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In this work, we discuss a spatiotemporal discrete prey–predator model. It consists of
three compartments: prey, predator, and super-predator. The proposed model describes
the interaction between prey, predator, and super-predator in a region with a discrete
displacement. We also provide research on appropriate regional control strategies. The
controls are applied to the predator and the super-predator, respectively; they represent
catching these in measured quantities in a space and a time chosen. The aim is to increase
the number of prey and reduce the number of predators, restore the food chain system, and
ensure its sustainability. Finally, we provide graphical visuals and numerical simulations
to support our analytical findings.
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1. Introduction

For years, scientists have been warning of the coming catastrophe due to overfishing, which is harvesting
sea bounties at rates greater than the ability of marine life to reproduce and restore its natural numbers.
These warnings accompany efforts by international leaders.

In response to the decline in desirable fish populations, commercial fishing fleets are beginning
to reach farther and catch other species of fish below the food pyramid, with disastrous effects on
the nutritional balance. For instance, a decrease in the number of fish that consume algae, which
keeps corals clean and healthy, has an impact on coral reefs. Fishing for vegetarian fish, directly or
indirectly, weakens coral reefs and reduces their resilience to climate change. Fishing debris directly
destroys coral reefs. Trawling scoops everything that falls in the net’s path, not just shrimp, tuna,
dolphins, turtles, sharks, and birds. These species are in danger of extinction due to accidental fishing.
Illustrations of overfishing are found in places like the North Sea, Newfoundland’s Grand Pax, and the
East China Sea. Overfishing has proven to be catastrophic for fish stocks at these sites as well as for
product-dependent fishing communities. Residents of the Upper Adriatic Sea have been hunting for
millennia, just like other extractive industries [1,2]. The increase in fishing blocks big groups of sulphur
fish from leaving the Gulf of Trieste. Fishermen in Santa Croce, Contofilo, and Barcola caught the
last big tuna catch in 1954. Peruvian coastal balmia (anchovies) fisheries collapsed in the 1970s after
overfishing, and the El Nino season greatly depleted the balmia because of its waterways. Balmia was
a great natural treasure in Peru. In fact, in 1971, 10.2 million metric tons of balmia were produced.
Anyhow, the Peruvian fleet’s catch did not exceed four million tons in the following five years, which
constituted a significant loss for the Peruvian economy [3]. Fisheries in the Irish Sea and other sites
are overfishing, causing such an actual breakdown, according to the official Biodiversity Action Plan
of the UK Government. The UK has formed elements in this plan to try to renovate fisheries, but the
expansion of the worldwide population and increasing requests for fish have linked to a point where
food demand jeopardizes the stability, if not the viability, of these fisheries, of the species [4] etc.
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Mathematical modeling has proven its significant utility when it comes to describing the dynamics of
natural phenomena, particularly in ecology [5]. As an important and essential tool for handling many
real-life problems and for understanding ecological systems, it gives us the opportunity to predict
the conduct of samples of the investigated population. This is the primary reason for the growing
advantage of many researchers in this field. As a consequence, a huge improvement has been observed
in ecological mathematical models. In this context, precisely in population dynamics, particularly in
prey–predator dynamics interplay in aquatic creatures, modeling has become increasingly important.
Predators consume prey, while the prey is the organism that is being hunted. Predators rely on their
prey to survive, failing to get food, leading to their demise.

