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Abstract: In this paper, we analyse division algorithms for 
use on chips and propose the implementation of an optimal 
divider for these chips. By “optimal”, we refer to an algo-
rithm that meets the following criteria: space efficiency – 
which involves minimizing resource utilization on the IC’s 
die area; speed efficiency – the algorithm's processing time 
(measured in n clock cycles); power efficiency – power 
consumption of the divider; implementation time – time for 
implementation of the algorithm using HDL. The chosen 
algorithm should strike a balance between space efficiency 
and processing speed, ensuring the efficient use of hardware 
resources while delivering swift computational results. The 
ultimate goal is to create a division module that aligns 
seamlessly with the integrated circuit's architecture, cater-
ing to computational efficiency and resource constraints. 

Index Terms: FPGA, ASIC, Digital Divider, Digit Re-
currence, Functional Iteration. 

I. INTRODUCTION
Arithmetic operations, such as addition, subtraction, 

multiplication, and division, play a fundamental role in 
computational systems. Although these operations have 
long been studied and implemented, the performance of 
the division operation is one of the most complex and 
resource-intensive tasks. As the advancements in chip 
manufacturing techniques and technologies continue to 
push the boundaries of Moore's law, it has become 
increasingly essential to address the challenges of 
realizing efficient division methods. 

One of the major challenges in implementing 
division is that the result is an approximate value. While 
other arithmetic operations can give a specific, precise 
result, division is performed approximately. The result of 
dividing two integers, in general, is a rational or even 
irrational number, which in some cases, when represented 
in the binary system, cannot be accurately expressed by a 
limited number of bits. 

Another challenge in developing custom solutions 
on ICs is that most synthesizers do not support the 
division operation. The only permitted solutions are 
division by a power of 2 or if the divisor is a constant. In 
all other cases, the synthesizer will produce an error. 

This work aims to develop a reconfigurable divider 
for low-power electronic devices, optimized for the 
implementation area. 

II. LITERATURE REVIEW AND PROBLEM
STATEMENT 

Due to the described issues, in Table 1, many 
research works are aimed at finding an optimal digital 
division algorithm for integrated circuits that would 
satisfy fundamental criteria such as space, speed, and 
energy efficiency. 

Table 1 

Supported Expressions for Verilog Language 

Expression Symbol Status 
Concatenation {} Supported 

Replication {{}} Supported 

Arithmetic +,-,*,** Supported 

Division / 

Supported only if the second 
operand is a power of 2, 

 or both operands are 
constant. 

Modulus % Supported only if the second 
 operand is a power of 2. 

Addition + Supported 

Subtraction - Supported 

Multiplication * Supported 

Furthermore, methods for optimizing existing 
algorithms are a sought-after and popular topic of 
research work. 

The division operation is critical for certain fields, 
for example, soft processors [1], digital signal processing 
[2], machine learning [3], cryptographic [4], or 
arithmetical logical units [5]. 

Among the main directions of research and studies 
on this topic, the following can be highlighted: 
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1) reviews of existing division algorithms, high-
lighting their advantages and disadvantages; 

2) enhancement of a specific division method for a 
specific task; 

3) verification and evaluation of the efficiency of 
existing algorithms. 

Some of the newest works on the classification and 
detailed review of digital division algorithms can be 
considered in papers [6] and [7]. Division algorithms can 
be divided into five classes: digit recurrence, functional 
iteration, very high radix, look-up table, and variable 
latency. Many practical division algorithms are hybrids of 
several of these classes. In the following work [8], clearer 
examples were provided for the use of specific classes of 
dividers depending on the specific tasks. 

Significant emphasis is placed on the digit recur-
rence class among the works aimed at improving existing 
division algorithms. In most cases, this is related to the 
fact that the division operation is critical for low-power 
integrated circuits, where there are limitations on the 
number of logic gates, area, and energy efficiency.  

