
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 1, 2024

FEATURES OF THE IMPLEMENTATION OF MICRO-INTERFACES
IN INFORMATION SYSTEMS

Oleksandr Stepanov, Halyna Klym

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.
Authors’ e-mail: oleksandr.v.stepanov@lpnu.ua, halyna.i.klym@lpnu.ua

https://doi.org/10.23939/acps2024.01.054

Submitted on 18.04.2024

© Stepanov O., Klym H., 2024

Abstract: Microservices are a software development tech-
nique, or variant of the service-oriented architecture struc-
tural style, that organizes an application as a collection of
loosely coupled services. The purpose of the work is to study
the methodology for the design and implementation of in-
formation systems using micro-interfaces in order to im-
prove the quality and speed of their development and facili-
tate their use. The article proposes a method of transforming
the software system architecture from monolithic to micros-
ervice architecture. A brief review of existing architecture
reengineering research has been provided and the advan-
tages of a microservice approach have been identified. At the
second stage, a transition to a modular architecture with the
allocation of functionality into separate modules has been
proposed. An experiment with a typical external single page
application demonstrates the performance of the proposed
algorithm.

Index Terms: architecture, interface, micro-frontend, mi-
croservices, monolithic structure, software applications

I. INTRODUCTION
Until recently, the absolute majority of software ap-

plications has not differed in the particular complexity of
their development and the complexity of their software
content. However, in recent years, the sophistication of
software creation in general and the relative cost of its
development have begun to rise rapidly, which has had a
negative impact on the composition of software in general.
This impact is an increase in complexity, which in turn is
reflected in the complexity of the user interface and, as a
result, the tools are required for its development.

Over time, the amount of JavaScript code used in
applications increases, which leads to an increase in the
following parameters in most projects: development time
due to the high level of code complexity, time of testing,
time interval between application releases.

Large applications that have these problems are often
referred to as monoliths because of the architectural ap-
proach used.

Monolithic architecture is an architectural approach
in which all the main logic of the program is collected in
one place as a whole component, in other words, mono-
lithic software consists of a single-layer combination of
various components into a single whole [1,2].

This trend necessitated the emergence of a concept
that would be able to simultaneously increase the func-

tionality of applications and make the development proc-
ess easier. Such a concept appeared, and it acquired the
name micro-frontend, apparently for front-end develop-
ment, and the concept of microservices, in turn, in the
field of back-end development. The principle of a micro-
frontend is to break large monolithic software applications
into smaller, independently deployed units called micro-
interfaces, each of which is responsible for a specific
function, but is nevertheless part of one larger system. By
decoupling the interface components, this architecture
enables development teams to work independently on
different parts of the application, contributing to faster
development cycles and easier maintenance [3-5].

Within the scope of this study, the main focus will
fall on ways of implementing the concept of micro-
frontends in the process of designing and implementing
information systems. As such, in digital terms, they repre-
sent electronic systems – sets of interconnected compo-
nents that collect, process, store and disseminate data to
support decision-making and organizational operations. In
connection with the expected scale of these systems, the
implementation of a technique aimed at offloading soft-
ware components may prove to be the right solution and
contribute to more efficient processing and distribution of
data [6].

The main goal of this work is to propose an optimal
micro-interface architecture that combines the advantages
of different architectural approaches.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

In the scientific and research space of today, there
are works dedicated to the invention and analysis of the
methodology for the design and implementation of infor-
mation systems using micro-interfaces in order to improve
the quality and speed of their development and facilitate
their use.

Research [7] was aimed at developing a method of
applying the micro-interface approach for monolithic
single page applications (SPA). The article proposes a
method of transforming the software system architecture
from monolithic to microservice architecture (microser-
vice architecture - MSA). The proposed three-stage me-
thod differs from the methods by the allocation of an
additional stage of transformation, which allows to gently

Features of The Implementation of Micro-Interfaces in Information Systems 55

change the connections between the parts of the mono-
lithic application, which were implemented in the initial
monolithic architecture [8,9]. The first stage is reverse
engineering, in which it is proposed to shift the focus from
the search for obsolete code to the functional analysis of
the program as such. At the second stage, a transition to a
modular architecture with the allocation of functionality
into separate modules is proposed. At the end of the third
stage, several separate programs (micro-interfaces) were
obtained, which are connected to the main program [8].
An experiment with a typical external SPA demonstrates
the performance of the proposed algorithm. The resulting
system is compared to the original on the following meas-
urable parameters: production build time, master build
size, and average first page load time. All comparisons
showed the advantages of the system obtained as a result
of the transformation. As a result, the architecture trans-
formation algorithm made it possible to obtain a better
result, taking into account the limitations of the SPA inter-
face.

