
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 1, 2024

DIGITAL DIVISION ALGORITHMS FOR EFFICIENT EXECUTION
ON INTEGRATED CIRCUITS

Anatoliy Obshta1, Volodymyr Khoma2, Andrii Prokopchuk1

1Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013,Ukraine.
2Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland.

Authors’ e-mails: anatolii.f.obshta@lpnu.ua, v.khoma@po.edu.pl,
andrii.prokopchuk.mkisp.2022@lpnu.ua

https://doi.org/10.23939/acps2024.01.046

Submitted on 09.04.2024
© Obshta A., Khoma V., Prokopchuk A., 2024

Abstract: In this paper, we analyse division algorithms for
use on chips and propose the implementation of an optimal
divider for these chips. By “optimal”, we refer to an algo-
rithm that meets the following criteria: space efficiency –
which involves minimizing resource utilization on the IC’s
die area; speed efficiency – the algorithm's processing time
(measured in n clock cycles); power efficiency – power
consumption of the divider; implementation time – time for
implementation of the algorithm using HDL. The chosen
algorithm should strike a balance between space efficiency
and processing speed, ensuring the efficient use of hardware
resources while delivering swift computational results. The
ultimate goal is to create a division module that aligns
seamlessly with the integrated circuit's architecture, cater-
ing to computational efficiency and resource constraints.

Index Terms: FPGA, ASIC, Digital Divider, Digit Re-
currence, Functional Iteration.

I. INTRODUCTION
Arithmetic operations, such as addition, subtraction,

multiplication, and division, play a fundamental role in
computational systems. Although these operations have
long been studied and implemented, the performance of
the division operation is one of the most complex and
resource-intensive tasks. As the advancements in chip
manufacturing techniques and technologies continue to
push the boundaries of Moore's law, it has become
increasingly essential to address the challenges of
realizing efficient division methods.

One of the major challenges in implementing
division is that the result is an approximate value. While
other arithmetic operations can give a specific, precise
result, division is performed approximately. The result of
dividing two integers, in general, is a rational or even
irrational number, which in some cases, when represented
in the binary system, cannot be accurately expressed by a
limited number of bits.

Another challenge in developing custom solutions
on ICs is that most synthesizers do not support the
division operation. The only permitted solutions are
division by a power of 2 or if the divisor is a constant. In
all other cases, the synthesizer will produce an error.

This work aims to develop a reconfigurable divider
for low-power electronic devices, optimized for the
implementation area.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Due to the described issues, in Table 1, many
research works are aimed at finding an optimal digital
division algorithm for integrated circuits that would
satisfy fundamental criteria such as space, speed, and
energy efficiency.

Table 1

Supported Expressions for Verilog Language

Expression Symbol Status
Concatenation {} Supported

Replication {{}} Supported

Arithmetic +,-,*,** Supported

Division /

Supported only if the second
operand is a power of 2,

 or both operands are
constant.

Modulus % Supported only if the second
 operand is a power of 2.

Addition + Supported

Subtraction - Supported

Multiplication * Supported

Furthermore, methods for optimizing existing
algorithms are a sought-after and popular topic of
research work.

The division operation is critical for certain fields,
for example, soft processors [1], digital signal processing
[2], machine learning [3], cryptographic [4], or
arithmetical logical units [5].

Among the main directions of research and studies
on this topic, the following can be highlighted:

Digital Division Algorithms for Efficient Execution on Integrated Circuits 47

1) reviews of existing division algorithms, high-
lighting their advantages and disadvantages;

2) enhancement of a specific division method for a
specific task;

3) verification and evaluation of the efficiency of
existing algorithms.

Some of the newest works on the classification and
detailed review of digital division algorithms can be
considered in papers [6] and [7]. Division algorithms can
be divided into five classes: digit recurrence, functional
iteration, very high radix, look-up table, and variable
latency. Many practical division algorithms are hybrids of
several of these classes. In the following work [8], clearer
examples were provided for the use of specific classes of
dividers depending on the specific tasks.