As it is described below, this class of digital divisors 
best meets the requirements outlined above. 
Improvements to existing algorithms began in the last 
century with the development of a new division method 
known as SRT. The main area of application of the SRT 
algorithm is general-purpose processors, which are 
commonly used in personal computers, FPGA systems, 
and ASIC processors. After the discovery of this new 
method, an iterative process of improving various 
parameters began. In [9], the authors managed to build bit 
selection tables for SRT division and square root 
extraction with a given radius and redundancy. In [10], 
the authors managed to reduce the number of LUTs used 
to 36% when implementing the SRT division algorithm 
for fast Fourier transform. One of the ideas was also the 
development of a 10-bit divider, presented in [11] and 
[12], based on the SRT algorithm, which demonstrated 
improved performance in terms of both implementation 
area and speed. The proposed algorithm in [13] for IoT 
applications is based on the parallel execution of different 
steps to shorten the time-critical path and the use of fuzzy 
logic to solve the overlap problem in the selection of the 
coefficient; hence, the reduced one inverter can be 
removed by using a new quotient digit converter. Another 
technique is described in [15], where the author 
implements a 16-bit divider with a speculated quotient 
digit that is used to simultaneously compute the two 
possible partial remainders for the next step while the 
quotient digit is being corrected. This process does not 
affect the overall speed hence speeding up the division 
process. A different idea to speed up the division process 
is described in [16] related to architecture modification by 
pipelining the divider. In one of the most recent works 
[17], the author developed a new divider based on the 
digital recurrence class, which utilizes the Baudhay-
an-Pythagoras triplet method. They managed to achieve a 
smaller implementation area while increasing the speed of 
the division process. In another work [18], the author 

proposed to abandon the normalization of the divisor, and 
hence, reduce the required area-consuming leading to one 
(or zero) detection nor shifts of variable amount. 

For the functional iteration class, in the work [19], a 
modified Goldschmidt algorithm was proposed, which 
shows a significant improvement in area utilization, by 
20-40% when compared to the implementation based on 
the conventional Goldschmidt algorithm. In our opinion, 
to accelerate the division operation, the work presented in 
[20] can be considered, where the authors managed to 
increase the speed of the multiplication operation by 
reducing the number of non-zero digits of the multiplier. 

In the case of the look-up table class, the authors 
propose solutions that use small lookup tables, which are 
well-matched with the hardware resources of an FPGA 
[21]. 

From the analysis of [22] work on evaluating the 
effectiveness of algorithms, it can be concluded that there 
are advantages in terms of the scope of implementation 
and energy efficiency for digital divisors belonging to the 
class of recurrent digits. Using simple arithmetic 
operations like addition, subtraction, and shifting makes it 
possible to utilize on-chip resources most efficiently, 
albeit at the cost of speed.  

III. SCOPE OF WORK AND OBJECTIVES 
Develop a reconfigurable divider optimised for the 

implementation domain, suitable for FPGAs (such as 
Xilinx, Altera, Lattice, etc.) and ASICs. 

IV. DIVISION ALGORITHMS BACKGROUND 
Based on the method of conversion, we can 

distinguish division algorithms in the following classes 
that are shown in Fig. 1. Digit Recurrence (1); Functional 
Iteration (2); Look-up table (3). 

Based on hardware architecture, we can classify 
types of dividers as: serial or sequential type(1); parallel 
type (2);  pipelined type (3). Based on performance, we 
can classify types of dividers as: slow type (1); and fast 
type (2). Based on execution, we can classify types of 
dividers as: iterative subtraction type (1); predictive type 
(2). 

 

 

Fig. 1. The distribution of different division algorithms 
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V.  DIGIT RECURRENCE CLASS 
One of the simplest and most widely used classes of 

digital division is digit recurrence. In the beginning, this 
class became commonly used due to the limited 
capabilities of programmable logic devices. The main 
idea of this division is simply to subtract the divisor from 
the dividend cyclically which produces quotient bits in 
sequence. This is the iterative type of division since it 
performs repeated subtraction. This approach generates 
from 1 to n of quotient bits per iteration. The main reason 
for its widespread popularity in usage is due to its set of 
simple arithmetic operations such as addition, 
subtraction, shifting, multiplication, etc. 

This class of division algorithm mainly covers three 
types of dividers: restoring (1); non-restoring (2); SRT 
(radix n) (3). 