However, taking into account the above-mentioned
scientific documentation, the issue related to the method-
ology for the design and implementation of information
systems using micro-interfaces still remains insufficiently
researched and requires further elaboration.

III. SCOPE OF WORK AND OBJECTIVES
The purpose of the work is to study the methodology

for the design and implementation of information systems
using micro-interfaces in order to improve the quality and
speed of their development and improve the user experi-
ence.

IV. MICROSERVICE ARCHITECTURE FROM THE
FRONTEND PERSPECTIVE

Microservices is a software development technique,
or variant of the service-oriented architecture (SOA) struc-
tural style, that organizes an application as a collection of
loosely coupled services. In the microservice architecture,
the components themselves are isolated from each other
and interact using interfaces. From the above, it can be
concluded that each microservice must be an independent
component. Since each microservice works in its own
process, it must clearly define the interaction interface
(API) with it. Other vertices can interact with the service
only through the API, so minimizing connections is one of
the most important processes in planning such an architec-
ture [10].

The main advantages of the micro-frontend approach
to the development of large applications include its modu-
lar architecture, where individual widgets or pages func-
tion as completely independent programs. This modularity
enhances the speed of testing, as changes in one widget or
page can be tested in isolation within the application,
eliminating the need for testing all other functionalities.
Additionally, the micro-frontend approach facilitates
parallel deployments, allowing individual widgets or
pages to be deployed independently for greater efficiency.

In addition to the obvious advantages of this ap-
proach, it also has significant disadvantages. Duplication
of code - each application is developed by a separate team
that makes its own technical decisions. This leads to re-
downloading the same frameworks libraries and general
duplication of code that could have been reused. The JS
bundle of a monolithic application will always be smaller
than the set of bundles in the micro-frontend architecture,
there may be possible problems with caching and version-
ing of applications. Global variables or CSS styles are
things to forget about in a micro-frontend architecture if
applications are completely isolated.

Using this architectural approach on small projects
and in small teams brings more challenges and additional
development complexity than benefits. However, large
projects with distributed teams, on the contrary, benefit
more from creating micro-frontend applications. That is
why today micro-frontend architecture has been already
widely used by many large companies in their web appli-
cations [11]. Fig. 1 shows migration schema from mono-
lithic to micro-frontends.

Currently, there are several options for providing a
micro-frontend architecture. The easiest way to organize
micro-frontends is to create several independent applica-
tions. This requires having one main application with
hyperlinks to other micro-frontend applications. Clicking
on the hyperlink takes the user to another application with
a different URL.

Fig. 1. Architecture when transitioning to a micro-frontend

Another, often used option is to use the single-spa
framework. The idea is to create a framework-specific
shell for each micro-frontend application to integrate them
into a one single-spa application. The main disadvantage
of this approach is the need to follow clear rules of the
single-spa framework for each micro-frontend in order to

Oleksandr Stepanov, Halyna Klym 56

organize integration with other micro-frontends. If there is
a ready-made application, then there is a risk of error and
it should be rewritten taking into account the rules of
single-spa.

One of the most popular mechanisms is the use of
iframes. All necessary widgets must be placed in I-frames,
which load the corresponding micro-frontend, which is
placed on a separate hosting. Data exchange between
them is carried out using a POST message. The main
disadvantage of this approach is the need to download the
full microprocessor package. Another significant disad-
vantage is the risk of reloading libraries using microproc-
essor packages.

The most modern way of working with micro-
frontends is to use the function of combining modules in
the Webpack module bundler. This approach ensures both
good communication of micro-frontends and the possibil-
ity to avoid the duplication of code. The main idea of the
approach is to configure the shell program to import only
the necessary module from the micro-frontend program.

Fig. 2. The scheme of the test environment in the microservice
architecture

In information system performance testing, the fol-
lowing directions are distinguished: load, stress, stability
testing, failure and recovery testing, volume testing, and
spike testing [1]. Fig. 2 shows possible integrated test
environment implementation. These types of testing
mainly differ in the purpose they aim to achieve.

