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Among the difficult problems in mathematics is the problem of solving partial differential
equations (PDEs). To date, there is no technique or method capable of solving all PDEs
despite the large number of effective methods proposed. One finds in the literature, nu-
merical methods such as the methods of finite differences, finite elements, finite volumes
and their variants, semi-analytical methods such as the Variational Iterative Method, New
Iterative Method and others. In recent years, we have witnessed the introduction of neural
networks in solving PDEs. In this work, we will propose an adaptation of the method of
embedding some physical laws into neural networks for solving Burgers–Huxley equation
and revealing the dynamic behavior of the equation directly from spatio-temporal data.
We will combine our technique with the Residual-based Adaptive Refinement method
to improve its accuracy. We will give a comparison of the proposed method with those
obtained by the New Iterative Method.

Keywords: deep learning; physics-informed neural networks; generalized Burgers–Huxley

equation; residual-based adaptive refinement.

2010 MSC: 68T07, 68Txx, 35K57 DOI: 10.23939/mmc2024.02.505

1. Introduction

In this work, we studied the generalized Burgers–Huxley equation. It was first introduced thanks to
the works of Bateman [1, 2], Burgers [3] for the Burgers equation and Hodgkin and Huxley [4] for the
Huxley equation. The generalized non-linear partial differential Burgers–Huxley equation is given by:
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The exact solution is given by [5]:

u(x, t) =

[

Γ

2
+

Γ

2
tanh

[

σΓ

(

x−

{

Γµ

1 + θ
−

(1 + θ − Γ)(ρ− µ)

2(1 + θ)

}

t

)]]1/θ

, (4)

In above equations, T > 0, µ ∈ R is the advection coefficient, ξ > 0 is the reaction coefficient, Γ ∈ (0, 1),
θ > 0, σ = θ(ρ− µ)/4(1 + θ) and ρ =

√

µ2 + 4ξ(1 + θ).
The Burgers–Huxley equation is used to model the complex interplay between various physical phe-

nomena, such as reaction mechanisms, diffusion transport and convection effects. It finds its application
in various fields such as biology, chemistry, combustion, mathematics and engineering [6].
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Due to its wide applications, the researchers applied many numerical methods to approximate the
solution such as finite difference method [7]. Others used semi-analytical methods such as the New
Iterative Method (NIM) [5], the Variational Iteration Method (VIM) [8], the Adomian Decomposition
Method (ADM) [9] and the differential transform method (DTM) [10].

Over the last few decades, neural networks have been achieving spectacular success in many ma-
chine learning fields such as speech recognition [11], image recognition [12, 13] and natural language
processing [14]. Physics-informed neural networks (PINNs) have been used to solve forward and in-
verse differential problems. Unlike classical numerical schemes for solving partial differential equations,
PINNs are non-data-driven and mesh free models that satisfy the given initial and boundary conditions
as well as the governing PDE. Many authors has used this approach in order to solve stiff PDEs like
the Burgers–Huxley equation [15–17].

In the current work, we will evaluate the performance of PINN in solving Generalized Burgers–
Huxley equation and compare it with the performance of the New Iterative Method. The structure of
this paper is as follows: an explanation of the PINN methodology will be presented in Section 2. In
Section 3, the performances of the PINN in solving four Burgers-Huxley problems will be investigated.
Conclusions are presented in Section 4.

2. Methodology

In this section, we will discussed the PINNs methodology for solving partial differential equations
and we will also present briefly the residual-based adaptive refinement method to improve the PINNs
accuracy.

2.1. Deep neural networks (DNN)

In the PINN framework, the training model is based on a fully connected neural network (FCNN)
parameterized by a set of parameters θ.

The network consists of an input layer, an output layer and n hidden layers. Each of these hidden
layer takes X = [x1, x2, . . . , xi] as an input and outputs Y = [y1, y2, . . . , yi] through a nonlinear
differentiable activation function σ(·) such as:

yi = σ(wixi + bi) 1 6 i 6 n, (5)

where trainable hyperparameters wi and bi represent the weight and bias of the ith layer of the neural
network that will be updated during the training phase.

