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This article studies a mathematical model of the fractional order of tuberculosis (TB).
It describes the dynamics of the spread of tuberculosis among smokers. The purpose of
this research is to protect vulnerable people against the virus. According to the survey
results, the required model has an equilibrium point: the disease-free equilibrium point
E¢. We also analyze the local stability of this equilibrium point of the model, using the
basic reproduction number R calculated according to the new generation method. In our
model, we include three controls that represent: restricting individual contact, treatment,
and sensitization. This article aims at reducing the number of infected smokers and
non-smokers using an optimal control strategy and a fractional derivation. The maximum
principle of Pontryagin is used to describe optimal controls with Caputo-derived fractional
over time and the optimal system is resolved iteratively. The numerical simulation is
presented according to the method presented by Matlab.

Keywords: Caputo fractional derivative; optimal control; tuberculosis; smoking; conta-
gious virus; local stability; dynamic system; infectious diseases; stability; free equilibrium;
Pontryagin maximum.
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1. Introduction

Smoking and tuberculosis (TB) are the most common health problems in the world. Smoking is widely
recognized by the medical community and the general public as a serious public health problem. It
is the greatest preventable threat to human health in developed countries and the leading cause of
premature death worldwide. The annual tobacco-related death toll in 1985 was about 1.7 million,
2.0 million in 1990 and is projected to reach 8.4 million by 2020. Smoking contributes to mortality
from lung disease, which accounts for 87% of deaths from lung cancer and 82% of deaths from chronic
obstructive pulmonary disease and cardiovascular disease. It is responsible for 21% of deaths from
coronary artery disease and 18% of strokes. The risk associated with tobacco smoke affects smokers
and those around them. The environmental hazards of tobacco exposure are increasingly recognized.
Second-hand tobacco smoke (ETS) increases the risk of lung cancer by 30% and contributes to non-
smoking adult absenteeism from work due to respiratory disease [1].

In contrast, tuberculosis, the most common infectious disease with a high human mortality rate,
continues to cause 3 million deaths per year, or about 5 deaths per minute. This pathogen infects 8
to 10 million people every year. About 3.9 million cases were sputum-positive, the most convincing
type of disease. Although most TB sufferers live in the more populous countries of Asia, the estimated
incidence rate is highest in Africa (356 cases per 100000 annually). Half come from Bangladesh, China,
India, Indonesia and Pakistan. In the 22 most populous countries in the world, approximately 80%
are diagnosed with the disease each year [2,3].

The link between smoking and tuberculosis has been known for almost a century. The effect of
smoking on tuberculosis has pleasantly been set up with-inside the closing decade: active and passive
exposure to smoke are independent risk factors for tuberculosis infection, progression of tuberculosis
infection to disease, increased disease severity, and increased risk of post-treatment recurrence and
mortality [4].
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A study conducted by the Department of Epidemiology of the Tuberculosis Research Center es-
tablished a connection between smoking and the development of tuberculosis [5]. In addition, several
systematic reviews and analyses of experimental studies have highlighted the association between smok-
ing and tuberculosis-related mortality and morbidity, with smokers dying nine times more often than
those who have never smoked. However, this risk was reduced by 66% with smoking cessation, sug-
gesting that smoking cessation is an important criterion for reducing TB-related mortality. Another
excellent study conducted in China in 2017 found a direct link between smoking history and a higher
risk of latent tuberculosis. A recent mathematical modeling study estimates that smoking can po-
tentially increase TB cases worldwide by 18 million between 2010 and 2050 and significantly increase
secondary mortality if smoking continues [6].

Fractional derivatives and integrals and their ability to make use of them have received first-rate
importance, especially due to the fact they have come to be effective equipment with extra accu-
rate, efficient, and successful results in the mathematical modeling of several complex phenomena in
numerous, seemingly diverse, and widespread areas of science, engineering, and finance.

This research is structured as follows: Section 2 gives some basic definitions and properties of
fractional order integrals and derivatives. For fractional order differentiation, we will use the Caputo
definition since it is suitable for the initial conditions of the differential equations. Section 3 presents
the mathematical model in terms of fractional differential equations. In Section 4, the positivity and
boundedness of the solution are studied. The primary reproduction number and equilibrium points
are given in Section 5. The local stability analysis is proved in Section 6. Numerical simulations are
performed in Section 7 to verify the theoretical results. The fractional order model with three controls
is based on the characterization of the optimal control terms using Pontryagin’s maximum principle
and is described in Section 8. Numerical simulations are presented in Section 9. Finally, Section 10
concludes the paper.