Load tests are designed to determine the speed, scal-
ability and stability of the system. Scalability describes the
ability of the system to adapt to increasing workloads by
using additional resources. Load tests evaluate behavior of
the system under normal and peak load conditions. Stress
testing evaluates the behavior of the system under loads
that significantly exceed the expected maximum. Stability
testing checks whether the system can withstand the ex-
pected load for a long time.

Volumetric testing is performed with an increase in
the amount of used data that is stored and used in the
application. Spike testing is performed suddenly, increas-
ing the load for a short time, created by a very large num-

ber of users, and observing the behavior of the system.
Regardless of the type of stress testing, there are different
levels at which performance testing can be performed.

V. PRESENTATION OF THE MAIN MATERIAL OF
THE RESEARCH

A.THE PROS ANS CONS OF MFE DEVELOPMENT
Understanding the main advantages of the micro-

frontend approach in the development of large enterprise
applications plays a fundamental role in fully realizing the
opportunities for further development of software applica-
tions provided by the implementation of the micro-
frontend concept modular architecture. Individual widgets
or pages are completely independent programs with a
speed of testing. Changes in one widget or page can be
tested separately and only in this application without wast-
ing time testing all other functions in parallel deployment.
Individual widgets or pages can and should be deployed
independently.

However, like all currently known conceptual tech-
nologies, in addition to the obvious advantages of the
studied approach, it also has significant disadvantages
increasing the overall complexity of the program duplica-
tion of code - each application is developed by a separate
team that makes its own technical decisions. This results
in re-loading the same frameworks libraries and general
duplication of code that could have been reused. The JS
package of a monolithic application will always be
smaller than the set of packages in the micro-interface
architecture, there may be possible problems with caching
and program versioning impossibility of using global
variables or CSS styles due to incomplete isolation of
programs.

A big role in the issue of integration of this concept
in the development of the application is played by the
direction of the latter and the initial estimated volume of
development. Using this architectural approach for small
projects and small teams turns out to be more problematic
and adds more development complexity than benefits. On
the other hand, large projects with distributed teams, on
the contrary, get more benefits from creating micro-
interface applications. For this reason, the micro-frontend
architecture is currently widely used by many large com-
panies in their software applications.

At the heart of micro-interfaces, from the point of
view of their influence on the developed product, there are
the following fundamental components independent of the
technological stack Teams must decide on their own set of
technologies without any influence from other code isola-
tion which consists in the fact that the execution time
should not be shared and the programs should be autono-
mous. All parts that cannot be isolated must be prefixed to
avoid collisions of identical identifiers taking advantage of
the native browser API to develop non-standard ways of
communicating between applications stability of the de-
veloped function which consists in the possibility of its
operation autonomously without JavaScript.

Features of The Implementation of Micro-Interfaces in Information Systems 57

B. HORISONTAL & VERTICAL SEPARATION
However, the implementation of this architectural

style is associated with a number of nuances that should
be given due attention. First of all, it is necessary to decide
how the micro-frontend will be identified, it is possible to
have several Micro-Frontends in one view (horizontal
distribution) or only one micro-frontend loaded per unit of
time (vertical distribution), in which case it is represented
by SPA or by one representation exported as an HTML or
JavaScript file. Fig. 3 shows horizontal separation archi-
tecture approach with multiple micro-frontends. Horizon-
tal distribution better serves static pages such as catalogs
or e-commerce, instead of more interactive projects such
as a surface streaming platform or internal applications
that require vertical distribution.

C. ORCHESTRATION
The next important aspect of implementing micro-

frontends is orchestration - effectively managing the load-
ing and unloading of micro-interface modules based on
user interaction or application requirements [12]. Fig. 4
shows architecture with vertical separation, each micro-
frontend loads on separate route. When horizontal distri-
bution is adopted, it is possible to assemble the server-side
view by creating the final HTML page with HTML frag-
ments, otherwise using the Edge side includes markup
language, which uses the concept of transclusion, where
the placeholder is re-placed for valid HTML tags.

Fig. 3. Routing mechanism implementation example
with migration from monolith to vertical architectural

approach

Switching occurs at the edge via a CDN provider or
at the edge using a Varnish reverse proxy. The main dis-
advantage of this approach is that the ESI specification is
not fully available in every CDN provider, often only a
subset of the specification is present, making this tech-
nique difficult to use. In the case of vertical distribution,
the most common way to load a micro-frontend is to use a
shell application that is responsible for loading each mi-
cro-frontend one at a time. Technically, the application

shell is represented by an HTML file that is always pre-
sent during the user's session and contains a small
JavaScript library that is used to load various micro-
frontends and orchestrate view changes.

