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In this paper, we develop a mathematical model using partial differential equations to
investigate the behavior of RNA viruses in the presence of antiviral treatment. The devel-
oped model includes both cell-to-cell and virus-to-cell modes of transmission. Initially, we
establish the well-posedness of the model by demonstrating the existence and uniqueness
of solutions, as well as their positivity and boundedness. Additionally, we identify and
analyze the stable equilibrium states, their global stability depending on specific threshold
parameters, using Lyapunov functions. To corroborate our theoretical findings, we provide
illustrations through numerical simulations.
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1. Introduction

Coronavirus disease 2019 (COVID-19) resulted from an infection with the SARS-CoV-2 virus. This
pandemic has profoundly affected public health, the global economy, and our daily routines. The
SARS-CoV-2 virus is part of the RNA virus family, known for causing various infectious diseases
such as hepatitis C that is an infection caused by the hepatitis C virus (HCV). On a global scale,
roughly 58 million individuals suffer from a chronic HCV infection, with approximately 1.5 million
new cases emerging annually [1]. There are about 3.2 million young individuals and children living
with a chronic HCV infection [1]. According to the World Health Organization (WHO) [1], in 2019, an
estimated 290 000 lives were lost due to hepatitis C, primarily attributed to conditions like cirrhosis and
hepatocellular carcinoma, the most common form of liver cancer. The human immunodeficiency virus
(HIV) is classified as an RNA virus as well. It continues to be a significant global public health concern,
having resulted in the loss of approximately 40.4 million lives thus far, with ongoing transmission
occurring in all countries worldwide [2]. As of the end of 2022, it is estimated that there were around
39 million individuals living with HIV, with two-thirds of them (25.6 million) located in the WHO
African Region [2]. In the same year, approximately 630 000 (ranging from 480 000 to 880 000) people
succumbed to HIV-related causes, while 1.3 million (ranging from 1.0 million to 1.7 million) individuals
acquired the virus [2].

The SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. It belongs to
the coronavirus family, including other viruses such as SARS-CoV and MERS-CoV. It has a higher
morbidity compared to other coronaviruses and can cause acute respiratory tract infections with extra-
pulmonary involvement, such as cardiovascular complications and multi-organ failure [3]. The virus has
a genomic organization similar to other coronaviruses, with a set of core genes that encode replicase-
structure proteins and has a high transmission rate [3]. It is worth mentioning that this virus persists
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in its transmission through emerging variants, one of which is EG5. The latter has been classified as
a variant of interest by WHO [4]. Due to this high transmission, over 70 million cases have been so
far attacked by COVID-19, 7 million of whom have died [5]. Efforts are underway to develop effective
antiviral drugs and vaccines to control and eradicate SARS-CoV-2.

Mathematical modeling is of importance for comprehending and characterizing the dynamics of
RNA virus-induced infectious diseases. One of the first model was introduced by Perelson et al. [6].
Nowak and May [7] have also come up with another model to investigate the behavior of HIV infection.
In 2020, Hattaf and Yousfi [8] proposed a new mathematical model that investigate the dynamics of
SARS-CoV-2. In 2023, Hattaf et al. [9] introduced an additional model exploring the dynamics of the
SARS-CoV-2 virus, incorporating the influence of antiviral treatment. All these models are based on
systems only governed by ordinary differential equations (ODEs). Undoubtedly, they have contributed
to the understanding of viruses-related issues. However, they assumed that cells and viruses are
uniformly distributed and their mobility was neglected.