Significant emphasis is placed on the digit recur-
rence class among the works aimed at improving existing
division algorithms. In most cases, this is related to the
fact that the division operation is critical for low-power
integrated circuits, where there are limitations on the
number of logic gates, area, and energy efficiency.

As it is described below, this class of digital divisors
best meets the requirements outlined above.
Improvements to existing algorithms began in the last
century with the development of a new division method
known as SRT. The main area of application of the SRT
algorithm is general-purpose processors, which are
commonly used in personal computers, FPGA systems,
and ASIC processors. After the discovery of this new
method, an iterative process of improving various
parameters began. In [9], the authors managed to build bit
selection tables for SRT division and square root
extraction with a given radius and redundancy. In [10],
the authors managed to reduce the number of LUTs used
to 36% when implementing the SRT division algorithm
for fast Fourier transform. One of the ideas was also the
development of a 10-bit divider, presented in [11] and
[12], based on the SRT algorithm, which demonstrated
improved performance in terms of both implementation
area and speed. The proposed algorithm in [13] for IoT
applications is based on the parallel execution of different
steps to shorten the time-critical path and the use of fuzzy
logic to solve the overlap problem in the selection of the
coefficient; hence, the reduced one inverter can be
removed by using a new quotient digit converter. Another
technique is described in [15], where the author
implements a 16-bit divider with a speculated quotient
digit that is used to simultaneously compute the two
possible partial remainders for the next step while the
quotient digit is being corrected. This process does not
affect the overall speed hence speeding up the division
process. A different idea to speed up the division process
is described in [16] related to architecture modification by
pipelining the divider. In one of the most recent works
[17], the author developed a new divider based on the
digital recurrence class, which utilizes the Baudhay-
an-Pythagoras triplet method. They managed to achieve a
smaller implementation area while increasing the speed of
the division process. In another work [18], the author

proposed to abandon the normalization of the divisor, and
hence, reduce the required area-consuming leading to one
(or zero) detection nor shifts of variable amount.

For the functional iteration class, in the work [19], a
modified Goldschmidt algorithm was proposed, which
shows a significant improvement in area utilization, by
20-40% when compared to the implementation based on
the conventional Goldschmidt algorithm. In our opinion,
to accelerate the division operation, the work presented in
[20] can be considered, where the authors managed to
increase the speed of the multiplication operation by
reducing the number of non-zero digits of the multiplier.

In the case of the look-up table class, the authors
propose solutions that use small lookup tables, which are
well-matched with the hardware resources of an FPGA
[21].

From the analysis of [22] work on evaluating the
effectiveness of algorithms, it can be concluded that there
are advantages in terms of the scope of implementation
and energy efficiency for digital divisors belonging to the
class of recurrent digits. Using simple arithmetic
operations like addition, subtraction, and shifting makes it
possible to utilize on-chip resources most efficiently,
albeit at the cost of speed.

III. SCOPE OF WORK AND OBJECTIVES
Develop a reconfigurable divider optimised for the

implementation domain, suitable for FPGAs (such as
Xilinx, Altera, Lattice, etc.) and ASICs.

IV. DIVISION ALGORITHMS BACKGROUND
Based on the method of conversion, we can

distinguish division algorithms in the following classes
that are shown in Fig. 1. Digit Recurrence (1); Functional
Iteration (2); Look-up table (3).

Based on hardware architecture, we can classify
types of dividers as: serial or sequential type(1); parallel
type (2); pipelined type (3). Based on performance, we
can classify types of dividers as: slow type (1); and fast
type (2). Based on execution, we can classify types of
dividers as: iterative subtraction type (1); predictive type
(2).

Fig. 1. The distribution of different division algorithms

Anatoliy Obshta, Volodymyr Khoma, Andrii Prokopchuk 48

V. DIGIT RECURRENCE CLASS
One of the simplest and most widely used classes of

digital division is digit recurrence. In the beginning, this
class became commonly used due to the limited
capabilities of programmable logic devices. The main
idea of this division is simply to subtract the divisor from
the dividend cyclically which produces quotient bits in
sequence. This is the iterative type of division since it
performs repeated subtraction. This approach generates
from 1 to n of quotient bits per iteration. The main reason
for its widespread popularity in usage is due to its set of
simple arithmetic operations such as addition,
subtraction, shifting, multiplication, etc.