2.2. Physics-informed neural networks

Physics-informed neural networks [18] are deep neural networks trained to solve forward and inverse
differential problems while respecting the physical laws given by the PDE. They solve PDEs expressed
in the given form:







D(u(x, t);λ) = f(x, t) x ∈ Ω ⊂ R
d, t ∈ [0, T ], T > 0,

u(x, 0) = g(x),
u(x, t) = h(x, t) x ∈ ∂Ω.

(6)

Here, u represents the unknown solution of the PDE, D represents the non-linear differential operator,
g and h represent the initial and boundary functions and λ are the parameters related to the physics.

In this case, the PINN must learn to approximate the solution of the PDE through finding the
hyperparameters θ defining the network by minimizing a weighted loss function given by [19]:

Loss(θ,T ) = ωD LossD(θ,Td) + ωBC LossBC(θ,Tbc) + ωIC LossIC(θ,Tic), (7)

where:

LossD(θ,Td) =
1

|Td|

∑

(x,t)∈Td

‖D(ûθ(x, t);λ) − f(x, t)‖22, (8)

LossBC(θ,Tbc) =
1

|Tbc|

∑

(x,t)∈Tbc

‖ûθ(x, t)− h(x, t)‖22, (9)
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LossIC(θ,Tic) =
1

|Tic|

∑

x∈Tic

‖ûθ(x, 0)− g(x)‖22, (10)

in which LossD represents the residual of the governing PDE, LossBC is the residual of the boundary
conditions and LossIC is the residual of the initial condition. Td is the set of points inside the domain
Ω, Tbc is the set of points on the boundary ∂Ω and Tic is the set of initial points. ωD, ωBC and ωIC

represent the weighting coefficients of LossD, LossBC and LossIC respectively.

LOSS

PDE

Fig. 1. Solving the Burgers-Huxley equation with PINN.

2.3. Residual-based adaptive refinement

In general, PINNs residual points Td are randomly distributed in the domain Ω, therefore the authors
in [20] introduced the Residual-based Adaptive Refinement (RAR) method for improving the distribu-
tion of training residual points and consequently improving the accuracy and training efficiency of the
PINN. The main idea of the RAR method is to adaptively add more residual points in the locations
where the PDE residual is large during the training of the network.

The RAR method works as follows: we first start by training our PINN on the training set T for
a certain number of iterations. Then we compute the PDE residual at random points in the domain.
We then start adding m new points to the training set where the residual is the largest. We repeat
those steps for a number n of iterations.

3. Results and discussions

We test the efficiency of our PINN on four different cases. We implemented our PINN using Google
Collaboratory notebooks https://colab.research.google.com/?hl=fr on its GPU T4. We sam-
ple the training points using the Latin Hypercube Sampling (LHS) and we choose “tanh(·)” as the
activation function for the four cases.

Case 1. We choose, in this case, µ = −1 and ξ = Γ = θ = 1. We choose 2000 training residual points
inside the domain, and 500 training points sampled on its boundary and 800 initial residual points for
the initial conditions. We use a FCNN of depth 4 (i.e., 3 hidden layers) with 50 neurons on each layer,
we trained our NN with 30000 iterations using the optimizer Adam then we continue to train our NN
using the optimizer L-BFGS to achieve a smaller loss. We present the results obtained by our network
in Table 1. The exact and the predicted solution were plotted using our PINN. As shown in Figure 2,
our proposed framework produced good predictions.

To test the ability of the RAR method in improving the accuracy of PINN, we compare the absolute
errors of our PINN before and after 10 iterations of RAR. The results are presented in Table 2. It can
be observed that after using the RAR method, the errors has decreased which shows its efficiency.
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Table 1. Absolute errors for case 1 using PINN solution.

x t Exact value Predicted value Absolute error
0.1 1 0.31002552 0.31004667 2.11596×10−5