The renowned Lotka–Volterra model is the first prey predator model, whose mathematical formula-
tion is based on a seminal work by Lotka in 1925 and Volterra in 1926 [6,7]. It is a nonlinear differential
equation system that represents the changes in population size over time. This model has been em-
braced and expanded upon in multiple works [1,5,6,8–10]. Applying bifurcation theory and differential
algebra, the authors investigated the dynamic behaviors of a biological economic predator–prey model
in which the prey is gaining. In [11], the authors studied prey predator dynamics, developed a model
that extends the functional responses of Holling, and demonstrated outcomes relating to both local
and global features as well as oscillations. The authors of [12] provided a mathematical fishing model
with the goal of optimizing human fishermen’s interests while maintaining biological equilibrium. The
authors of [13] investigated the global stability of a system of “Holling–Tanner” in a confined environ-
ment. In [14], the authors developed a bio-economics model that applies to a number of regions where
populations are mobilized. Their quantitative analysis assisted them in determining the best fishing
effort, the best way to distribute resources, and a set of functional management measures. In [15], to
better understand the consequences of juvenile predator predation on immature prey, the authors have
developed a prey predator model of “the Beddington–DeAngelis” type functional response. The dy-
namics of a prey–predator model with disease in a super-predator were examined by the authors in [16].
The concept of a super-predator was examined in [17], wherein the authors examined a prey-predator
model from an economic standpoint.

In this paper, we aim to extend the study of the optimal control problem of the discrete spatiotem-
poral for the prey-predator three-species fishery, the statistical data are composed at discrete time
and discrete space, as well as being highly immediate, highly adequate, and highly precise to describe
the fish population. By using discrete spatiotemporal modeling, we may avoid some mathematical
complexities, like the existence of solutions.

This work is arranged as seen below: In Section 2, we show you a discrete prey–predatory math-
ematical model. In Section 3, we give you the optimal control problem about the suggested model.
Numerical results to support the proposed model are provided in Section 4. Finally, we discuss and
show a conclusion in Section 5.

2. Mathematical model

The following system describes a spatiotemporal prey–predator discrete model of three compartements:
x
i,j
t prey, yi,jt predator and z

i,j
t super-predator in a position (i, j) at time t,

x
i,j
t+1 = x

i,j
t + rx

i,j
t

(

1−
x
i,j
t

k

)

−
αx

i,j
t y

i,j
t

a+ x
i,j
t

−
m(xi,jt )2zi,jt

b+ (xi,jt )2
+ α1∇

2x
i,j
t , (1)

y
i,j
t+1 = y

i,j
t +

βx
i,j
t y

i,j
t

a+ x
i,j
t

−
n(yi,jt )2zi,jt

b+ (yi,jt )2
− d1y

i,j
t + α2∇

2y
i,j
t , (2)

z
i,j
t+1 = z

i,j
t +

n1(y
i,j
t )2zi,jt

b+ (yi,jt )2
+

m1(x
i,j
t )2zi,jt

b1 + (xi,jt )2
− d2z

i,j
t + α3∇

2z
i,j
t (3)

in the location Ω = {(i, j)|I1 6 i 6 I2 and J1 6 j 6 J2} as follow
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where N
i,j
t = x

i,j
t + y

i,j
t + z

i,j
t and the discrete diffusion is described [18]:

∇2x
i,j
k = x

i−1,j
k + x

i+1,j
k + x

i,j−1
k + x

i,j+1
k − 4xi,jk ,

∇2y
i,j
k = y

i−1,j
k + y

i+1,j
k + y

i,j−1
k + y

i,j+1
k − 4yi,jk ,

∇2z
i,j
k = z

i−1,j
k + z

i+1,j
k + z

i,j−1
k + z

i,j+1
k − 4zi,jk ,

with initial conditions x
i0,j0
0 > 0, yi0,j00 > 0 and z

i0,j0
0 > 0. Here, we look at b and b1 as saturation

constants in the relative functional reactions of the predator and prey in a generalist predator. In order
to simplify computation, we take into consideration b1 = b, then n1 < n, m1 < m and β < α. None of
the parameters are negative and defined in (Table 1).

In terms of prey density x
i,j
t : we suppose the prey increases surly, with a hauling capacity of

k and a steady rate of expansion of r. Interactions with predators and super-predators reduce the
availability of this prey. Furthermore, prey is a preferred diet of predators, as shown by a holing
type (II) functional reaction (furthermore known as a Michaelis Menten functional reaction) defined

by
ax

i,j
t y

i,j
t

a+x
i,j
t

and the super-predator meals on the prey using a holling type (III) functional reaction, as

indicated by
(xi,j

t )2zi,jt

b+(xi,j
t )2

.