To understand the above factors, we propose a mathematical model governed by partial differential
equations (PDEs) with reaction-diffusion to provide a description of the temporal and spatial pattern
of RNA viruses like SARS-CoV-2. Our model takes into account the lytic and non-lytic effects of the
humoral immunity and both cell-to-cell and virus-to-cell modes of transmission in the presence of the
cure of infected cells and the antiviral treatment. The following system of nonlinear PDEs is used to
define this model:



























































∂S

∂t
= d1∆S + σ − µ1S(x, t)−

β1S(x, t)V (x, t)

1 + q1W (x, t)
−
β2S(x, t)I(x, t)

1 + q2W (x, t)
+ ρL(x, t),

∂L

∂t
= d2∆L+

β1S(x, t)V (x, t)

1 + q1W (x, t)
+
β2S(x, t)I(x, t)

1 + q2W (x, t)
− (µ2 + δ + ρ)L(x, t),

∂I

∂t
= d3∆I + δL(x, t)− µ3I(x, t),

∂V

∂t
= d4∆V + k(1− ε)I(x, t) − µ4V (x, t)− pV (x, t)W (x, t),

∂W

∂t
= d5∆W + rV (x, t)W (x, t) − µ5W (x, t),

(1)

where S(x, t), L(x, t), I(x, t), V (x, t) and W (x, t) are the densities of uninfected cells, latently infected
cells, infected cells, free viruses and antibodies at position x and time t, respectively. Uninfected cells
are produced at rate σ, die at rate µ1S and return into infected through exposure to free virus particles
at a rate β1SV or by direct contact with infected cells at rate β2SI. The two modes of transmission
are inhibited by non-lytic humoral immune response at rate 1 + q1W and 1 + q2W , respectively. The
latently infected cells (L) die at rate µ2L, return to the uninfected state at rate ρL, which occurs
through the clearance of the virus via a non-cytolytic process and transform into productively infected
cells with a rate determined by δL. The productively infected cells (I) die at rate µ3I. Free viruses
are generated as a result of infected cells at a rate of kI. The virus rate clearance is µ4V . The viruses
are neutralized by antibodies at a rate of pVW . Antibodies are generated in response to free viruses
at a rate of rV W and degrade at a rate of µ5W . The parameter ε signifies the efficacy of the antiviral
treatment, which inhibits the production of viral particles. The diffusion coefficients for uninfected
cells, latently infected cells, infected cells, free viruses, and antibodies are denoted as d1, d2, d3, d4,
and d5, respectively.

We consider the initial values and Neumann boundary conditions as follows


















S(x, 0) = Φ1(x) > 0, L(x, 0) = Φ2(x) > 0, I(x, 0) = Φ3(x) > 0, V (x, 0) = Φ4(x) > 0

and W (x, 0) = Φ5(x) > 0, x ∈ Ω,

∂S

∂n
=
∂L

∂n
=
∂I

∂n
=
∂V

∂n
=
∂W

∂n
= 0, t > 0, x ∈ ∂Ω,

(2)

where Ω is a bounded domain in R
n with smooth boundary ∂Ω and ∂

∂n
is an outward normal vector

of ∂Ω.
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The rest of the paper is organized as follows. The well-posedness of our model demonstrated by
showing the existence and uniqueness of solutions and establishing their non-negativity and bounded-
ness as well as the threshold parameters and equilibria are the main concerns of the next section. The
stability analysis is the focus of the third section. The final one is about the numerical illustration of
the results of our paper.

2. Equilibria and threshold parameters

We consider the Banach space C = [C(Ω)]5, where C(Ω) is a set of real valued functions on the Ω,
equipped with the supremum norm. Furthermore, we require the following lemma (see [10]).

Lemma 1. Let consider the system as follows


















∂u

∂t
− d∆u 6 a− bu, x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(3)

where a, b and d are the constants with b 6= 0. Then

u(x, t) 6 max
x∈Ω

u0(x)e
−bt +

a

b
(1− e−bt).

Moreover, if b > 0, we have

u(x, t) 6 max

{

a

b
,max
x∈Ω

u0(x)

}

and lim sup
t→+∞

u(x, t) 6
a

b
.

Theorem 1. For any initial state Φ = (Φ1,Φ2,Φ3,Φ4,Φ5) ∈ C that satisfies the condition (2),
there exists a unique solution to the problem (1)–(2). When cells have equal diffusion coefficients
(d1 = d2 = d3) and d4 = d5, this solution is defined over the interval [0,+∞) and remains both
non-negative and bounded for all t > 0.