2 0.17508627 0.17506838 1.78962×10−5

3 0.09112296 0.09109049 3.24696×10−5

4 0.04521747 0.04525789 4.04194×10−5

5 0.02188127 0.02182179 5.94798×10−5

0.3 1 0.28905050 0.28906330 1.28149×10−5

2 0.16110895 0.16109467 1.42902×10−5

3 0.08317270 0.08314499 2.77161×10−5

4 0.04109128 0.04112641 3.51294×10−5

5 0.01984031 0.01980489 3.54219×10−5

0.9 1 0.23147522 0.23148110 5.88595×10−6

2 0.12455336 0.12454838 4.97698×10−6

3 0.06297336 0.06296322 1.01327×10−5

4 0.03076886 0.03079020 2.13421×10−5

5 0.01477403 0.01474961 2.44211×10−5
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Fig. 2. Predicted and exact solution for case 1.

Case 2. For this case, we have µ = ξ = 1, Γ = 0.001 and θ = 1. We choose 20000 training residual
points sampled inside the domain, and 1500 training points sampled on the boundary. We also include
1800 initial residual points for the initial conditions. We use a FCNN of depth 4 (i.e., 3 hidden layers)
with 123 neurons on each layer, we trained our NN with 15000 iterations using Adam then we continue
to train the NN using the optimizer L-BFGS to achieve a smaller loss. Next, we improve the accuracy
of our network by using the RAR method for 20 iterations. In Table 3, a comparison between our
PINN and the NIM method [5] is given. From the table, it is noticed that our method gives accurate
solutions in comparison to the New Iterative Method.

Case 3. In this case, we choose µ = ξ = 1, Γ = 0.01 and θ = 2. We choose 30000 training points
inside the domain, 1500 training points sampled on its boundary and 1500 initial residual points for
the initial conditions. We use a FCNN of depth 4 with 128 neurons on each layer, we trained our
network for 15000 iterations using Adam then we train our network using L-BFGS in order to acheive
a smaller loss. In Table 4, we compare our PINN with the NIM method [5]. From the comparison it
is observed that proposed technique produced accurate solution.

Case 4. We choose the same values as case 3 but with θ = 4. We implemented the same NN used
in case 3. The results obtained with our model are compared with the NIM method [5] in Table 5.
According to these results, the accuracy of the PINN solution is comparable to that of the NIM solution.
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Table 2. Absolute errors for case 1 before and after using RAR method.

x t Absolute error before RAR Absolute error after RAR
0.1 1 2.11596×10−5 1.12653×10−5

2 1.78962×10−5 1.59442×10−6

3 3.24696×10−5 3.21120×10−6

4 4.04194×10−5 1.37091×10−5

5 5.94798×10−5 2.60230×10−5

0.3 1 1.28149×10−5 1.00732×10−5

2 1.42902×10−5 2.19047×10−6

3 2.77161×10−5 1.63913×10−7

4 3.51294×10−5 9.97633×10−6

5 3.54219×10−5 2.36239×10−5

0.5 1 7.62939×10−6 1.11461×10−5

2 1.04457×10−5 4.30644×10−6

3 2.16365×10−5 3.65823×10−6

4 3.03574×10−5 6.06850×10−6

5 2.14968×10−5 2.24095×10−5

0.9 1 5.88595×10−6 1.90884×10−5

2 4.97698×10−6 6.02752×10−6

3 1.01327×10−5 1.25393×10−5

4 2.13421×10−5 7.78586×10−7

5 2.44211×10−5 2.51625×10−5

Table 3. Absolute errors for case 2 using PINN and NIM solutions.

x t Our PINN NIM [5]
0.1 0.05 1.74622×10−10 1.87405×10−8

0.1 5.12227×10−9 3.74811×10−8

1 4.48781×10−8 3.74811×10−7

0.5 0.05 7.56699×10−9 1.87405×10−8

0.1 5.47152×10−9 3.74811×10−8

1 9.03382×10−8 3.74811×10−7

0.9 0.05 2.85217×10−8 1.87405×10−8

0.1 2.78814×10−8 3.74811×10−8

1 8.95815×10−8 3.74811×10−7

Table 4. Absolute errors for case 3 using PINN and
NIM solutions.