A. RESTORING ALGORITHM 
The Restoring algorithm has similarities with the 

long-division method. The fundamental concept of this 
algorithm involves a repetitive process of shifting and 
subtracting the divisor from the dividend. The detailed 
flowchart of division using the Restoring algorithm is 
shown in Fig. 2, where: n – number of bits, MSB – most 
significant bit, Q0 – quotient bit calculated in each 
iteration, Q – final result. 

 

 

Fig. 2. Flowchart of Restoring Division Algorithm 

The steps to achieve the Restoring division 
algorithm are: (1) select initial values for the divisor, 
dividend, partial remainder/accumulator, and the number 
of bits (n); (2) shift dividend left by 1; (3) subtract the 
divisor from the partial remainder/accumulator, and the 
result is stored in the partial remainder/accumulator; (4) 
check for the most significant bit of the partial 

remainder/accumulator; if 0, then the least significant bit 
of Q is set to 1; otherwise, the least significant bit of Q is 
set to 0, and the value of the partial remainder/accu-
mulator is restored to the value before the subtraction; 
reduce the value of n by one (1); continue iterations until 
we get a value of n=0 (2). 

The main drawback of this algorithm is that it 
calculates only 1 quotient bit during each cycle, which 
affects the overall speed of the algorithm. Additionally, a 
crucial requirement for its implementation is that the 
partial remainder must always be positive or equal to 0, 
which necessitates an additional addition operation in the 
case of a negative remainder. The name of the algorithm, 
"Restoring," originates from the need to restore the partial 
remainder in each cycle. However, this algorithm requires 
minimal effort in terms of implementation. Moreover, its 
simplicity is an advantage, as it positively impacts the 
utilization area of the integrated circuit. 

B. NON-RESTORING ALGORITHM 
This algorithm is very similar to the Restoring 

division algorithm as it requires an iterative process of 
shifting, subtracting, and adding. The main difference is 
that there is no longer a need to restore the partial 
remainder. This is achieved by performing a check on the 
partial remainder during the last cycle (n = 0), and if it is 
negative, restoring it with just one addition operation. The 
detailed division that utilizes the Non-Restoring 
algorithm is shown in Fig. 3. 

t and requires more effort during implementation. 
 

 

Fig. 3. Flowchart of Non-Restoring  
Division Algorithm 
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The steps to achieve a Non-Restoring division 
algorithm are:  (1) select initial values for the divisor, 
dividend, partial remainder/accumulator, and the number 
of bits (n); (2) shift dividend left by 1; (3) subtract (at first 
iteration) / add divisor from/to the partial 
remainder/accumulator and the result is stored in the 
partial remainder/accumulator; (4) check for the most 
significant bit of the partial remainder/accumulator; if 0, 
then the least significant bit of Q is set to 1; otherwise, the 
least significant bit of Q is set to 0; (5) reduce the value of 
n by one; (6) continue iterations until we get a value of 
n=0; (7) check partial remainder/accumulator. If < 0 then 
restore partial remainder. 

The main advantage of this algorithm is its higher 
speed compared to the Restoring algorithm, as well as a 
smaller implementation area. However, it still retains the 
limitation of calculating only 1 quotient bi 

C. SRT ALGORITHM (RADIX-N) 
The SRT algorithm is the most efficient among 

those mentioned above. The main advantage of this 
algorithm is that it calculates more than 1 quotient bit 
(when the radix is higher than 2) in a single cycle, making 
it the fastest algorithm among the digit-recurrent classes. 
The detailed division using the SRT algorithm is shown in 
Fig. 4. 

 

 

Fig. 4. Flowchart of Radix-2 SRT Division Algorithm 

The steps to achieve the SRT division algorithm are: 
(1) select initial values for the divisor, dividend, partial 
remainder/accumulator, and the number of bits (n); (2) 
shift dividend left by radix/2; (3) check for the most 
significant bit of Dividend and select quotient bits from 
LUT; (4) check for the most significant bit of the partial 
remainder/accumulator; depending on that, do subtrac-

tion, addition, or skip this step; (5) reduce the value of n 
by one; (6) continue iterations until we get a value of n=0; 
(7) check partial remainder/accumulator. If < 0 then 
restore partial remainder. 