Proof. We define the function G = (G1, G2, G3, G4): C → C by:






































G1(φ) = σ − µ1φ1 −
β1φ1φ4
1 + q1φ5

−
β2φ1φ3
1 + q2φ5

+ ρφ2,

G2(φ) =
β1φ1φ4
1 + q1φ5

+
β2φ1φ3
1 + q2φ5

− (µ2 + δ + ρ)φ2,

G3(φ) = δφ2 − µ3φ3,

G4(φ) = k(1− ε)φ3 − µ4φ4 − pφ4φ5,
G5(φ) = rφ4φ5 − µ5φ5,

for any φ = (φ1, φ2, φ3, φ4, φ5) ∈ C. Then the system (1)–(2) is equivalent to
{

X ′(t) = AX(t) +G(t), t > 0

X(0) = Φ ∈ C,
(4)

where X(t) = (S(t), L(t), I(t), V (t),W (t))T and AX = (d1∆S, d2∆L, d3∆I, d4∆V, d5∆W )T . It is clear
that G is locally Lipschitz in C. According to [11], we deduce that system (4) have a unique local
solution on its maximal interval of existence [0, tmax). Since 0 = (0, 0, 0, 0, 0) is a lower-solution of the
problem (1)–(2), we have S > 0, L > 0, I > 0, V > 0 and W > 0.

Let Y = S + L+ I. We assume that d1 = d2 = d3 = d and d4 = d5 = d′. From the equations (1),
we obtain























∂Y

∂t
− d∆Y 6 σ − µY,

∂Y

∂n
= 0,

Y (x, 0) = Φ1(x) + Φ2(x) + Φ3(x), x ∈ Ω,

(5)
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where µ = min{µ1, µ2, µ3}. By Lemma 1, we get

Y (x, t) 6
σ

d
+max

x∈Ω
(Φ1(x) + Φ2(x) + Φ3(x)) =M, ∀(x, t) ∈ Ω× [0, tmax).

Hence Y is bounded on Ω × [0, tmax) which it follows that S, L and I are bounded as well. If we set
H = V + p

r
W , then we have



























∂H

∂t
− d′∆H 6 B − vH,

∂H

∂n
= 0,

H(x, 0) = Φ4(x) +
p

r
Φ5(x), x ∈ Ω,

(6)

where B = k(1 − ε)M and v = min{µ4, µ5}. From Lemma 1, we deduce that H is bounded. This
implies both V and W are also bounded. Therefore, it has been established that S, L, I, V and
W are bounded on Ω × [0, tmax). Hence, according to the standard theory for semi-linear parabolic
systems [12] that tmax = +∞. This concludes the proof. �

It is evident that system (1) possesses one infection-free equilibrium E0 = (σ/µ1, 0, 0, 0, 0). Then
we define the basic reproduction number for our PDE model as follows

R0 =
σδ[k(1 − ε)β1 + µ4β2]

µ1µ3µ4(µ2 + δ + ρ)
. (7)

In biological terms, this threshold parameter signifies the average number of secondary infections
generated by a single productively infected cell at the onset of infection. It can be expressed as
the sum of R01 and R02, where R01 = kδσβ1(1−ε)

µ1µ2µ4(µ2+δ+ρ) represents the basic reproduction number

for the virus-to-cell transmission mode and R02 = σδβ2

µ1µ3(µ2+δ+ρ) represents the basic reproduction

number for the cell-to-cell transmission mode. If R0 > 1 then model (1) admits an other equilibrium

E1 = (S1, L1, I1, V1, 0), where S1 =
σ

µ1R0
, L1 =

σ(R0−1)
(µ2+δ)R0

, I1 =
δσ(R0−1)

µ3(µ2+δ)R0
and V1 =

kδσ(1−ε)(R0−1)
µ3µ4(µ2+δ)R0

.
When the humoral immune response has not been established, we have rV1 − µ5 6 0. Therefore,

we introduce another threshold parameter known as the reproduction number for humoral immunity,
which is defined as follows:

RW
1 =

rV1
µ5

, (8)

where 1
µ5

is the average life span of antibodies and V1 is the quantity of viruses at the steady state E1.