Table 5. Absolute errors for case 4 using PINN and
NIM solutions.

x t Our PINN NIM [5]
0.1 0.1 2.19047×10−6 5.51552×10−5

0.2 7.39097×10−6 1.10340×10−4

0.3 1.52140×10−5 1.65525×10−4

0.4 2.13459×10−5 2.2070×10−4

0.5 2.58684×10−5 2.75945×10−4

0.3 0.1 2.47210×10−5 5.51380×10−5

0.2 3.52114×10−5 1.10291×10−4

0.3 4.39211×10−5 1.65455×10−4

0.4 5.09247×10−5 2.20632×10−4

0.5 5.63114×10−5 2.75830×10−4

0.5 0.1 3.38554×10−5 5.51131×10−5

0.2 4.45619×10−5 1.10244×10−4

0.3 5.34951×10−5 1.65400×10−4

0.4 6.07296×10−5 2.20541×10−4

0.5 6.63548×10−5 2.75714×10−4

x t Our PINN NIM [5]
0.1 0.1 2.17854×10−5 2.17787×10−4

0.2 7.80820×10−6 4.35691×10−4

0.3 3.51071×10−5 6.53717×10−4

0.4 5.99026×10−5 8.71833×10−4

0.5 8.20457×10−5 1.09050×10−3

0.3 0.1 9.10162×10−5 2.17548×10−4

0.2 1.21890×10−4 4.35228×10−4

0.3 1.50350×10−4 6.53010×10−4

0.4 1.76250×10−4 8.70915×10−4

0.5 1.99380×10−4 1.08891×10−3

0.5 0.1 1.29700×10−4 2.17320×10−4

0.2 1.60370×10−4 4.34745×10−4

0.3 1.88650×10−4 6.52311×10−4

0.4 2.14310×10−4 8.69963×10−4

0.5 2.37260×10−4 1.08755×10−3
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4. Conclusions

In this study, we test the efficiency of PINNs in solving the nonlinear Burgers–Huxley equation. Four
cases of the equation were investigated using the proposed framework. In the two first cases, we apply
the RAR method to our PINN to improve its accuracy.

We compared the results obtained by PINN with those obtained by the NIM method [5]. It was
found that the solutions predicted by PINN are very accurate and better than those of NIM.

For future work, we will compare the performance of PINN with other neural network techniques,
such as Recurrent Neural Networks (RNN).
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Вбудовування фiзичних законiв у глибоку нейронну мережу для
розв’язування узагальненого рiвняння Бюргерса-Гакслi

Харiрi I.1, Радiд А.1, Рофiр К.2

1LMFA, FSAC, Унiверситет Хасана II Касабланки
2LASTI, ENSAK, Унiверситет Султана Мулая Слiмана

До складних задач математики належить задача розв’язування диференцiальних рiв-
нянь iз частинними похiдними (PDE). На сьогоднiшнiй день не iснує технiки чи ме-
тоду, здатного розв’язати всi PDE, незважаючи на велику кiлькiсть запропонованих
ефективних методiв. У лiтературi можна знайти чисельнi методи, такi як методи
скiнченних рiзниць, скiнченних елементiв, скiнченних об’ємiв та їх варiанти, напi-
ваналiтичнi методи, такi як варiацiйний iтеративний метод, новий iтеративний ме-
тод та iншi. В останнi роки ми стали свiдками впровадження нейронних мереж у
розв’язуваннi PDE. У цiй роботi пропонуємо адаптацiю методу вбудовування дея-
ких фiзичних законiв у нейроннi мережi для розв’язання рiвняння Бюргерса–Гакслi
та виявлення динамiчної поведiнки рiвняння безпосередньо з просторово-часових да-
них. Поєднуємо запропоновану технiку з методом адаптивного уточнення на основi
нев’язок, щоб пiдвищити його точнiсть. Наведено порiвняння запропонованого методу
з отриманими за допомогою нового iтерацiйного методу.

Ключовi слова: глибоке навчання; фiзичнi нейроннi мережi; узагальнене рiвняння

Бюргерса–Хакслi; адаптивне уточнення на основi залишкiв.
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