In terms of predator density y
i,j
t : this population grows by feeding on prey that has a holing type

(II). The predator, otherwise, is predated by a super-predator with holing type (III) functional reaction,

as shown by
(xi,j

t )2zi,jt

b+(xi,j
t )2

as well as a drop in the natural death rate d1. The term α2 denoted the rate of

predator entering from different sides.
In terms of super-predators density z

i,j
t : this population expands as a result of predation on the

prey, which is illustrated by
(mx

i,j
t )2zi,jt

b+(xi,j
t )2

and predating the predator with the term
(mx

i,j
t )2zi,jt

b+(xi,j
t )2

. This

population is decreasing due to natural mortality, at a rate of d2, and by harvesting. The term α2

denoted the rate of super-predator entering from different sides.

Table 1. The description of parameters used for the definition of discrete time systems 1–3.

Parameter Description

r The prey’s intrinsic growth rate.
k The prey’s environmental carrying capacity.
α Predator-to-prey capture rate.
m Rate at which the super-predator captures its victim.
n The super-predator’s capture rate per predator.
a, b Constants for half saturation.
d1 Natural predator Death rate.
d2 Super predator Death rate in the wild.
β Rate of consumption by predators on prey.
n1 Exceptional rate of ingestion by predators.
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3. An optimal control problem

The optimal control used in the model’s aim is to reduce the number of predators and super-predators
to return the spaces on which we focus to a normal situation, and for this, we introduce the following
control variables: targeting the interaction’s original location between the species, a regional fishing
management effort has been chosen as the approach. Furthermore, to keep the differential chain
structure and guarantee ecological durability, we employ a harvesting function technique. As a result,
based on time, we present two regional control mechanisms, t ∈ [0;T ] and location ω ⊂ Ω.

The regional controls u1,k, u2,k describe the increased emphasis on catchability q to gather predators
(super-predators), respectively, while reducing the total number of predators and super-predators, but
concentrating on the conservation of predators and super-predators that pose a threat to prey over
time, in order to preserve a distinct chain system while ensuring environmental sustainability.

As a result, the mathematical model with controls is described below multi-patches system of
difference equations:

x
i,j
t+1 = x

i,j
t + rx

i,j
t

(

1−
x
i,j
t

k

)

−
αx

i,j
t y

i,j
t

a+ x
i,j
t

−
m(xi,jt )2zi,jt

b+ (xi,jt )2
+ α1∇

2x
i,j
t , (4)

y
i,j
t+1 = y

i,j
t +

βx
i,j
t y

i,j
t

a+ x
i,j
t

−
n(yi,jt )2zi,jt

b+ (yi,jt )2
− d1y

i,j
t + α2∇

2y
i,j
t − 1w(i, j)qEu

i,j
1,ty

i,j
t , (5)

z
i,j
t+1 = z

i,j
t +

n1(y
i,j
t )2zi,jt

b+ (yi,jt )2
+

m1(x
i,j
t )2zi,jt

b+ (xi,jt )2
− d2z

i,j
t + α3∇

2z
i,j
t − 1w(i, j)qEu

i,j
2,tz

i,j
t , (6)

with w = [I ′1, I
′
2]× [J ′

1, J
′
2] the space chosen to apply the controls.

We are interested in controlling the predators and super-predators. The challenge is to minimize
the objective functional J(u1, u2, t) specified by

J(u1, u2, t) =

T
∑

t=0

I2
∑

i=I1

J2
∑

j=J1

Ax
i,j
k −By

i,j
k − Cz

i,j
k +

τ1

2
(ui,j1,t)

2 +
τ2

2
(ui,j2,t)

2

subject to system. Here A, B and C are positive constants to keep a balance in the size of xi,j
k

, yi,j
k

and

z
i,j
k respectively. The positive weight parameters linked with the controls in the objective functional

are τ1 and τ2, u
i,j
1,t and u

i,j
2,t.