So, the number RW
1 can biologically determine the average number of antibodies activated by viral

particles.
Based on the findings of the paper [9], we demonstrate that if RW

1 > 1 then the model (1) has

an equilibrium point E2 = (S2, L2, I2, V2,W2), where S2 ∈
(

0, σ
µ1

− µ3µ4µ5(µ2+δ)
rkδµ1(1−ε)

)

, L2 = σ−µ1S2

µ2+δ
I2 =

δ(σ−µ1S2)
µ3(µ2+δ) , V2 =

µ5

r
and W2 =

rkδ(1−ε)(σ−µ1S2)−µ3µ4µ5(µ2+δ)
pµ3µ5(µ2+δ) .

Summarizing the above discussions in the following theorem.

Theorem 2. 1. If R0 6 1, then model (1) has a unique infection-free equilibrium E0 = (S0, 0, 0, 0, 0),

where S0 =
σ

µ1
.

2. If R0 > 1, then model (1) has a unique infection equilibrium without humoral immunity

E1 = (S1, L1, I1, V1, 0) besides E0, where S1 = σ
µ1R0

, L1 = σ(R0−1)
(µ2+δ)R0

, I1 = δσ(R0−1)
µ3(µ2+δ)R0

and

V1 =
kδσ(1−ε)(R0−1)
µ3µ4(µ2+δ)R0

.

3. If RW
1 > 1, then model (1) has a unique infection equilibrium with humoral immunity E2 =

(S2, L2, I2, V2,W2) besides E0 and E1, where S2 ∈
(

0, σ
µ1

− µ3µ4µ5(µ2+δ)
rkδµ1(1−ε)

)

, L2 = σ−µ1S2

µ2+δ
I2 =

δ(σ−µ1S2)
µ3(µ2+δ) , V2 =

µ5

r
and W2 =

rkδ(1−ε)(σ−µ1S2)−µ3µ4µ5(µ2+δ)
pµ3µ5(µ2+δ) .
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3. Stability analysis

In this section, we analyze the stability of equilibria.
First, we have the following result.

Theorem 3. The infection-free steady state E0 is globally asymptotically stable if R0 6 1 and
becomes unstable if R0 > 1.

Proof. Given the results established by Hattaf and Yousfi in [13], we consider the following Lyapunov
function:

L0 =

∫

Ω
F0(E(x, t)) dx,

where E = (S,L, I, V,W ) is a solution of (1)–(2) and

F0(E) = S0Φ

(

S

S0

)

+ L+
µ2 + δ + ρ

δ
I +

β1S0
µ4

V +
pβ1S0
rµ4

W +
ρ(S − S0 + L)2

2S0(µ1 + µ2 + δ)
,

with Φ(x) = x− 1− lnx, for x > 0. By a simple computation, we have

dL0

dt
=

∫

Ω

{

− µ1

(

1

S
+

ρ

S0(µ1 + µ2 + δ)
+

ρL

SS0

)

(

S − S0
)2

−
ρ(µ2 + δ)L2

S0(µ1 + µ2 + δ)

−
q1β1S0
1 + q1W

VW −
q2β2S0
1 + q2W

IW +
µ3(µ2 + δ + ρ)

δ
I
(

R0 − 1
)

−
pµ5β1S0
rµ4

W

}

dx.

If R0 6 1, then dL0

dt
6 0 with equality if and only if E = E0. By LaSalle invariance principle [14], we

deduce that E0 is globally asymptotically stable when R0 6 1.
Now, we establish the instability of E0 when R0 > 1. To achieve this, we determine the character-

istic equation around this equilibrium.
The eigenvalues of operator −∆ on Ω with homogeneous Neumann boundary conditions can be

denoted by 0 = λ1 < λ2 < . . . < λn < . . .. Let E(λi) represents the eigenspace corresponding to λi in
C1(Ω). Consider {ψij : j = 1, 2, . . . ,dimE(λi)} as an orthonormal basis for E(λi), Y = C1(Ω)5 and
Yij = {cψij : c ∈ R

5}. Then

Y =
∞
⊕

i=1

Yi and Yi =

dimE(λi)
⊕

j=1

Yij.