2. Preliminary results

Let us now recall the definitions of the Mittag—Leffler function and the fractional temporal derivative
of Caputo. Firstly, the Mittag—Leffler function, E,(y), is defined as the family of integer functions of
y given as:

& t
Y
E.y)=Y —2—— a>0, yeC,
R L

when the series converges [7]|, where T'(-) is the Gamma function. Observe that the Mittag—Leffler
function generalizes the exponential function: Ej(y) = exp(y).
Consider the following commensurate fractional-order system

D%(t) = g(),

i .
0) = Zo-

Let g: RT™ — R, with n > 1. Where 0 < o < 1, tg € R. For the global existence of the system

solution (1), we need the following theorem.

Theorem 1 (Ref. [8]). Suppose that g satisfies the subsequent conditions

e g(t,x) and % are continuous respectively x € R";

e |lg(t,7)|| < p+ Allz|| Vo € R", for nearly each t € R and for all x € RY, where y and A are two

positive constants.

Under these conditions, there exists a unique solution on [0, +00) solving the system (1).

Lemma 1 (Ref. [9]). Let v(t) € C([0,+00)). If v(t) satisfies DPv(t) < —Av(t) + n, v(0) = vg € R,
where € (0,1], A,n € R and A # 0, then v(t) < (vo — %) Eg [—Atﬁ] + -

Lemma 2 (Ref. [10]). Let v(t) € C(R4) and its fractional derivatives of order [ exist for any

B € (0,1]. Then, for any t > 0 we have D” |:U(t) —v* —0v*In Usf)] < (1 - %) Dlu(t), v* € Ry.
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Theorem 2 (Ref. [11]). The autonomous system: DPy(t) = Hy(t) is asymptotically stable if and
only if |arg(spec(H))| > 6—2”, where € [0,1), arg() is the principal argument of a given complex
number and spec(H) is the spectrum (set of all eigenvalues) of H and y(to) = yo.

3. Presentation of the model

We consider the mathematical model that considers smokers and non-smokers in the SIR model of
tuberculosis infection [12-15]. Then, we obtain the following model

D“S(t):A—915—02S—mS,

S I S 1,
D~ st - — - - Sy

CLIS CLI[l
DSu(t) = =73 Tt 025 —mS,

S.I, Sl (2)

DeIs(t) =m N + 72 N —(m+ 01+ 01) I,
DO‘Ia(t) =3 Sj}\/{s + Y4 Sj\/,la — (m + 09 + 02) I,
kl)O‘R(t):O'lls—l-UQIa—TnR.

With the subsequent non-negative preliminary conditions:
S(0) >0, Ss0)>0, S,>0, I;>0, I,>0, R>0,

and N (t) = S(t) + Ss(t) + Sa(t) + Is(t) + I,(t) + R(t) indicate the whole population at time ¢ > 0.
The biological characterization of the model parameters is provided in Tables 1 and 2.

Table 1. Compartments meaning.

Compartment Meaning
S Non-smokers susceptible to tuberculosis
Sa Smokers susceptible to tuberculosis

I Individual non-smokers infected by tuberculosis

1, individual smokers infected by tuberculosis

R Recovered individuals

Table 2. Parameters meaning.
Parameter Meaning

A The incidence of susceptible
m The natural death rate
Y1 The level of infected non-smokers in contact with infected non-smokers
Y2 The rate of non-smokers infected by contact with an infected smoker
v3 The level of smokers infected by contact with infected nonsmokers
Y4 The level of infected smokers through an infected smoker
01 The mortality rate of non-smokers infected with tuberculosis
02 The mortality rate of smokers infected with tuberculosis
01 The level of non-smokers susceptible in the study citizenry
) The level of smokers susceptible in the study citizenry
o1 The rate of recovery of the virus in non-smokers from tuberculosis
09 The rate of recovery of the virus in smokers from tuberculosis

4. Positivity and boundedness of solution

Theorem 3. All solutions S(t), Ss(t), Sa(t), Is(t), I(t), and R(t) of system equation (2) are bounded
by the region O = {(S,Ss, Sa, Is, o, R) € RS /N (t) < %}, and O is positively invariant under the
system (2) with the initial conditions S(0)