Routing – developing mechanisms to manage routes
and decide which micro-interface program to load based
on a requested URL or user interaction. Isolation – micro-
frontend modules work independently, but they must also
coexist in the same environment without causing conflicts
or collisions. Fig. 3 shows partly migrated monolithic
application to micro-frontend with separate routing.

D. MFE COMMUNICATION
Communication - establishment of effective com-

munication channels between micro-interfaces while
maintaining weak communication. Both vertical and hori-
zontal distribution require a way to share data. Web stor-
age or cookies can be used as client-side approaches to
manage communication. In the case of horizontal distribu-
tion, an event emitter can be applied, which is introduced
into each micro-interface. Fig. 4 shows possible approach
example of how to share data between different micro-
frontends with event emitter or etc.

Fig. 4. Methods of data transmission between micro-

frontend entities

With this approach, each micro-interface will be
completely independent from the others, which reduces
coupling and enables independent deployment. When a
micro-interface emits an event, other micro-interfaces
subscribed to that particular event respond appropriately.
In the case of vertical distribution, it is important to under-
stand how to exchange information between micro-
interfaces. Both horizontal and vertical approaches need to
consider how views interact as they change. It is possible
that variables can be passed via the query string or by
using a URL to transfer small amounts of data. In addi-
tion, you can use web storage to store information tempo-
rarily (session storage) or permanently (local storage) for
sharing with other micro-interfaces.

Additionally, consider the importance of UI/UX
consistency – managing common styles, layouts, and
interactions to ensure a cohesive and intuitive user experi-
ence; and dependency management – the micro-interface

Oleksandr Stepanov, Halyna Klym 58

architecture can lead to duplicate dependencies when the
same library or resource is loaded multiple times in differ-
ent modules. This can lead to increased page load times
and unnecessary resource consumption.

I. INTEGRATION METHODS
In the space of front-end application development,

there are currently a number of methods related to the
implementation of the idea of micro-interfaces. Each
offers its own trade-offs for flexibility, performance, com-
plexity, and developer experience. The choice of method
depends on factors such as specific project requirements,
desired level of isolation between micro-interfaces, avail-
able infrastructure and tools.

Method of integration during software development.
The principle of this approach is mostly that each micro-
interface is built separately into a separate bundle during
the development process. The bundles are then integrated
into the shell of the main program. The main disadvantage
of this approach is the need to recompile the micro-
interfaces in case of a change in one of them.

Runtime integration. This approach provides greater
flexibility as micro-interfaces can be added, removed or
updated without the need to completely rebuild the appli-
cation [13].

Both methods of integration can be implemented in
several ways. JavaScript, which assumes that each pro-
gram is built as a separate bundle and is loaded and
mounted on the page only when needed. In this case,
common libraries and styles can be preloaded, which will
reduce the final size of the application. Additionally, each
bundle is deployed separately, allowing teams to update
functionality independently of the others.

Webpack module federation is a feature of the web-
pack module bundler that allows developers to share code
and modules across multiple applications or micro-
frontends. Fig. 5 shows how with module federation re-
mote components can be dynamically loaded from other
applications at runtime, making it easy to compose and
scale complex, distributed systems with ease.

Fig. 5. Module Federation schema

Web components technology, which is a set of APIs
that allow you to create reusable user interface compo-
nents encapsulated in their own elements. It allows you to
create your own HTML elements, define their behavior
and load their code dynamically. In this case, the isolation
is maintained by the browser. This approach allows you to
choose an arbitrary technology stack for each component,
then work on development and deployment independently
within the same team or with different teams. Developers
can use polyfills (Fig. 6), which are small utility libraries
that implement new JS features, to make them work, but
this will increase the size of the downloaded content and
increase the load time;

Fig. 6. Web components implementation schema

The single-spa framework which makes it possible
to combine various applications regardless of the used
library or framework, into one whole. It is possible to
build a set of applications using the micro-frontend ap-
proach and single-spa both by creating the entire infra-
structure and applications from scratch, and on the basis of
an existing application.