The linearized system of system (1) at E0 = (S0, 0, 0, 0, 0, ) is given by






















































∂S

∂t
= d1∆S − µ1S(x, t) + ρL(x, t)− β2S0I(x, t)− β1S0V (x, t),

∂L

∂t
= d2∆L− (µ2 + δ + ρ)L(x, t) + β2S0I(x, t) + β1S0V (x, t),

∂I

∂t
= d3∆I + δL(x, t) − µ3I(x, t),

∂V

∂t
= d4∆V + k(1− ε)I(x, t) − µ4V (x, t),

∂W

∂t
= d5∆W − µ5W (x, t).

(9)

Let NZ = DZ +A0Z, where Z = (S,L, I, V,W )T and the square matrices D and A0 are given by

D = diag(d1, d2, d3, d4, d5) and A0 =













−µ1 ρ −β2S0 −β1S0 0
0 −(µ2 + δ + ρ) β2S0 β1S0 0
0 δ −µ3 0 0
0 0 k(1− ε) −µ4 0
0 0 0 0 −µ5













.

Then the system (9) is equivalent to NZ = DZ + A0Z. Note that, for every i > 1, Yi is invariant
under operator N and the set of eigenvalues of N is X = ∪i>1Xi, where Xi represents the set of roots
of the characteristic equation det(−λiD + A− xI). For i = 1, we have λ1 = 0 and the characteristic
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equation of the restriction of N to Y1, is given by

(µ1 + x)(µ5 + x)Q0(x) = 0, (10)

where

Q0(x) = x3 + (µ2 + µ3 + µ4 + δ + ρ)x2 +
(

µ3µ4 − δβ2S0 + (µ3 + µ4)(µ2 + δ + ρ)
)

x

+ µ3µ4(µ2 + δ + ρ)(1−R0).

As lim
x→+∞

Q0(x) = +∞ and Q0(0) = µ3µ4(µ2 + δ + ρ)(1 − R0) < 0 for R0 > 1, it follows that if

R0 > 1, the characteristic equation (10) possesses at least one positive eigenvalue. Consequently, E0

is unstable when R0 > 1. This concludes the proof. �

Following this, we demonstrate the asymptotic stability of the infection steady states E1 and E2,
assuming that R0 > 1 and under the additional hypothesis:

q1
(

W −Wi

)

(

1 + q1W

1 + q1Wi
−
V

Vi

)

6 0, q2
(

W −Wi

)

(

1 + q2W

1 + q2Wi
−
I

Ii

)

6 0, (H)

where Ii, Vi, and Wi represent the respective components of productively infected cells, viruses, and
antibodies in the infection equilibrium Ei for i = 1, 2.

Theorem 4. If condition (H) holds true for E1 and RW
1 6 1 < R0 6 1 + µ2+δ

ρ
, then the infection

steady state without humoral immunity is globally asymptotically stable and unstable if RW
1 > 1.

Proof. We define a Lyapunov function as follows

L1 =

∫

Ω
F1(E(x, t)) dx,

where E = (S,L, I, V,W ) is a solution of (1)–(2) and

F1(E) = S1Φ

(

S

S1

)

+ L1Φ

(

L

L1

)

+
µ2 + δ + ρ

δ
I1Φ

(

I

I1

)

+
β1S1V1

k(1− ε)I1
V1Φ

(

V

V1

)

+
pβ1S1V1
rk(1− ε)I1

W +
ρ (S − S1 + L− L1)

2

2S1(µ1 + µ2 + µ3)
.

Then
dL1

dt
=

∫

Ω

{(

1−
S1
S

)(

σ − µ1S −
β1SV

1 + q1W
−

β2SI

1 + q2W
+ ρL

)

+

(

1−
L1

L

)(

β1SV

1 + q1W
+

β2SI

1 + q2W
− (µ2 + δ + ρ)L

)

+
µ2 + δ + ρ

δ

(

1−
I1
I

)

(

δL− µ3I
)

+
β1S1V1

k(1− ε)I1

(

1−
V1
V

)

(

k(1− ε)I − µ4V − pVW
)

+
pβ1S1V1

rk(1− ε)I1

(

rV W − µ5W
)

+
ρ

(µ1 + µ2 + µ3)S1
(S − S1 + L− L1)

(

σ − µ1S − (µ2 + δ)L
)

}

dx.