This algorithm is the most complex in terms of 
development among the digit recurrent class. The 
complexity lies in the need to create a Look-up table 
(LUT) for a specific radix-n. The larger the radix, the 
bigger and more complex LUT is required for selecting 
quotient bits. However, this allows computing more bits 
in a single cycle. There are many nuances in 
implementing this algorithm, namely: (1) choice of radix; 
(2) choice of remainder representation; (3) choice of 
quotient digit set. 

Depending on these choices, the speed, implemen-
tation area, and latency of the algorithm will be affected. 

VI. FUNCTIONAL ITERATION CLASS 
A fundamentally different class of division is the 

functional iteration class. This division method uses 
multiplication operations instead of additions and 
subtractions as in the digit-recurrence class. The result is 
computed through iterative approximations, allowing for 
the calculation of multiple quotient bits per iteration and 
significantly increasing the speed of the division process. 
Utilizing multiplication for the functional iterative 
dividers leads to the increased implementation area, 
prompting the use of smaller-size multipliers. Conse-
quently, this approach becomes more intricate compared 
to straightforward digit recurrence dividers. This category 
of dividers suffers from a significant drawback - the 
quotient results are imprecise due to the direct rounding 
of approximate solution values instead of infinite precise 
values. The functional iteration-based algorithm is 
efficient in performing division but cannot guarantee 
exact results consistently. Functional iteration dividers 
work on the series expansion phenomenon. 

This class of division algorithm mainly covers the 
following types of dividers: (1) Newton–Raphson 
algorithm (NRA); (2) Goldschmidt algorithm (GSA); (3) 
Series expansion algorithm (SEA); (4) Taylor series 
algorithm (TSEA). 

A. NEWTON-RAPHSON ALGORITHM 
It is acknowledged that the outcome of the division 

process can be expressed as a single term of the product 
between the dividend and anti-divisor (reciprocal). 
Computing the anti-divisor in the Newton-Raphson 
algorithm relies on the choice of the priming function, 
which determines its root at the anti-divisor, a parameter 
that typically has multiple values. The accuracy of the 
quotient's convergence depends on which root is selected, 
potentially leading to errors in the division process and 
generating additional overhead if the selected root 
overshoots the true quotient. Improving accuracy can be 
achieved by selecting the appropriate root initially. 

The detailed figure of division using the 
Newton-Raphson algorithm is shown in Fig. 5, where: i – 



Anatoliy Obshta, Volodymyr Khoma, Andrii Prokopchuk 50 

number of iterations, X0 – initial value of approximation, 
Xi – current value of approximation, Xi+1 – next value of 
approximation 

 

 

Fig. 5. Flowchart of Newton-Raphson Division Algorithm 

The steps to achieve the Newton-Raphson algorithm 
are: (1) select initial values for divisor, dividend, and the 
number of iterations (i); (2) perform an initial 
approximation of 1/Divisor; (3) compute the next 
approximation using the formula; (4) reduce the value of i 
by one; (5) continue iterations until we get a value of i=0; 
(6) multiply the Dividend by the calculated reciprocal 
(anti-divisor). 

There are also other division methods within this 
class, such as the Goldschmidt, Series expansion, and 
Taylor series algorithms. Certainly, they have specific 
differences and characteristics that help enhance speed 
and reduce delays. However, all of them share a 
fundamental idea - approximating the reciprocal of the 
divisor and subsequently replacing the division operation 
with multiplication. 

VII. LOOK-UP TABLE 
Another class of division is Look-up tables. The 

concept here is that the division result values can be 
pre-stored in this table and processed when two operands 
are input into the table. This method allows for an 
incredibly fast output of results due to the extensive 
implementation space. However, it typically lacks 
precision (as the accuracy is chosen during development 
and depends on the table size). 

The figure of division using the Look-up table 
algorithm is shown in Fig. 6. 