Our aim is to minimize the predators and super-predators and maximize the prey. In other words,
we are looking for the best possible control. (ui,j1,t)

∗ and (ui,j2,t)
∗ such that

J
(

(ui,j1,t)
∗; (ui,j2,t)

∗
)

= min
{

J(ui,j1,t;u
i,j
2,t)|(u

i,j
1,t;u

i,j
2,t) ∈ U

}

.

where U denotes the set of allowable controls defined by U =
{

(u1, u2) = ((ui,j1,t)
∗, (ui,j2,t)

∗)|0 6 umin
1 6

u1 6 umax
1 6 1, 0 6 umin

2 6 u2 6 umax
2 6 1; t ∈ {0, . . . , T−1}, i ∈ {0, . . . , I−1} and j ∈ {0, . . . , J−1}

}

.
The following theorem proves that the presence of an optimal control for the issue is a necessary

condition.

Theorem 1. For the state equations linked with the optimal control issue in the system, there exists

a controls ((ui,j1,t)
∗; (ui,j2,t)

∗) ∈ U such that

J
(

(ui,j1,t)
∗; (ui,j2,t)

∗
)

= min
{

J(ui,j1,t;u
i,j
2,t)|(u

i,j
1,t;u

i,j
2,t) ∈ U

}

.

Proof. There are just a specific number of time steps, x
i,j
t = (x0,0t , x

1,1
t , . . . , x

I,J
t ), y

i,j
t =

(y0,0t , y
1,1
t , . . . , y

I,J
t ) and z

i,j
t = (z0,0t , z

1,1
t , . . . , z

I,J
t ) are all evenly bounded (u1, u2) ∈ U . Thus

J(u1, u2) is uniformly bounded for all (u1, u2) in the control set U . Since J(u1, u2) is bounded,
inf

(u1,u2)∈U
J(u1, u2) is finite, and there exists a sequence (u1,t, u2,t) in the set of control such that

lim
t→∞

J(u1,t, u2,t) = inf
(u1,u2)∈U

J(u1, u2) and corresponding sequences of states (xi,jt , y
i,j
t , z

i,j
t ). Since

there is a finite number of uniformly bounded sequences, there exist ((ui,j1,t)
∗; (ui,j2,t)

∗) ∈ U and

x
i,j
t , y

i,j
t , z

i,j
t ∈ R

T+1 such that on a subsequence, u1,t → (ui,j1,t)
∗, u2,t → (ui,j2,t)

∗, x
i,j
t → (xi,jt )∗,
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y
i,j
t → (yi,jt )∗ and z

i,j
t → (zi,jt )∗. Finally, because of the finite dimension structure of the system

with the control and the objective function J(u1, u2), ((ui,j1,t)
∗; (ui,j2,t)

∗) is an optimal corresponding

states (xi,jt )∗, (yi,jt )∗, (zi,jt )∗. Therefore in inf
(u1,u2)∈U

J(u1, u2) is achieved. �

We develop required criteria for our optimal control using Pontryagin’s Maximum Principle [8]. To
this end, the Hamiltonian is defined as:

H =

T
∑

t=0

I2
∑

i=I1

J2
∑

j=J1

Hi,j
t

=

T
∑

t=0

I2
∑

i=I1

J2
∑

j=J1

(

Ax
i,j
t −By

i,j
t − Cz

i,j
t +

τ1

2
(ui,j1,t)

2 +
τ2

2
(ui,j2,t)

2

+ λ
i,j
1,t+1(x

i,j
t + rx

i,j
t

(

1−
x
i,j
t

k

)

−
αx

i,j
t y

i,j
t

a+ x
i,j
t

−
m(xi,jt )2zi,jt

b+ (xi,jt )2
+ α1∇

2x
i,j
t )