By k(1− ε)I1 = µ4V1, δL1 = µ3I1 and σ = µ1S1 +β1S1V1 +β2S1I1 − ρL1 = µ1S1+(µ2+ δ)L1, we get

dL1

dt
=

∫

Ω

{

−
1

SS1

(

µ1S1 − ρL1 +
ρµ1S

µ1 + µ2 + µ3
+ ρL

)

(

S − S1
)2

−
ρ(µ2 + δ)(L − L1)

2

(µ1 + µ2 + µ3)S1

+
pµ5β1S1
rµ4

(

RW
1 − 1

)

W + β1S1V1

[

− 1−
V

V1
+

V

(1 + q1W )V1
+ (1 + q1W )

]

+ β2S1I1

(

− 1−
I

I1
+

I

(1 + q2W )I1
+ (1 + q2W )

)

− β1S1V1

[

Φ

(

S1
S

)

+Φ

(

I1L

IL1

)

+Φ

(

SV L1

(1 + q1W )S1V1L

)

+Φ

(

IV1
I1V

)

+Φ(1 + q1W )

]

−β2S1I1

[

Φ

(

S1
S

)

+Φ

(

I1L

IL1

)

+Φ

(

SIL1

(1 + q2W )S1I1L

)

+Φ(1 + q2W )

]}

dx.
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From (H), we have

−1−
V

Vi
+

(1 + q1Wi)V

(1 + q1W )Vi
+

1 + q1W

1 + q1Wi
=
q1
(

W −Wi

)

1 + q1W

(

1 + q1W

1 + q1Wi
−
V

Vi

)

6 0,

−1−
I

Ii
+

(1 + q2Wi)I

(1 + q2W )Ii
+

1 + q2W

1 + q2Wi
=
q2
(

W −Wi

)

1 + q2W

(

1 + q2W

1 + q2Wi
−
I

Ii

)

6 0.

(11)

If R0 6 1 + µ2+δ
ρ

, then it follows that ρL1 6 µ1S1. Additionally assuming RW
1 6 1, we can conclude

that dL1

dt
6 0 with equality if and only if S = S1, L = L1, I = I1, V = V1 and W = 0. This implies

that E1 is globally asymptotically stable when RW
1 6 1 < R0 6 1 + µ2+δ

ρ
.

Now, we assumed that RW
1 > 1. The linearized system of system (1) at E1 = (S1, L1, I1, V1, 0, ) is

given by










































































∂S

∂t
= d1∆S − (µ1 + β1V1 + β2I1)S(x, t) + ρL(x, t)− β2S1I(x, t)− β1S1V (x, t)

+(β1q1S1V1 + β2q2S1I1)W (x, t),

∂L

∂t
= d2∆L+ (β1V1 + β2I1)S(x, t) − (µ2 + δ + ρ)L(x, t) + β2S1I(x, t) + β1S1V (x, t)

−(β1q1S1V1 + β2q2S1I1)W (x, t),

∂I

∂t
= d3∆I + δL(x, t)− µ3I(x, t),

∂V

∂t
= d4∆V + k(1− ε)I(x, t) − µ4V (x, t)− pV1W (x, t),

∂W

∂t
= d5∆W + (rV1 − µ5)W (x, t).

(12)

Let N1Z = DZ +A1Z, where Z = (S,L, I, V,W )T and the square matrices D and A1 are given by

D = diag(d1, d2, d3, d4, d5),
and

A1 =













−(µ1 + β1V1 + β2I1) ρ −β2S1 −β1S1 β1q1S1V1 + β2q2S1I1
β1V1 + β2I1 −(µ2 + δ + ρ) β2S1 β1S1 −(β1q1S1V1 + β2q2S1I1)

0 δ −µ3 0 0
0 0 k(1− ε) −µ4 −pV1
0 0 0 0 (rV1 − µ5)













.