 

 

Fig. 6. Flowchart of Look-up table Division Algorithm 

VIII. ANALYSIS OF RESULTS AND PROPOSAL  
FOR DIVIDER IMPLEMENTATION 

The investigation into existing classes of dividers 
based on the division algorithm has yielded valuable 
insights into their strengths and weaknesses. Among the 
classes studied, the digit recurrence class emerges as the 
most prevalent approach for implementing digital 
dividers. Notably, this method can generate radix/2 digits 
per iteration, making it an optimal choice for dividers 
where space efficiency is a critical concern. 

For scenarios involving the division of smaller 
numbers with an emphasis on speed, the lookup table 
method proves to be a highly effective solution. This 
approach excels in swiftly handling computations 
involving modest-sized operands. However, as the 
magnitude of the numbers to be divided increases, a shift 
towards the functional iteration class of dividers becomes 
more advisable. 

The functional iteration class stands out as the 
fastest algorithm among all those considered in this study. 
Its remarkable computational speed, however, comes at 
the cost of increased space and timing requirements for 
proper implementation. This implies that while it may be 
the most efficient option for demanding computational 
tasks, careful consideration of resource allocation is 
necessary to ensure its optimal performance. 

Table 2 

Resource utilization of different division architecture 
in the Spartan-3E FPGA 

Resources Division Architecture FFs LUTs MUXs 
Restoring 21 31 1 
Non-Restoring 22 25 1 
SRT 31 59 1 
SRT with CSA 40 100 1 
Goldschmidt 22 197 1 
Xilinx Divider core 224 79 1 
Matlab system generator 436 143 1 

Table 3 

Resource utilization of different division architecture 
in the Spartan-6 FPGA 

Resources 
Division Architec-

ture FFs LUTs MUXs DSP 
Slices 

Restoring 21 31 12 0 
Non-Restoring 21 25 8 0 
SRT 37 38 12 0 
SRT with CSA 40 84 16 0 
Goldschmidt 21 22 0 2 
Xilinx Divider core 224 152 104 0 
Matlab system gen-
erator 436 296 192 0 
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By analyzing the research results presented in 
articles [22] and [23], it can be concluded that the 
non-restoring division algorithm is optimal in cases 
where space, timing, and power efficiency are crucial, 
with minimal development time. The results of the logic 
resource utilization of 8-bit divider architectures in the 
Spartan-3E and Spartan-6 FPGA are shown in Table 2 
and Table 3 respectively. The critical path delay in each 
division architecture for both the Spartan-3E and the 
Spartan-6 FPGAs is shown in Table 4. 

Table 4 

Delay in the Spartan-3E and Spartan-6 FPGAs 

Device 
Division Architecture 

Spartan-3E Spartan-6 
Restoring 4,992 ns 2,906 ns 

Non-Restoring 4,719 ns 3,314 ns 

SRT 6,116 ns 3,258 ns 

SRT with CSA 7,112 ns 5,016 ns 

Goldschmidt 13,791 ns 7,998 ns 

Xilinx Divider core 3,957 ns 2,626 ns 

Matlab system generator 3,692 ns 3,150 ns 

 
After investigation of existing algorithms and 

implementations of dividers based on them, certain 
drawbacks in current implementations become apparent. 
The designed dividers have a fixed input data size, do not 
scale well, and may not be suitable for various platforms. 

The proposal is to develop a reconfigurable divider 
based on the non-restoring division algorithm. This 
divider will have the ability to easily integrate into any 
synchronous project on IC (FPGA / ASIC) by using 
parameterized input data, and the selection of bit width 
can be determined during the synthesis phase.  

Additionally, one of the advantages of this divider 
will be the implementation of a finite state machine, 
which will ensure the sequential execution of division in 
multiple stages. In cases where optimization of used 
space and low-power devices is a concern, this will 
reduce the number of components used, directly 
impacting area and power consumption. 

In terms of optimizing the development time  of 
a digital divider based on parameterized inputs/outputs bit 
width, the following equations can be used: 

     ,              (1) 

 .               (2) 
Equation (1) represents the time required to 

implement a fixed bit width divider, where  is the 
time for RTL implementation using HDL, and  is the 
time required to verify the divider. In case you need to 
change the bit width of the input data for another project, 
you will have to invest time in RTL development and 
verification again. 