Application Shell – a SPA container or a single
HTML page or an entry point to micro-frontends. It's an
HTML file with some JavaScript logic present throughout
the user's session. It is responsible for loading JavaScript
or HTML files that represent the entry point of micro-
interfaces. Using HTML files as an entry point, it is possi-
ble to implement a server-side rendering engine inside the
CI/CD pipeline, creating a page skeleton for loading,
improving the user experience. This approach is closer to
traditional UI development experience and fits well with
the Strangler pattern.

F. EMPIRICAL PERFORMANCE COMPARISON OF
DIFFERENT ARCHITECTURES

Let’s consider an example of a monolithic project
that is refactored and rewritten to the architecture of the
MFE by means of the browser. We measure the number
of requests, the speed of loading and rendering of con-
tent. Table 1 and Fig. 7 show the measurement results
[14]. It is obvious that the Module Federation showed
the fastest load time, with approximately the same con-
tent rendering time and resource size compared to the
monolith.

Features of The Implementation of Micro-Interfaces in Information Systems 59

Table 1

Performance comparison

Fig. 7. Diagram with performance comparison

of different architectures

VI. SUGGESTED OPTIMAL ARCHITECTURAL
APPROACHES

Let us consider the comparative characteristics of
various architectural approaches in the implementation of
micro-interfaces (see Table 2).

Table 2

Comparison of different architectural approaches

Finding the best architecture, of course, depends on a

lot of conditions. In any case, optimal architecture is a
search for a golden mean.

Analyzing the table (see Table 2), we can conclude
that one of the optimal architectural solutions for preserv-
ing SEO, fast initialization loading, and fast interactivity
provided by single-page applications is a hybrid architec-
ture based on server-side rendering (SSR) (separate the
components that are necessary for the initial loading and
SEO optimization), and client side composition (CSC)
(for fast interactivity) (Fig. 8).

Fig. 8. Proposed hybrid architecture approach with

SSR(Node.js) and CSC (React.js, Angular, Vue.js)

Fig. 9. Proposed hybrid architecture approach
with build time integration (Module Federation)

and CSC (Single-SPA)

The next possible optimal solution offered is a hy-
brid combination of client-side compositions with build-in
integration, which also allows you to combine SEO opti-
mization, fast initial load and fast interactivity of single-
page applications. The idea is based on the single-spa
architecture, next to the orchestrator, which is responsible
for dynamically determining which programs are loaded
based on their activation functions, replace the system.js
(which is responsible for bundling and combining compo-
nents) by a Module Federation with all its advantages as a
build time integration (Fig. 9).

VII. CONCLUSION
In general, the emergence of an architectural style,

which consists in the implementation of micro-interfaces
in software applications, is a kind of natural reaction to the

Oleksandr Stepanov, Halyna Klym 60

increasing complexity of software. For long-term devel-
opment and a large development team, this approach is a
convenient solution with an eye toward accelerating the
product creation process. In this case, all the complexity
added by the tools that help support the development proc-
ess and connect all the micro-interfaces will be compen-
sated by the reduced coupling, i.e. the dependency of the
modules on each other, and the management effort, since
the development can be separated into separate teams.

However, the obvious disadvantage of this approach is
the inconvenience of its use at all stages of software devel-
opment. The argument for this statement is the fact that for
small projects or projects with a small number of develop-
ers, such an architecture turns out to be a factor of addi-
tional load, since most of the efforts of the developers are
spent on maintaining the architecture, not on the develop-
ment of features, and the overall design time increases.

The proposed optimal hybrid combinations of archi-
tectures: SSR along with CSC and the Module Federation
with CSC will increase the speed of systems that will be
built on the basis of the mentioned solutions besides with
good SEO optimization and fast interactivity as a single
page application.

The provided research will be continued with further
investigation of practical implementation of the proposed
hybrid architecture solutions using different UI stack of tech-
nologies with performance testing, research on information
transfer between micro interfaces will also be conducted.

References
[1] Blinowski, G., Ojdowska, A., & Przybylek, A. (2022).

Monolithic vs. Microservice Architecture: A performance
and scalability evaluation. IEEE Access, 10, 20357–20374.
DOI: 10.1109/access.2022.3152803.

[2] Cruz, P., Astudillo, H., Hilliard, R., & Collado, M. (2019).
Assessing migration of a 20-year-old system to a micro-
service platform using Atam. 2019 IEEE International
Conference on Software Architecture Companion (ICSA-
C). DOI:10.1109/icsa-c.2019.00039.