Then the system (12) is equivalent to N1Z = DZ + A1Z. Using the spectral decomposition and the
symbols introduced in the proof of Theorem 3, we find that the characteristic equation of the restriction
of N1 to Y1 has x = rV1 − µ5 as eigenvalue. Since RW

1 = rV1

µ5
> 1, we have x > 0. We conclude that

E1 is unstable if RW
1 > 1. �

Theorem 5. Assume that (H) is satisfied for E2. Then the infection steady state with humoral
immunity E2 is globally asymptotically stable if RW

1 > 1.

Proof. Consider the Lyapunov function define by:

L2 =

∫

Ω
F2(E(x, t)) dx,

where E = (S,L, I, V,W ) is a solution of (1)–(2) and

F2(E) = S2Φ

(

S

S2

)

+ L2Φ

(

L

L2

)

+
µ2 + δ + ρ

δ
I2Φ

(

I

I2

)

+
β1S2V2

k(1− ε)(1 + q1W2)I2
V2Φ

(

V

V2

)

+
pβ1S2V2

rk(1− ε)(1 + q1W2)I2
W2Φ

(

W

W2

)

+
ρ (S − S2 + L− L2)

2

2S2(µ1 + µ2 + µ3)
.

By using the equalities σ = µ1S2 + β1S2V2

1+q1W2
+ β2S2I2

1+q2W2
− ρL2 = µ1S2 + (µ2 + δ)L2, δL2 = µ3I2,

k(1− ε)I2 = µ4V2 + pV2W2 and rV2 = µ5, we obtain

dL2

dt
=

∫

Ω

{

−
1

SS2

(

µ1S2 − ρL2 +
ρµ1S

µ1 + µ2 + µ3
+ ρL

)

(

S − S2
)2

+
−ρ(µ2 + δ)

(µ1 + µ2 + µ3)S2
(L2 − L)2
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−
β1S2V2
1 + q1W2

[

Φ

(

I2L

L2I

)

+Φ

(

S2
S

)

+Φ

(

V2I

I2V

)

+Φ

(

SL2V (1 + q1W2)

S2LV2(1 + q1W )

)

+Φ

(

1 + q1W

1 + q1W2

)]

+
β1S2V2
1 + q1W2

(

− 1−
V

V2
+
V (1 + q1W2)

V2(1 + q1W )
+

1 + q1W

1 + q1W2

)

−
β2S2I2

1 + q2W2

[

Φ

(

I2L

L2I

)

+Φ

(

S2
S

)

+Φ

(

SL2I(1 + q2W2)

S2LI2(1 + q2W )

)

+Φ

(

1 + q2W

1 + q2W2

)]

+
β2S2I2

1 + q2W2

(

− 1−
I

I2
+
I(1 + q2W2)

I2(1 + q2W )
+

1 + q2W

1 + q2W2

)}

dx.

From (11) and the condition µ1S2 − ρL2 > 0, we deduce that dL2

dt
6 0 with equality if and only if

S = S2, L = L2, I = I2, V = V2 and W =W2. Thus, E2 is globally asymptotically stable. �

4. Numerical simulation

In order to illustrate the results presented earlier, we perform numerical simulations using the param-
eters specified and referenced in [9]. These parameters are given as follows

σ = 60, d1 = 0.001, d2 = 0.001, d3 = 0.001, d4 = 0.001, d5 = 0.001, µ1 = 0.001,

ε = 0.2, µ2 = 0.09, δ = 1.5, µ3 = 0.75, p = 0.5, µ4 = 15, µ5 = 0.3,

β2 = 1.2× 10−8, q1 = 0.01, q2 = 0.02, ρ = 0.01, k = 50,

and the values of r and β1 are adjusted to obtain the three cases of global stability identified earlier.
When r = 2.4× 10−3 and β1 = 4.6× 10−6 we achieve R0 = 0.9209 6 1 and E0 = (60000, 0, 0, 0, 0).