This class of division algorithm mainly covers three
types of dividers: restoring (1); non-restoring (2); SRT
(radix n) (3).

A. RESTORING ALGORITHM
The Restoring algorithm has similarities with the

long-division method. The fundamental concept of this
algorithm involves a repetitive process of shifting and
subtracting the divisor from the dividend. The detailed
flowchart of division using the Restoring algorithm is
shown in Fig. 2, where: n – number of bits, MSB – most
significant bit, Q0 – quotient bit calculated in each
iteration, Q – final result.

Fig. 2. Flowchart of Restoring Division Algorithm

The steps to achieve the Restoring division
algorithm are: (1) select initial values for the divisor,
dividend, partial remainder/accumulator, and the number
of bits (n); (2) shift dividend left by 1; (3) subtract the
divisor from the partial remainder/accumulator, and the
result is stored in the partial remainder/accumulator; (4)
check for the most significant bit of the partial

remainder/accumulator; if 0, then the least significant bit
of Q is set to 1; otherwise, the least significant bit of Q is
set to 0, and the value of the partial remainder/accu-
mulator is restored to the value before the subtraction;
reduce the value of n by one (1); continue iterations until
we get a value of n=0 (2).

The main drawback of this algorithm is that it
calculates only 1 quotient bit during each cycle, which
affects the overall speed of the algorithm. Additionally, a
crucial requirement for its implementation is that the
partial remainder must always be positive or equal to 0,
which necessitates an additional addition operation in the
case of a negative remainder. The name of the algorithm,
"Restoring," originates from the need to restore the partial
remainder in each cycle. However, this algorithm requires
minimal effort in terms of implementation. Moreover, its
simplicity is an advantage, as it positively impacts the
utilization area of the integrated circuit.

B. NON-RESTORING ALGORITHM
This algorithm is very similar to the Restoring

division algorithm as it requires an iterative process of
shifting, subtracting, and adding. The main difference is
that there is no longer a need to restore the partial
remainder. This is achieved by performing a check on the
partial remainder during the last cycle (n = 0), and if it is
negative, restoring it with just one addition operation. The
detailed division that utilizes the Non-Restoring
algorithm is shown in Fig. 3.

t and requires more effort during implementation.

Fig. 3. Flowchart of Non-Restoring
Division Algorithm

Digital Division Algorithms for Efficient Execution on Integrated Circuits 49

The steps to achieve a Non-Restoring division
algorithm are: (1) select initial values for the divisor,
dividend, partial remainder/accumulator, and the number
of bits (n); (2) shift dividend left by 1; (3) subtract (at first
iteration) / add divisor from/to the partial
remainder/accumulator and the result is stored in the
partial remainder/accumulator; (4) check for the most
significant bit of the partial remainder/accumulator; if 0,
then the least significant bit of Q is set to 1; otherwise, the
least significant bit of Q is set to 0; (5) reduce the value of
n by one; (6) continue iterations until we get a value of
n=0; (7) check partial remainder/accumulator. If < 0 then
restore partial remainder.

The main advantage of this algorithm is its higher
speed compared to the Restoring algorithm, as well as a
smaller implementation area. However, it still retains the
limitation of calculating only 1 quotient bi

C. SRT ALGORITHM (RADIX-N)
The SRT algorithm is the most efficient among

those mentioned above. The main advantage of this
algorithm is that it calculates more than 1 quotient bit
(when the radix is higher than 2) in a single cycle, making
it the fastest algorithm among the digit-recurrent classes.
The detailed division using the SRT algorithm is shown in
Fig. 4.