In(0) > 0, and R(0) > 0.
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Proof. We put
I 1, Is Iq
Is,1a) =+ vz d I, 1a) =3+ VA
fl( ) ’YlN—i_’YQN an f2( ) 73./\/'—'_’74./\/-
Let X(t) = (S, Ss, Sa, Is, I, R)" involved in RS . The system (2) is capable of being reformulated as
Dex(t) = F(X(1),

where

A—(01+02+m)S
—f1(Is,1,)Ss + 61.5 — mS;
—falIs, 1)Sa + 625 — mS,

fills, 1,)Ss — (m + 81 + o1) I
fo(Is,12)Sa — (m + 02 + 09) I,

o1ls + o9l, — mR
obviously F fulfilled the first requirement of Theorem 1.
As proof of the second, we denounce

A —(m+01—|—92) 0 0 0 0 0
0 01 -m 0 0 0 0
| o B 05 0 —-m 0 0 0
2= |» M= 0 0 0 —(m+o+d) 0 0o |’
0 0 0 0 0 —(m4o9+d) 0
0 0 0 0 o1 09 -m
0 —fi(ls,1,) 0 000
N | O 0 —folls,I,) 0 0 0
27l 0 AU L) 0 00 0
0 0 foIe,I,) 0 0 0

Then, we have

F(X(@) =N X(t) + NoX(t) + Z.

Thus,
| F(X)] = [NM1X () + N2 X () + Z]|
<2+ [N @)+ IN2]HTX @]
< 2]+ (N + N2 12 @)1
we find that:

IFX) < p+ Al X@)]
where p = ||Z]| and Ay = (||N1|| + [[NV2]]). According to the Theorem 1, the system (2) has a unique
solution on [0, 4o0].
For positively, we get

[ DS(t)|gog=A >0,

DS, (t)]g.—g = 615 > 0,

D*Su(t) g, = 025 > 0,
SSI(I

DIs()]f,—0 = 72 >0,

N

S 1,
Da[a(t)lla:() = ’YST >0,

DaR(t)’RZO =o1ls + 091, > 0.

\
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Thus, with the initial condition, the solution of (2) remains non-negative for every ¢ > 0. To determine
the scope of the solution, we apply,

N(t) = S(t) + Ss(t) + Sa(t) + Is(t) + L(t) + R(t),
therefore
DN (t) = D*S(t) + D*Ss(t) + DS, (t) + DIs(t) + D*1,(t) + D*R(t)
=A—-—mS—mSs—mS, — (m+d1) I — (m+ ) [, —mR
<SA-—m(S+Ss+Sa+Is+1,+R),
DN (t) < A —mN(t).
According to Lemma 1, we have

Nt) < (600) = ) Eatmt) + 2.

m
where E, is the Mittag—LefHler function.
Since E,(—dt*) — 0 as t — oo, we have
N(t) < —.
()< —
Consequently, all (2) system solutions that begin in R(jr are limited to the O area where:

A
0= {(S, Ssy Sa, Is, I, R) € RS /N (1) < E} ,

In this way, all (2) fractional ordering system solutions are uniformly limited. ]
The first equation of the system (2) does not hang on the R, then we can disregard the last equation
of the system (2).
The problem can therefore be alleviated to:

(DS(t) =A— 6,5 — 055 —mS,
S I S 1,
D*Ss(t) = —m N2 TS -mSy,
S, I S, 1,
DaSa(t) = 73 N — V4 N + 92 S - mSmu (3)
S I S 1,
Dals(t):’yl N + 72 N _(m+51+01)ls7
DI, (t) =73 Sj\/ls + Y4 SX/IG — (m+ 62 + 02) I,.