Figure 1 illustrates that E0 is globally asymptotically stable. In the case where r = 2.4 × 10−3 and
β1 = 1.3 × 10−5, we obtain R0 = 2.6009 > 1, RW

1 = 0.9910 6 1 and E1 = (23069, 23, 46, 124, 0).
Figure 2 demonstrates the global asymptotic stability of E1. For r = 4 × 10−3 and β1 = 1.3 × 10−5,
we obtain RW

1 = 1.6517 > 1 and E2 = (3.1263 × 104, 18.0990, 36.2015, 75.0259, 8.6286). Figure 3 also
confirms the global asymptotic stability of E2. These numerical simulations align seamlessly with the
assertions in Theorems 3, 4 and 5.

Fig. 1. Behaviour of model (1) when R0 = 0.9209 6 1.
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Fig. 2. Behaviour of model (1) for R0 = 2.6009 > 1 and RW
1 = 0.9910 6 1.

Fig. 3. Behaviour of model (1) for R0 = 2.6009 > 1 and RW
1 = 1.6517 > 1.

5. Conclusion

In this work, we have studied the spatiotemporal dynamics of RNA viruses in the presence of humoral
immunity and antiviral treatment, with a focus on the case of SARS-CoV-2. We have proposed a
mathematical model based on partial differential equations with reaction-diffusion. This model ac-
counts for both cellular and viral modes of transmission and incorporates both lytic and non-lytic
responses of humoral immunity, as well as the effects of antiviral treatment. Additionally, it includes a
non-cytolytic healing process. We have demonstrated that the proposed model is well-posed. Specif-
ically, we have established that under realistic conditions, the system possesses unique, positive, and
bounded solutions. We have provided threshold parameters, the basic reproduction number R0 and
the reproduction number of humoral immunity RW

1 . We have established the existence and uniqueness
of three equilibrium points: a disease-free equilibrium E0, a second equilibrium E1 when R0 > 1, and
a third equilibrium E2 when Rw

1 > 1. We studied the global stability of these three equilibria, showing
that E0 is globally stable if R0 6 1 and unstable if R0 > 1, while E1 is globally asymptotically stable
if RW

1 < 1, and E2 is globally asymptotically stable if RW
1 > 1.
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Просторово-часова динамiка РНК-вiрусiв за наявностi iмунiтету
та лiкування: випадок SARS-CoV-2

Ель Карiмi М. I.1,2, Хаттаф К.1,3, Юсфi Н.1

1Лабораторiя аналiзу, моделювання та симулювання (LAMS),
Факультет наук Бен М’Сiк, Унiверситет Хасана II Касабланки, п.с. 7955,

Сiдi Осман, Касабланка, Марокко
2Регiональний центр освiти i пiдготовки професiй (CRMEF),

10000 просп. Алляль Аль Фассi, Рабат, Марокко
3Наукова група з моделювання та викладання математики (ERMEM),

Регiональний центр освiти i пiдготовки професiй (CRMEF), 20340 Дерб Галеф, Касабланка, Марокко

У статтi розробляється математична модель, використовуючи диференцiальнi рiв-
няння в частинних похiдних, щоб дослiдити поведiнку РНК-вiрусiв за наявностi про-
тивiрусного лiкування. Розроблена модель включає способи передачi як вiд клiтини
до клiтини, так i вiд вiрусу до клiтини. Спочатку встановлено коректнiсть моделi,
показуючи iснування та єдинiсть рiшень, а також їх додатнiсть та обмеженiсть. Крiм
того, iдентифiковано та проаналiзовано стiйкi рiвноважнi стани, їх глобальну стiй-
кiсть залежно вiд конкретних порогових параметрiв за допомогою функцiй Ляпунова.
Щоб пiдтвердити теоретичнi висновки, наведено iлюстрацiї за допомогою чисельного
моделювання.

Ключовi слова: реакцiя–дифузiя; РНК-вiруси; способи передачi; математичне мо-
делювання; аналiз стiйкостi.
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