Fig. 4. Flowchart of Radix-2 SRT Division Algorithm

The steps to achieve the SRT division algorithm are:
(1) select initial values for the divisor, dividend, partial
remainder/accumulator, and the number of bits (n); (2)
shift dividend left by radix/2; (3) check for the most
significant bit of Dividend and select quotient bits from
LUT; (4) check for the most significant bit of the partial
remainder/accumulator; depending on that, do subtrac-

tion, addition, or skip this step; (5) reduce the value of n
by one; (6) continue iterations until we get a value of n=0;
(7) check partial remainder/accumulator. If < 0 then
restore partial remainder.

This algorithm is the most complex in terms of
development among the digit recurrent class. The
complexity lies in the need to create a Look-up table
(LUT) for a specific radix-n. The larger the radix, the
bigger and more complex LUT is required for selecting
quotient bits. However, this allows computing more bits
in a single cycle. There are many nuances in
implementing this algorithm, namely: (1) choice of radix;
(2) choice of remainder representation; (3) choice of
quotient digit set.

Depending on these choices, the speed, implemen-
tation area, and latency of the algorithm will be affected.

VI. FUNCTIONAL ITERATION CLASS
A fundamentally different class of division is the

functional iteration class. This division method uses
multiplication operations instead of additions and
subtractions as in the digit-recurrence class. The result is
computed through iterative approximations, allowing for
the calculation of multiple quotient bits per iteration and
significantly increasing the speed of the division process.
Utilizing multiplication for the functional iterative
dividers leads to the increased implementation area,
prompting the use of smaller-size multipliers. Conse-
quently, this approach becomes more intricate compared
to straightforward digit recurrence dividers. This category
of dividers suffers from a significant drawback - the
quotient results are imprecise due to the direct rounding
of approximate solution values instead of infinite precise
values. The functional iteration-based algorithm is
efficient in performing division but cannot guarantee
exact results consistently. Functional iteration dividers
work on the series expansion phenomenon.

This class of division algorithm mainly covers the
following types of dividers: (1) Newton–Raphson
algorithm (NRA); (2) Goldschmidt algorithm (GSA); (3)
Series expansion algorithm (SEA); (4) Taylor series
algorithm (TSEA).

A. NEWTON-RAPHSON ALGORITHM
It is acknowledged that the outcome of the division

process can be expressed as a single term of the product
between the dividend and anti-divisor (reciprocal).
Computing the anti-divisor in the Newton-Raphson
algorithm relies on the choice of the priming function,
which determines its root at the anti-divisor, a parameter
that typically has multiple values. The accuracy of the
quotient's convergence depends on which root is selected,
potentially leading to errors in the division process and
generating additional overhead if the selected root
overshoots the true quotient. Improving accuracy can be
achieved by selecting the appropriate root initially.

The detailed figure of division using the
Newton-Raphson algorithm is shown in Fig. 5, where: i –

Anatoliy Obshta, Volodymyr Khoma, Andrii Prokopchuk 50

number of iterations, X0 – initial value of approximation,
Xi – current value of approximation, Xi+1 – next value of
approximation

Fig. 5. Flowchart of Newton-Raphson Division Algorithm

The steps to achieve the Newton-Raphson algorithm
are: (1) select initial values for divisor, dividend, and the
number of iterations (i); (2) perform an initial
approximation of 1/Divisor; (3) compute the next
approximation using the formula; (4) reduce the value of i
by one; (5) continue iterations until we get a value of i=0;
(6) multiply the Dividend by the calculated reciprocal
(anti-divisor).

There are also other division methods within this
class, such as the Goldschmidt, Series expansion, and
Taylor series algorithms. Certainly, they have specific
differences and characteristics that help enhance speed
and reduce delays. However, all of them share a
fundamental idea - approximating the reciprocal of the
divisor and subsequently replacing the division operation
with multiplication.

VII. LOOK-UP TABLE
Another class of division is Look-up tables. The

concept here is that the division result values can be
pre-stored in this table and processed when two operands
are input into the table. This method allows for an
incredibly fast output of results due to the extensive
implementation space. However, it typically lacks
precision (as the accuracy is chosen during development
and depends on the table size).

