Fine-
Grained Systems. 1st Edition / O’Reilly, 2015, 250 p.

[5] R. Arokia Paul Rajan (2018). Serverless architecture – a
revolution in cloud computing. Tenth International Con-
ference on Advanced Computing (ICoAC). 23 December
2019. DOI:
https://doi.org/10.1109/ICoAC44903.2018.8939081

[6] Sebastian Lehrig, Hendrik Eikerling, Steffen Becker
(2015). Scalability, elasticity, and efficiency in cloud com-
puting: a systematic literature review of definitions and
metrics. QoSA '15: Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Archi-
tectures. 4 May 2015. DOI:
https://doi.org/10.1145/2737182.2737185

[7] H.M. Khan, A. Khan, F. Jabeen, A. Anjum, G. Jeon
(2021). Fog-enabled secure multiparty computation-based
aggregation scheme in smart grid. Computers & Electrical
Engineering, Vol. 94, 107358. DOI:
https://doi.org/10.1016/j.compeleceng.2021.107358.

[8] Maricela-Georgiana Avram (2014). Advantages and chal-
lenges of adopting Cloud Computing from an Enterprise
Perspective. 15 January 2014. DOI:
https://doi.org/10.1016/j.protcy.2013.12.525

[9] Mazhar Ali, Samee U. Khan, Athanasios V. Vasilakos
(2015). Security in cloud computing: Opportunities and
challenges. Information Sciences, 305. pp. 357-383. DOI:
https://doi.org/10.1016/j.ins.2015.01.025

[10] Gibeon Aquino, Rafael Queiroz, Geoff Merrett & Bashir
Al-Hashimi (2019). The circuit breaker pattern targeted to
future IoT applications. Part of the Lecture Notes in Com-
puter Science book series (LNPSE, volume 11895). pp
390–396. 2019. DOI: https://doi.org/10.1007/978-3-030-
33702-5_30

[11] Binbin Song, Yao Yu, Yu Zhou, Ziqiang Wang & Sidan
Du (2018). Host load prediction with long short-term
memory in cloud computing. The Journal of Supercomput-
ing, Vol. 74(12), pp. 6554–6568. DOI:
https://doi.org/10.1007/s11227-017-2044-4

[12] Joel Gibson, Robin Rondeau, Darren Eveleigh, Qing Tan
(2016). Benefits and challenges of three cloud computing
service models. Fourth International Conference on Com-
putational Aspects of Social Networks (CASoN). 15 Janu-
ary 2016. DOI:
https://doi.org/10.1109/CASoN.2012.6412402

[13] Sourav Mukherjee (2019). Benefits of AWS in modern
cloud. 7 March 2019. DOI:
https://doi.org/10.48550/arXiv.1903.03219

[14] Andreas Wittig, Michael Wittig (2022). Amazon Web
Services in Action, Third Edition: An In-depth Guide to
AWS. May 2022. ISBN: 163343916X

[15] Sajee Mathew (2014). Overview of Amazon Web Ser-
vices. Whitepaper. Pp. 25-58. November 2014. Available
from: https://www.sysfore.com/Assets/PDF/aws-
overview.pdf

[16] Fabrizio Montesi, Janine Weber (2016). Circuit Breakers,
Discovery, and API Gateways in Microservices.
DOI: https://doi.org/10.48550/arXiv.1609.05830

[17] Duc Minh Le, Duc-Hanh Dang, Viet-Ha Nguyen (2018).
On domain driven design using annotation-based domain
specific language. Computer Languages, Systems & Struc-
tures, Vol. 54. pp. 199-235. DOI:
https://doi.org/10.1016/j.cl.2018.05.001

Oleksandr Demidov received
a Master's degree in the Department
of Specialized Computer Systems at
Lviv Polytechnic National Univer-
sity. Since 2019 till now he has been
a Software Engineer at a Software
Developing company for web inter-
faces and serverless backend solu-
tions. Currently, he is a PhD degree
student of Computer Engineering at
Lviv Polytechnic National Univer-

sity. His research interests include cloud-based architecture and
serverless solutions.

ORCID ID: https://orcid.org/0009-0004-3464-1655

Oksana Honsor PhD, Assoc.
Professor at the Department of Spe-
cialized Computer Systems, Institute
of Computer Technology, Automa-
tion and Metrology of Lviv Poly-
technic National University. Scien-
tific interests include metrological
support in IoT systems and sensor
networks, ensuring traceability,
processing of large data sets for
reproduction and comparison of the

results of measurements of physical quantities in remote mode.
She is the author and co-author of 40 scientific and conference
papers, co-author of 15 educational and methodological instruc-
tions and 3 electronic educational and methodological com-
plexes used in the educational process.

ORCID ID: https://orcid.org/0000-0003-0895-5859