5. Basic reproduction number R, calculation and disease-free equilibrium

5.1. The basic reproduction number R

Theorem 4. The basic reproduction number Rq is given by Ry = max (Ré,R%), where R(l] =

Y161 2 _ Y4 02
mTotor) o) A4 Ro = Gors o) (mio 1)

Proof. To identify the baseline reproduction number, we are using the next generation matrix tech-
nology created by Bani—Yaghoub et al. [16-19]. |

5.2. The disease-free equilibrium

To find the sickness-free balance point, we set the right side of the (2) model to zero, stocktaking at
I, = I, = 0 and tackling for the uninfected and non-carrier state variables. Therefore, the point of

crep . . . A 01 A N
equilibrium without sickness is Ey ((m+01+92)’ m(mieﬁgz), m(m-i61+92) ,0,0, 0).
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6. Stability of the free equilibrium

6.1. Local stability
Theorem 5. The free equilibrium point Ey is stable if Rog < 1 and unstable if R > 1.

Proof. The Jacobian matrix associated with the system (3) at the free equilibrium point E; is granted

by
—m — 91 - 92 0 0 0 0
_ A __omh L
m+ 601 + 0 m+ 01 + 0 m+ 01 + 0
0, 0 —m __ Ys02 __ by
J(Ey) = m+ 01 + 05 m+991+02
71601 Y2 01
0 0 0 — 2 5o _ »h
m+ 61+ 0 m+ 61+ 0
73 02 V4 02
0 0 0 _ — = —m — 0y — 09
m—+ aq + 0 m+ 01 + s
We are only interested in the sign of the eigenvalues of the matrix J (Ey) defined below because the
eigenvalues A\; = —m — 01 — 03 and Ay = —m are satisfied to the following conditions |arg(A;)| > %
and |arg(Az2)| > & Then, we consider the following matrix
0 0
j(Ef) — m-:érl‘r@z ; T;l — 01 —01 4 m—?-/z1-1i-92 .
392 492
m+01+0; mio te; 02— 02

The characteristic polynomial of the matrix J (Ey) is given by
Q(\) = A — [(m + 01 + 1) (R — 1) + (m + &2 + 02)(R3 — 1)] A
=+ (m + (51 + 01)(R(1] — 1)(m + (52 -+ O'Q)(R% — 1).

Therefore, we have A3 = (m + 81 + 01)(R$ — 1) and Ay = (m + 63 + 02)(RZ — 1), we observe that, if
Ro < 1, then |arg(A3)| > & and if Rg > 1 then |arg(A\4)| < 5. Therefore Ey is locally asymptotically
stable if Rg < 1 and is a saddle point if Ry > 1. [

7. Simulation without control

In this section, we validate our theoretical outcomes through numerical simulations.
Let At be the scale of the temporal step. Such as ¢, = n - At for n € N. The fractional derivative
of Caputo can be approximated by

fe% 1 - o4 v
DX (t,) & N § (X (ta—j) — X,
j=0

where X = )lfg(l))_ti) and (7" is the coefficient binomial fractional with recursive formula

14+«
g=(1-) g G-t

For the numerical illustrations, we choose in all this section A = 0.001, m = 0.0001, ~v; = 0.121, v =
0.141, v3 = 0.21, v4 = 0.29, 4; = 0.0019, do = 0.005, o1 = 0.04, o5 = 0.010, #; = 0.66, and 6 = 0.34.
The initial conditions used are: S(0) = 0.4, Ss(0) = 0.4, S,(0) = 0.05, I4(0) = 0.1, I,(0) = 0.05, and
R(0) = 0.01. For o = 0.5, §; = 0.7, and a3 = 0.3 that displayed respectively in Figure 1. We also
calculate Ry = 6.5291 > 0. Hence, system (2) has a unique equilibrium E; = (9.99,6.59,3.39,0,0).
Because fractional derivatives accurately describe the situation, it can be said that the outbreak takes
longer to be stable. That is crucial when referring to the economy and looking at control strategies.
Presently, we heed v; = 0.0121, vo = 0.0141, ~3 = 0.021, 74 = 0.029, 01 = 0.4, and let the same
previous set of parameters. Then, Ry = 0.6529, Figure 2 elucidates this result for diverse values of a.
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Fig. 1. In the case where Ry = 6.5291 > 1, the stability asymptotic of the infection-free equilibrium E;
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Fig. 2. In the case where Ry = 0.6529 < 1, the stability asymptotic of the infection-free equilibrium E;

8. Problem of optimal control

8.1. Presentation of the controls

The control strategy is a program designed to minimize the proliferation of the TB virus. Our primary
goal is to minimize the total of people affected. In the current model, we have embedded three n(t),
o(t), and h(t) controls for t € [0,%y].
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The primary control n constitutes the proportion to be sensitized and prevented by media and
education, and the proportion to be prevented from gathering by security campaigns at a certain
instant t. The next control o represented the treatment at a certain instant ¢t. The last control h
constitutes the sensitization of the population about the dangers of smoking on health in general and
especially in the case of Tuberculosis at a certain instant ¢