The figure of division using the Look-up table
algorithm is shown in Fig. 6.

Fig. 6. Flowchart of Look-up table Division Algorithm

VIII. ANALYSIS OF RESULTS AND PROPOSAL
FOR DIVIDER IMPLEMENTATION

The investigation into existing classes of dividers
based on the division algorithm has yielded valuable
insights into their strengths and weaknesses. Among the
classes studied, the digit recurrence class emerges as the
most prevalent approach for implementing digital
dividers. Notably, this method can generate radix/2 digits
per iteration, making it an optimal choice for dividers
where space efficiency is a critical concern.

For scenarios involving the division of smaller
numbers with an emphasis on speed, the lookup table
method proves to be a highly effective solution. This
approach excels in swiftly handling computations
involving modest-sized operands. However, as the
magnitude of the numbers to be divided increases, a shift
towards the functional iteration class of dividers becomes
more advisable.

The functional iteration class stands out as the
fastest algorithm among all those considered in this study.
Its remarkable computational speed, however, comes at
the cost of increased space and timing requirements for
proper implementation. This implies that while it may be
the most efficient option for demanding computational
tasks, careful consideration of resource allocation is
necessary to ensure its optimal performance.

Table 2

Resource utilization of different division architecture
in the Spartan-3E FPGA

Resources Division Architecture FFs LUTs MUXs
Restoring 21 31 1
Non-Restoring 22 25 1
SRT 31 59 1
SRT with CSA 40 100 1
Goldschmidt 22 197 1
Xilinx Divider core 224 79 1
Matlab system generator 436 143 1

Table 3

Resource utilization of different division architecture
in the Spartan-6 FPGA

Resources
Division Architec-

ture FFs LUTs MUXs DSP
Slices

Restoring 21 31 12 0
Non-Restoring 21 25 8 0
SRT 37 38 12 0
SRT with CSA 40 84 16 0
Goldschmidt 21 22 0 2
Xilinx Divider core 224 152 104 0
Matlab system gen-
erator 436 296 192 0

Digital Division Algorithms for Efficient Execution on Integrated Circuits 51

By analyzing the research results presented in
articles [22] and [23], it can be concluded that the
non-restoring division algorithm is optimal in cases
where space, timing, and power efficiency are crucial,
with minimal development time. The results of the logic
resource utilization of 8-bit divider architectures in the
Spartan-3E and Spartan-6 FPGA are shown in Table 2
and Table 3 respectively. The critical path delay in each
division architecture for both the Spartan-3E and the
Spartan-6 FPGAs is shown in Table 4.

Table 4

Delay in the Spartan-3E and Spartan-6 FPGAs

Device
Division Architecture

Spartan-3E Spartan-6
Restoring 4,992 ns 2,906 ns

Non-Restoring 4,719 ns 3,314 ns

SRT 6,116 ns 3,258 ns

SRT with CSA 7,112 ns 5,016 ns

Goldschmidt 13,791 ns 7,998 ns

Xilinx Divider core 3,957 ns 2,626 ns

Matlab system generator 3,692 ns 3,150 ns

After investigation of existing algorithms and

implementations of dividers based on them, certain
drawbacks in current implementations become apparent.
The designed dividers have a fixed input data size, do not
scale well, and may not be suitable for various platforms.

The proposal is to develop a reconfigurable divider
based on the non-restoring division algorithm. This
divider will have the ability to easily integrate into any
synchronous project on IC (FPGA / ASIC) by using
parameterized input data, and the selection of bit width
can be determined during the synthesis phase.

Additionally, one of the advantages of this divider
will be the implementation of a finite state machine,
which will ensure the sequential execution of division in
multiple stages. In cases where optimization of used
space and low-power devices is a concern, this will
reduce the number of components used, directly
impacting area and power consumption.