+ λ
i,j
2,t+1

(

y
i,j
t +

βx
i,j
t y

i,j
t

a+ x
i,j
t

−
n(yi,jt )2zi,jt

b+ (yi,jt )2
− d1y

i,j
t + α2∇

2y
i,j
t − 1w(i, j)qEu

i,j
1,ty

i,j
t

)

+ λ
i,j
3,t+1

(

z
i,j
t +

n1(y
i,j
t )2zi,jt

b+ (yi,jt )2
+

m1(x
i,j
t )2zi,jt

b+ (xi,jt )2
− d2z

i,j
t + α3∇

2z
i,j
t − 1w(i, j)qEu

i,j
2,tz

i,j
t

))

.

Theorem 2 (Necessary Conditions). Given an optimal controls
(

(ui,j1,t)
∗, (ui,j2,t)

∗
)

and solutions

(xi,jt )∗, (yi,jt )∗ and (zi,jt )∗, there exists (ζk)
i,j
t+1, k = 1, 2, 3 the adjoint variables meets this requirements

(ζ1)
i,j
t+1 = −A− λ

i,j
1,t+1

((

1−
x
i,j
t

k

)

+ r
2xi,jt
k

+
α(yi,jt b1 − (xi,jt )2yi,jt )

(b1 + (xi,jt )2)2

)

− λ
i,j
2,t+1

βy
i,j
t (b1 + (xi,jt )− 2β(xi,jt )2yi,jt

(

b1 + (xi,jt )2
)2 − λ

i,j
3,t+1

2m1x
i,j
t z

i,j
t (b+ (xi,jt )2)− 2m1(x

i,j
t )3zi,jt

(

b+ (xi,jt )2
)2

− α1

(

λ
i−1,j
1,t+1 + λ

i+1,j
1,t+1 + λ

i−1,j
1,t+1 + λ

i+1,j
1,t+1 − 4λi,j

1,t+1

)

,

(ζ2)
i,j
t+1 = B + λ

i,j
1,t+1

αx
i,j
t

(b1 + (xi,jt )2)
− λ

i,j
2,t+1

(

1 +
βx

i,j
t

a+ (xi,jt )
− d−

2nb1y
i,j
t z

i,j
t

(

b1 + (yi,jt )2
)2

)

− λ
i,j
3,t+1

2n1by
i,j
t z

i,j
t

(

b+ (yi,jt )2
)2

− α2

(

λ
i−1,j
2,t+1 + λ

i+1,j
2,t+1 + λ

i−1,j
2,t+1 + λ

i+1,j
2,t+1 − 4λi,j

2,t+1

)

+ λ
i,j
2,t+11w(i, j)qEu

i,j
1,ty

i,j
t

(ζ3)
i,j
t+1 = C + λ

i,j
2,t+1

n(yi,jt )2zi,jt

b1 + (yi,jt )2
− λ

i,j
3,t+1

(

1 +
n1(y

i,j
t )2

(b+ (yi,jt )2
+

m1(x
i,j
t )2zi,jt

(b+ (xi,jt )2
− d2

)

− α3

(

λ
i−1,j
3,t+1 + λ

i+1,j
3,t+1 + λ

i−1,j
3,t+1 + λ

i+1,j
3,t+1 − 4λi,j

3,t+1

)

+ λ
i,j
3,t+11w(i, j)qEu

i,j
2,tz

i,j
t .

With transversality conditions (ζ1)
i,j
t+1 = A, (ζ2)

i,j
t+1 = −B and (ζ3)

i,j
t+1 = −C.

Furthermore, the optimal control
(

(ui,j1,t)
∗, (ui,j2,t)

∗
)

is given for (i, j) ∈ w = [I ′1, I
′
2] × [J ′

1, J
′
2] and

t = 1, . . . , T by

(ui,j1,t)
∗ = min

{

max

(

umin
1 ,−

2qEy
i,j
t

τ1

)

, umax
1

}

and (ui,j2,t)
∗ = min

{

max

(

umin
2 ,−

2qEz
i,j
t

τ2

)

, umax
2

}

,

and u
i,j
1,t = u

i,j
1,t = 0, if (i, j) ∈ ω.