DYS(t) = A— 015 — 0,5 —mbS,

D*Sy(t) = =y (1 —n(t)) S/S\/,Is —v2(1 —n(t)) Sj\/,la +61S —mSs + h(t)Sa,

DOS, () = —s(1 — n(t))Sj\/IS C (1= () Sj\/*’a 40,8 —m Sy — h(t)Sa, .
4

DRI = (1= 0() 2 n(1 = () 2 = 0+ 61+ 01) I, — o0},

DO1(0) = 31— ()L 4341 = (1) 2L (1534 02) L — o0},

| DR(t) = o1 I, + 03 Is —m R+ o(t)(Is + 1),
where S(0) > 0, S5(0) >0, S, >0, I, >0, I, >0, and R(0) > 0.

8.2. Objective functional

The objective function K is set out below
b 1, 1,5 1.,
K(n,o,h) = I(t) + I(t) + §An (t) + §CO (t) + §gh (t) | dt, (5)
0

where 4 > 0, C > 0, and G > 0 are the fee factors, they are chosen to assess the materiality of n(t),
o(t), and h(t) at time ¢. t; is the latest.
In short, we search for optimum controls (n*, 0*, h*) such that
KK (n*, 0", h*) = min{K(n,o,h)/(n,0,h) € Upon} (6)

with Uy, , 1, is the range of controls specified in

Z/[n,o,h = {(n707 h)/o < Nmin < n(t) < Nmax < 1,0 < Omin < O(t < Omax < 17
0

8.3. Sufficient conditions
The existence of optimal control can be derived using a result of Fleming and Rishel [17,20], and

Lukes [21,22].

Theorem 6. Contemplate the control problem of system (4). There is an optimal control
(n*,0*, h*) € Uy, 5 such that K(n*,0*, h*) = min {K(n,0,h)/(n,0,h) € Upon}-

8.4. Necessary conditions

The main point of this project is to retrieve the optimal control (n, 0, h) which Pontryagin’s maximum
principle [23-26] transforms (4)—(5), and (6) in an issue of minimizing a Hamiltonian, H:

6
1 1 1
H(t) = I,(t) + I, (t) + §An2(t) + 5602@) + §Qh2(t) +) G)wi(S, Ss, Sar I, Lo, R), (7)
i=1
where y; is the corner of the differential equation of the state variable (4).
In the subsequent theorem, we present the vital conditions for the existence of optimal control.

Theorem 7. Provided optimal controls n*, o*, h* and solutions S*, S%, Sk, I¥, I and R* of suitable

state system (4), there exists (;, i = 1,...,6 the adjoint parameters that indulge the subsequent
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equations

D(i(t) = —[(—m — 01 — 62)C1 + (261 + (302],

DGa(t) = — _Cz <—’Yl(1;/n)ls — 72(1/:[”)[“ — m) + (’Yl(l;/n)ls N ’Yz(l/:[n)laﬂ 7
DoGalt) = [aah + o (- 2O - O ) g g (BT 2O
DCa(t) = — _1 B Cz’Yl(l/\; n)Ss Cs’Ys(lA; n)Sa s <w 61— O)
+ M + Co(o1 —1—0)] :
a @ =n)Ss Gl —n)Ss | Gre(l —n)Ss
DOGs(t) = [1 = S, | Gl
+ G (M_m_%_@_()) +<6(02+0)] ;

DGs(t) = Ggm

with the conditions of transversality at time s

Glty) =0, Glty) =0, G(ty) =0, Glty) =1, Glty) =1, Glty) =—1. (8)
Moreover, we acquire the optimal control (n*,0*, h*) as
n*(t) = min {max {nmin, &} ,nmax} (9)
A
with 1,5474C 1,5.74C 1,5572C 1,5572C 1,5,73C 1,5,v3C
__ 1tara7463 ara465  Lars7262 aPsV264 15947363 s2a77365
X =" T7§ N ot N TN
. 13537142 + 1353’7144
N N
0" (1) = min fmo f oy, SRR L =D o (10)
h*(t) = min {max {hmin, W} ,hmax} . (11)