In terms of optimizing the development time of
a digital divider based on parameterized inputs/outputs bit
width, the following equations can be used:

 , (1)

 . (2)
Equation (1) represents the time required to

implement a fixed bit width divider, where is the
time for RTL implementation using HDL, and is the
time required to verify the divider. In case you need to
change the bit width of the input data for another project,
you will have to invest time in RTL development and
verification again.

Equation (2) represents the time required to
implement a reconfigurable divider with paameterized
input/output bit width, where is the time required for
the implementation of a standard divider with fixed bit
width, is the time to implement parameterized bit
width feature, is the number of divider re-usage
(ean divider implementation stage). In this case,
there is no longer a need to repeat the development and
verification stages of the divider when it needs to be used
with a different input data width. As evident from
equation (2), implementing this feature may require
additional time, but it becomes advantageous when the
divider is re-used at least once (3). If we assume that is
the time required for standard divider implementation,
and is the time required for modifications (this
parameter was determined using approximate values
corresponding to the number of changes in the RTL code)
then it can be argued that the development time of this
divider is 1.6 times less than in the standard approach (4):

 , (3)

 . (4)

Our reconfigurable digital divider, which can
change the bit width of input/output data, allows for
flexible use according to user requirements and easy
integration into designs. With this approach, we plan to
speed up the development of integrated circuits. The
developed digital divider should reduce the development
time by at least 1.5 times.

The requirements for a digital divider are as follows:
(1) the input/output bit depth must be parameterised; (2)
іt must be implemented using the most efficient algorithm
in terms of the area of implementation; (3) must be
suitable for reusability. This divider will be suitable for
FPGAs (such as Xilinx, Altera, Lattice, etc.) and ASICs.

IX. CONCLUSION
Considering these findings, it is imperative to

carefully weigh the specific requirements of a given
application when selecting a divider implementation. For
scenarios where space efficiency is paramount, the digit
recurrence class should be the preferred choice.

Conversely, when dealing with smaller operands
and speed is of the essence, the lookup table method may
be the most suitable option.

For applications involving substantial numbers and
demanding computational tasks, the functional iteration
class emerges as the clear frontrunner in terms of speed,
albeit with a caveat of increased resource allocation.
Engineers and developers must conduct a thorough
assessment of their project's needs and resources before
determining the optimal divider implementation.

As a result of this research, we addressed the issue of
implementing the division operation on integrated
circuits. We examined existing division algorithms,
highlighted their advantages and disadvantages, and

Anatoliy Obshta, Volodymyr Khoma, Andrii Prokopchuk 52

compared hardware resource utilization and algorithm
complexity.

The implementation of a reconfigurable divider
based on the irreducible division algorithm can be applied
in many areas of CPS, where fast and efficient data
processing is required, as well as adaptability to changing
operating conditions.

In particular, CPS are a critical aspect of cyberse-
curity, as these systems combine physical processes and
computer systems, and the vulnerability of one of the
components can lead to serious consequences. The
implementation of a reconfigurable divider based on the
irreducible division algorithm for chips can be applied to
improve cybersecurity in various aspects of CPS: (1)
Detection and prevention of network attacks: reconfi-
gurable dividers can be used to distribute traffic in com-
munication networks depending on the attack variables.
For example, they can redistribute traffic to prevent
network congestion or reduce the impact of malicious
data packets. (2) Protection against data leakage: Recon-
figurable dividers can be used to encrypt and decrypt data
in different parts of a network or system, reducing the risk
of sensitive information leakage. (3) Strong access
control: Reconfigurable dividers can be used to create
dynamic access rules for resources or systems, enabling
effective access control and preventing unauthorised use.
(4) Vulnerability detection and remediation: reconfi-
gurable dividers can be used to continuously analyse
system health and identify potential vulnerabilities or
attacks, and to quickly respond and remediate these
issues. (5) Dynamic management of computing resources:
reconfigurable dividers can optimise the allocation of
computing resources in real time, ensuring efficient use of
resources and minimising the possibility of exploiting
attacks.

These aspects demonstrate that the implementation
of a reconfigurable divisor based on the irreducible
division algorithm for chips will contribute to improving
cybersecurity in various aspects of cyber-physical
systems.