[3] Di Francesco, P., Lago, P., & Malavolta, I. (2018). Migrat-
ing towards microservice architectures: An industrial sur-
vey. 2018 IEEE International Conference on Software Ar-
chitecture (ICSA). DOI: 10.1109/icsa.2018.00012.

[4] Terdal, Dr. S. (2022). Microservices enabled e-commerce
web application. International Journal for Research in Ap-

plied Science and Engineering Technology, 10(7), 3548–
3555. DOI: 10.22214/ijraset.2022.45791.

[5] Zhou, J., Yang, L., & Wu, J. (2023). Micro-frontend archi-
tecture base. Sixth International Conference on Computer
Information Science and Application Technology (CISAT
2023). DOI: 10.1117/12.3003818.

[6] Pontarolli, R.P., Bigheti, J.A., de Sá, L.B.R., Godoy, E.P.L.
(2023). Microservice-Oriented Architecture for Industry
4.0. Eng 2023, 4, 1179-1197. DOI: 10.3390/eng4020069.

[7] Perlin, R., Ebling, D., Maran, V., Descovi, G., & Machado,
A. (2023). An approach to follow microservices principles
in frontend. 2023 IEEE 17th International Conference on
Application of Information and Communication Technolo-
gies (AICT). DOI: 10.1109/aict59525.2023.10313208.

[8] Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D. (2021).
From Monolithic Systems to microservices: An assessment
framework. Information and Software Technology, 137,
106600. DOI: 10.1016/j.infsof.2021.106600.

[9] Homay, A., Zoitl, A., de Sousa, M., & Wollschlaeger, M.
(2019). A survey: Microservices Architecture in Advanced
Manufacturing Systems. 2019 IEEE 17th International
Conference on Industrial Informatics (INDIN). DOI:
10.1109/indin41052.2019.8972079.

[10] Marco, V., & Farias, K. (2024). Exploring the technologies
and architectures used to develop micro-frontend applica-
tions: A systematic mapping and emerging perspectives.
SSRN Electronic Journal. DOI:10.2139/ssrn.475066.

[11] Abdellatif, M., Shatnawi, A., Mili, H., Moha, N., Bous-
saidi, G. E., Hecht, G., Privat, J., & Guéhéneuc, Y.-G.
(2021). A taxonomy of Service Identification Approaches
for Legacy Software Systems Modernization. Journal of
Systems and Software, 173, 110868. DOI:
10.1016/j.jss.2020.110868.

[12] Chen, K. C. (2021, August 24). Micro Frontend Frame-
work Guide: Technical Integrations. Trend Micro.
https://www.trendmicro.com/en_us/devops/21/h/micro-
frontend-guide-technical-integrations.html.

[13] Nikulina, O., & Khatsko, K. (2023). Method of converting
the monolithic architecture of a front-end application to
microfrontends. Bulletin of National Technical University
“KhPI”. Series: System Analysis, Control and Information
Technologies, (2 (10)), 79–84. DOI:10.20998/2079-
0023.2023.02.12.

[14] Petcu, A., Frunzete, M., & Stoichescu, D. A. (2023). Bene-
fits, challenges, and performance analysis of a scalable
web architecture based on micro-frontends. University
Politehnica of Bucharest, Scientific Bulletin., Series C,
85(3), 319-334.

Oleksandr Stepanov – gradu-
ated from Lviv Polytechnic National
University in 2004. He received the
B.S. and M.S. degrees in Electronics.
He has been working in IT field as a
front-end developer for over eight
years. On most large projects, he
faced with problem of aging technol-
ogy, maintaining a large project, and
migrating to new architecture ap-
proaches.

His research interests include client-server highly loaded
information systems, performance scalability of micro-
interfaces, migration from monolith architecture to micro-
frontend, design and implementation of scalable systems.

Halyna Klym - doctor of tech-
nical sciences, professor, professor of
the department of Specialized Com-
puter Systems of the Institute of
Computer Technologies, Automation
and Metrology of Lviv Polytechnic
National University.

In 2008, she received a degree of
Doctor of Philosophy in the specialty:
Physical and Mathematical Sciences at
Ivan Franko Lviv National University.

In 2016, she received a Doctor of Science degree in Technical
Sciences at Lviv Polytechnic National University. She conducts lec-
ture courses on the design of ultra-large integrated circuits and me-
thods and means of automated design of computer systems. She is
an author of more than 170 scientific articles in international publica-
tions.