Proof. For t € [0,ty], the principle of maximum Pontryagin makes it possible to obtain at the same
time additional equations and transversal conditions. Refs. [23,24,27,28] such that

oH oH
DGi(t) = 39" DG(t) = TR
oH oH
DG3(t) = ~ a8, D%(y(t) = oL (12)
P o
DG = — g, DGt = o

Equations (12) and (8) describe the conditions required according to a Hamiltonian defined above.
These conditions produce an array of fractional differential equations, built on variables S, Sy, S,

I, I, controls n, o, h and Lagrange multiplying (;, to solve analytically, numerically, or even both.
In addition, the optimal controls (n*, 0", h*) can be determined from the optimal conditions

oM Ssls  ~9Ssl, Suls  7aSala Sels 7285,
0 = An+C2<% L >+C3<73 L >+<4<_71 2 >

on N N N N N N
_’73Sals . Y4Sal, -
+ <5 < N N > - 07
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OH
B0 =0 = Co—(uls— (5o + (Lo + I5) =0,
OH
W —0 = gh + CQS@ - C3Sa - 0,
we obtain
1 1,5, 1,5, 1,5, 1,5, 1,5,
ntt) = — (- Y463 n V4G5 1262 Yola V363
A N N N N N
+IsSa’Y3C5 . ISSS’YIC2 + ISSS’chﬁl
N N N ’
* _ <5Ia — Ia<6 + <4Is - Is<6
o (t) - ’
C
* (CQ - C3) Sa
h(t) = ————>—.
(" ;
By the bounds in U,, ,j, of the controls, we can easily obtain n*, o*, and h* are given by (9), (10), and
(11) in the form of system (12). [

9. Numerical simulation

In this section, we are going to solve numerically the optimum control problem for our S5S535,1:1,R
as a fractional order model. We analyze and compare the numerical outcome of the control strategy
below. The technique consists of combining all the aforementioned controls. In other words, we are
going to combine awareness and prevention through media and education and treat and raise public
awareness of the health risks of smoking in general, particularly in the case of TB.

The adjoint system is solved by using the method of finite differences over time, with T' = 100 days
and final conditions (1(n) = 0, (2(n) = 0, (3(n) = 0, ¢4(n) =1, {5(n) =1, ((0) = —1. The n, o,
and h controls are considered bounded and weightings within the objective function are estimated at
A=10,C =1, and G = 1. In this article, all graphs for condition variables are in logarithmic form.
The code is created and compiled into Matlab using the data below.

Individual non-smokers infected
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Fig. 3. The evolution of the number of smokers and non-smokers infected and recovered individuals with and
without all controls.
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Figure 3 shows the behavior of approximate solutions I4(t), I,(t), and R(t) at & = 0.3 and o = 0.7
with and without controls. Figure 4 shows the approximate solutions Ss(t) and S,(t) at a = 0.3 and
a = 0.7 in the two cases with and without controls.

In this strategy, we used all n(t), o(t) and h(t) controls simultaneously to improve statistical
performance. According to Figure 3, once we applied this strategy, we noted a decrease in the number
of smokers, and non-smokers infected with Tuberculosis which led to a relative balance of both smokers
and non-smokers infected after post-awareness and treatment, thereby reducing the relative spread of
the virus and a sharp rise in the number of recovered individuals, that after 100 days, the number of
smokers infected without control is 0.09 (o = 0.3) to 0.05 (o = 0.3) with control, and the number
of smokers infected without control is 0.29 (o = 0.7) to 0.05 (a = 0.7) with control. The number of
non-smokers infected without control is 0.15 (a = 0.3) to 0.1 (a = 0.3) with control, and the number
of non-smokers infected without control is 0.35 (o = 0.7) to 0.1 (o = 0.7) with control. Concerning
the number of recovered individuals, we notice that the number of this last is 0.08 (o = 0.3) to 0.1
(v = 0.3) with control, and the number of recovered without control is 0.6 (v = 0.7) to 1.1 (o = 0.7)
with control.

In addition, fractional derivatives play an important role in the description of memory effects in
dynamic systems. As « limits to 1, memory effects are decreased. Moreover, fractional-derived order «
plays a part in the delay in ordinary differential models. Figures 3 and 4 show that when the derivative
order « is reduced by 1, the memory effect of the system increases. As a result, the number of infected
smokers and non-smokers decreases for an extended period of time, and the same thing for susceptible
smokers and non-smokers.