Equation (2) represents the time required to 
implement a reconfigurable divider with paameterized 
input/output bit width, where  is the time required for 
the implementation of a standard divider with fixed bit 
width,  is the time to implement parameterized bit 
width feature,  is the number of divider re-usage 
( ean  divider implementation stage). In this case, 
there is no longer a need to repeat the development and 
verification stages of the divider when it needs to be used 
with a different input data width. As evident from 
equation (2), implementing this feature may require 
additional time, but it becomes advantageous when the 
divider is re-used at least once (3). If we assume that  is 
the time required for standard divider implementation, 
and  is the time required for modifications (this 
parameter was determined using approximate values 
corresponding to the number of changes in the RTL code) 
then it can be argued that the development time of this 
divider is 1.6 times less than in the standard approach (4): 

  ,        (3) 

 .          (4) 

Our reconfigurable digital divider, which can 
change the bit width of input/output data, allows for 
flexible use according to user requirements and easy 
integration into designs. With this approach, we plan to 
speed up the development of integrated circuits. The 
developed digital divider should reduce the development 
time by at least 1.5 times. 

The requirements for a digital divider are as follows: 
(1)  the input/output bit depth must be parameterised; (2) 
іt must be implemented using the most efficient algorithm 
in terms of the area of implementation; (3)  must be 
suitable for reusability. This divider will be suitable for 
FPGAs (such as Xilinx, Altera, Lattice, etc.) and ASICs. 

IX. CONCLUSION 
Considering these findings, it is imperative to 

carefully weigh the specific requirements of a given 
application when selecting a divider implementation. For 
scenarios where space efficiency is paramount, the digit 
recurrence class should be the preferred choice. 

Conversely, when dealing with smaller operands 
and speed is of the essence, the lookup table method may 
be the most suitable option. 

For applications involving substantial numbers and 
demanding computational tasks, the functional iteration 
class emerges as the clear frontrunner in terms of speed, 
albeit with a caveat of increased resource allocation. 
Engineers and developers must conduct a thorough 
assessment of their project's needs and resources before 
determining the optimal divider implementation. 

As a result of this research, we addressed the issue of 
implementing the division operation on integrated 
circuits. We examined existing division algorithms, 
highlighted their advantages and disadvantages, and 
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compared hardware resource utilization and algorithm 
complexity. 

The implementation of a reconfigurable divider 
based on the irreducible division algorithm can be applied 
in many areas of CPS, where fast and efficient data 
processing is required, as well as adaptability to changing 
operating conditions. 

In particular, CPS are a critical aspect of cyberse-
curity, as these systems combine physical processes and 
computer systems, and the vulnerability of one of the 
components can lead to serious consequences. The 
implementation of a reconfigurable divider based on the 
irreducible division algorithm for chips can be applied to 
improve cybersecurity in various aspects of CPS: (1) 
Detection and prevention of network attacks: reconfi-
gurable dividers can be used to distribute traffic in com-
munication networks depending on the attack variables. 
For example, they can redistribute traffic to prevent 
network congestion or reduce the impact of malicious 
data packets. (2) Protection against data leakage: Recon-
figurable dividers can be used to encrypt and decrypt data 
in different parts of a network or system, reducing the risk 
of sensitive information leakage. (3) Strong access 
control: Reconfigurable dividers can be used to create 
dynamic access rules for resources or systems, enabling 
effective access control and preventing unauthorised use. 
(4) Vulnerability detection and remediation: reconfi-
gurable dividers can be used to continuously analyse 
system health and identify potential vulnerabilities or 
attacks, and to quickly respond and remediate these 
issues. (5) Dynamic management of computing resources: 
reconfigurable dividers can optimise the allocation of 
computing resources in real time, ensuring efficient use of 
resources and minimising the possibility of exploiting 
attacks. 

These aspects demonstrate that the implementation 
of a reconfigurable divisor based on the irreducible 
division algorithm for chips will contribute to improving 
cybersecurity in various aspects of cyber-physical 
systems. 
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