References
[1] Matthews E., Lu A., Fang Z., Shannon L., (2019).

Rethinking integer divider design for FPGA-based
soft-processors. IEEE 27th Annual International Sympo-
sium on Field-Programmable Custom Computing Ma-
chines, pp. 289–297.
DOI:https://doi.org/10.1109/FCCM.2019.00046

[2] Sanju Vikasini M.K., Kailath B.J., (2021). 16-bit Modified
vedic paravartya divider with quotient in fractions. IEEE
Region 10 Symposium, pp.1–5. DOI:https://doi.org/1
0.1109/TENSYMP52854.2021.9551013

[3] Han G., Zhang W., Niu L., Zhang C., Wang Z., (2022).
Hardware implementation of approximate fixed-point
divider for machine learning optimization algorithm. IEEE
Asia Pacific Conference on Postgraduate Research in Mi-
croelectronics and Electronics, pp.22–25. DOI:https://
doi.org/10.1109/PrimeAsia56064.2022.10104001

[4] Tynymbayev S., Aitkhozhayeva E., Berdibayev R.,
Gnatyuk S., Okhrimenko T., Namazbayev T., (2019).

Development of modular reduction based on the divider by
blocking negative remainders for critical cryptographic
applications. IEEE 2nd Ukraine Conference on Electrical
and Computer Engineering, pp.809–812.
DOI:https://doi.org/10.1109/UKRCON.2019.8879846

[5] Purohit A.A., Ahmed M.R., Reddy R.V.S., (2020). Design
of area optimized arithmetic and logical unit for
microcontroller. IEEE VLSI DEVICE CIRCUIT AND
SYSTEM, pp.335–339. DOI:https://doi.org/10.1109/
VLSIDCS47293.2020.9179942

[6] Patankar U.S., Flores M.E., Koel A., (2020). Division
algorithms - from past to present chance to improve area
time and complexity for digital applications. IEEE Latin
America Electron Devices Conference, pp. 1–4.
DOI:https://doi.org/10.1109/LAEDC49063.2020.9073050

[7] Patankar U.S., Flores M.E., Koel A., (2021). Study of
estimation based functional iteration approximation
dividers. IEEE International Conference on Consumer
Electronics, pp. 1–4. DOI:
https://doi.org/10.1109/ICCE50685.2021.9427657

[8] Patankar U.S., Flores M.E., Koel A., (2021). Review of
basic classes of dividers based on division algorithm. IEEE
Access, pp. 23035–23069.
DOI:https://doi.org/10.1109/ACCESS.2021.3055735

[9] Liu Z., Song X., Wang Z., Wang Y., Zhou J., (2023).
Constructing high radix quotient digit selection tables for
SRT division and square root. IEEE Transactions on
Computers, pp. 2111–2119.
DOI:https://doi.org/10.1109/TC.2023.3235978

[10] Chouhan M., Raghuvanshi A.S., Muchahary D., (2022).
FPGA implementation of high performance and energy
efficient Radix-4 based FFT. Asian Conference on Innova-
tion in Technology, pp. 1–5. DOI:https://doi.org/10.1109/
ASIANCON55314.2022.9908613

[11] Lang T., Nannarelli A., (2007). A radix-10 digit-recurrence
division unit: algorithm and architecture. IEEE Transac-
tions on Computers, pp. 727–739.
DOI:https://doi.org/10.1109/TC.2007.1038

[12] Vazquez A., Antelo E., Montuschi P., (2007). A radix-10
SRT divider based on alternative BCD codings. Interna-
tional Conference on Computer Design, pp. 280–287.
DOI:https://doi.org/10.1109/ICCD.2007.4601914

[13] Mehta B., Talukdar J., Gajjar S., (2017). High speed SRT
divider for intelligent embedded system. International
Conference on Soft Computing and Its Engineering Ap-
plications, pp. 1–5. DOI:https://doi.org/10.1109/
ICSOFTCOMP.2017.8280077

[14] Jun K., Swartzlander E.E., (2012). Modified non-restoring
division algorithm with improved delay profile and error
correction. Circuits, Systems and Computers, pp.
1460–1464. DOI: https://doi.org/10.1109/
ACSSC.2012.6489269

[15] Dixit S., Nadeem M., (2017). FPGA accomplishment of a
16-bit divider. Imperial Journal of Interdisciplinary Re-
search, pp. 140–143. Available at:
https://www.researchgate.net/publication/360588032_FPG
A_Accomplishment_of_a_16-Bit_Divider (Accessed: 07
November 2023).