; Non-smokers susceptible
I I I I I I

«=0.3 without control «=0.7 without control — — —a=0.3 with control — — — a=0.7 with control S
6 R _
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Fig.4. The evolution of the number of smokers and non-smokers susceptible to tuberculosis and recovered
individuals with and without all controls.

10. Conclusion

In conclusion, our research focused on a fractional-order mathematical model for tuberculosis (TB)
dynamics among smokers. This model aimed to protect vulnerable populations from TB and identified
a disease-free equilibrium point, Ey. By calculating the basic reproduction number, Rg, we analyzed
the local stability of this equilibrium. Our model incorporated three controls: individual contact
restriction, treatment, and sensitization. Using the Pontryagin maximum principle, we determined
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optimal control strategies and validated them through iterative numerical simulations in Matlab. This
study advances TB management and suggests future research directions using various mathematical
approaches.
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3apava aHanizy Ta oNTUManbLHOrO KepyBaHHsA Apobosoto
MATEMATUYHOIO MOAEN0 TYyOepKynbo3y 3 ypaxyBaHHSIM MasliHHA

Enp Basz O., Xanydi 1., Kyinepe A., Jlaapa6i X., Pauuk M.

Jlabopamopis ananidzy modesrosarna ma cumyaayii, Kacabaanxa, Mapoxko, 20670

Ilst craTTst mpucBsiveHa TOCTIKEHHIO MATEMATHIHOT MOIei pobosoro nopsaky Th. Bo-
Ha OIKMCY€ MMHAMIKY TOIMMUPEHHS TyOepKyJIbo3y cepel KypiiB. MeToro 1boro mociKeHHs
€ 3aXMCT BPa3JIMBUX JIIOJIEH BiJ Bipycy. 3a pe3yjbraTaMu ONUTYBAHHS IITyKAaHA MOJEJb Ma€
TOYKY PiBHOBaru: TOUKy piBHoBarm 6e3 3axsoproBaHb Fy. Takox JOCTIIZKYEMO JIOKAJIbHY
CTIKICTD T1i€] TOYKU PIBHOBArW MOJIEJ, BUKOPUCTOBYOUN 0A30B€ 9UCJIO BiATBOpEHHS Ry,
sIK€e PO3PaxoBaHe 3TiIHO 3 METOJO0M HOBOT'O IOKOJIIHHS. ¥ 3aIIPOTIOHOBAaHII MOJIEi BKIIOUe-
HO TPH €JIEMEHTH KEPYBAHHS, K1 IIPE/ICTABJISIIOTH: OOMEXKEHHSI 1HIMBITyaJbHIX KOHTAKTIB,
JiKyBaHHs Ta ceHcuOiumizarii. Ilg craTTsa crnpsiMoBaHa Ha 3MEHINEHHS KiJbKOCTi iH]iKO-
BAaHUX KYPIIB i HEKYPIHB 3a JIOMOMOIOI0 ONTHUMAJIBLHOI cTpaTerii KOHTPOJIIO Ta JIpPobOBOT
noxinuoi. IIpuniun makcumymy [loHTpsriHa BUKOPUCTOBYETHCS JIsI OIKCY ONTHMAJILHUX
KepyBaHb i3 ApOoOOBUMU 3HAYEHHSIMHU Yy daci, siki orpumani 3a KamyTo, a ontumaibHa cu-
creMa pO3B’si3yeThes iTeparliitno. YucesbHe MOJETIOBAHHS MPEICTABICHO BiIMOBIIHO 10
MeTOoj1y, sKuit mpejacrasaenuit y Matlab.

Kntouosi cnoBa: dpobosa noxiona Kanymo; onmumanvhe Kepyeanhs; mybeprysvos;
KYPIHHA, 3aPA3HUT BIPYC; NOKAALHA CTITKICTG, JUHAMIYHG CUCTIEM; THPERYITIHT 3aT60-
PIOBAHHA; CMIUKICMD; 6IADHG DI6H06G2G; MaKkcumym [Tonmpazina.

Mathematical Modeling and Computing, Vol.11, No.2, pp.492-504 (2024)