[16] Narendra K., Ahmed S., Kumar S., Asha G.H., (2015).
FPGA implementation of fixed point integer divider using
iterative array structure. International Journal of Engi-
neering and Technical Research, pp. 170–179. Available
at: https://www.erpublication.org/published_paper/
JETR031914.pdf (Accessed: 07 November 2023).

[17] Patankar U.S., Flores M.E., Koel A., (2023). A. Novel data
dependent divider circuit block implementation for com-

Digital Division Algorithms for Efficient Execution on Integrated Circuits 53

plex division and area critical applications. Sci Rep 13,
pp.1–27. DOI: https://doi.org/10.1038/
s41598-023-28343-3

[18] Takagi N., Kadowaki S., Takagi K., (2005). A hardware
algorithm for integer division. IEEE Symposium on Com-
puter Arithmetic, pp. 140–146.
DOI:https://doi.org/10.1109/ARITH.2005.6

[19] Han K., Tenca A., Tran D., (2009). High-speed float-
ing-point divider with reduced area. The International So-
ciety for Optical Engineering, pp. 1–8. Available at:
https://www.researchgate.net/publication/253273653_High
-speed_floating-point_divider_with_reduced_area (Ac-
cessed: 07 November 2023).

[20] Korol I., Korol I., (2019). Logical algorithms of the
accelerated multiplication with minimum quantity of

nonzero digits of the converted multipliers. Advances in
Cyber-Physical Systems, pp. 25–31.
DOI:https://doi.org/10.23939/acps2019.01.025

[21] Ugurdag H.F., De Dinechin F., Gener Y.S., Gören S., Didier
L.S., (2017). Hardware division by small integer constants.
IEEE Transactions on Computers, pp. 2097–2110.
DOI:https://doi.org/10.1109/TC.2017.2707488

[22] Mannatungal K.S., Perera M.D.R., (2016). Performance
evaluation of division algorithms in FPGA. Proceedings of
the International Research Conference “Medical, Allied
Health, Basic and Applied Sciences”, pp. 84–88. Available
at: http://ir.kdu.ac.lk/bitstream/handle/345/1170/
FAHS017.pdf?isAllowed=y&sequence=1 (Accessed: 07
November 2023).

Anatoliy Obshta - Doctor of
Technical Sciences. Speciality:
devices and methods for measuring
electrical and magnetic quantities.
Theme: theory and methods of
construction of quality control
equipment for conductive materials.
He is a professor, author of more
than 150 scientific and metho-
dological works. In particular, he is
the author of 10 textbooks on various

courses in mathematics and computer science and 5 mono-
graphs on aggregation-iterative and two-sided methods for
solving operator equations

Volodymyr Khoma, received
the Ph.D. and the Habilitation de-
grees in Electrical and Electronic
Engineering from the Lviv Poly-
technic National University in 1990
and 2001, respectively. He received
the title of Professor in the field of
Control Engineering in 2003. He is
currently employed as a Professor
with the Institute of Control Engi-
neering, Opole University of Tech-

nology. His scientific in terests include AI in cybersecurity and
IoT, digital measurement, and signal processing.

Andrii Prokopchuk received
a Bachelor`s degree in Computer
Engineering at Lviv Polytechnic
National University in 2022. Cur-
rently, he is receiving a Master’s
degree.

He has professional experience
working in IT since 2020 and cur-
rently working as a digital design
engineer at Renesas Electronics
(Lviv, Ukraine).