Proof. Using the Maximum Principle of Pontryagin [8], and setting (xi,jt )∗, (yi,jt )∗, (zi,jt )∗ and u1 =
(ui,j1,t)

∗, u2 = (ui,j2,t)
∗ we acquire the following adjoint equations

∆(ζ1)
i,j
t+1 = −

∂H

∂x
i,j
t

= −

[

∂Hi,j
t

∂x
i,j
t

+
∂Hi+1,j

t

∂x
i,j
t

+
∂Hi−1,j

t

∂x
i,j
t

+
∂Hi,j+1

t

∂x
i,j
t

+
∂Hi,j−1

t

∂x
i,j
t

]
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= −

(

A+ λ
i,j
1,t+1

((

1−
x
i,j
t

k

)

− r
x
i,j
t

k
−

αy
i,j
t (b1 + (xi,jt )− 2(xi,jt )2αyi,jt

(b1 + (xi,jt )2)2

))

+ λ
i,j
2,t+1

βy
i,j
t (b1 + (xi,jt )− 2β(xi,jt )2yi,jt

(b1 + (xi,jt )2)2
+ λ

i,j
3,t+1

2m1x
i,j
t z

i,j
t (b+ (xi,jt )2)− 2m1(x

i,j
t )3zi,jt

(b+ (xi,jt )2)2

+ α1

(

λ
i−1,j
1,t+1 + λ

i+1,j
1,t+1 + λ

i−1,j
1,t+1 + λ

i+1,j
1,t+1 − 4λi,j

1,t+1

)

)

∆(ζ2)
i,j
t+1 = −

∂H

∂y
i,j
t

= −

[

∂Hi,j
t

∂y
i,j
t

+
∂Hi+1,j

t

∂y
i,j
t

+
∂Hi−1,j

t

∂y
i,j
t

+
∂Hi,j+1

t

∂y
i,j
t

+
∂Hi,j−1

t

∂y
i,j
t

]

= −

(

−B − λ
i,j
1,t+1

αx
i,j
t

(b1 + (xi,jt )2)
+ λ

i,j
2,t+1

(

1 +
βx

i,j
t

(a+ (xi,jt )
− d

−
2nyi,jt z

i,j
t (b1 + (yi,jt )2)2)− 2n(yi,jt )2)2zi,jt

(b1 + (yi,jt )2)2

)

+ λ
i,j
3,t+1

2n1y
i,j
t z

i,j
t (b+ (yi,jt )2)2)− 2n1(y
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with (i, j) ∈ w = [I ′1, I
′
2]× [J ′

1, J
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2] and t = 1, . . . , T .

Then

∆(ζ1)
i,j
t+1 = −A− λ

i,j
1,t+1

((

1−
x
i,j
t

k

)

+ r
2xi,jt
k

+
α
(

y
i,j
t b1 − (xi,jt )2yi,jt

)

(

b1 + (xi,jt )2
)2

)

− λ
i,j
2,t+1

βy
i,j
t (b1 + (xi,jt )− 2β(xi,jt )2yi,jt

(

b1 + (xi,jt )2
)2 − λ

i,j
3,t+1

2m1x
i,j
t z

i,j
t (b+ (xi,jt )2)− 2m1(x

i,j
t )3zi,jt

(

b+ (xi,jt )2
)2

− α1

(

λ
i−1,j
1,t+1 + λ

i+1,j
1,t+1 + λ

i−1,j
1,t+1 + λ

i+1,j
1,t+1 − 4λi,j

1,t+1

)

,

∆(ζ2)
i,j
t+1 = B + λ

i,j
1,t+1

αx
i,j
t

(b1 + (xi,jt )2)
− λ

i,j
2,t+1

(

1 +
βx

i,j
t

a+ (xi,jt )
− d−

2nb1y
i,j
t z

i,j
t

(

b1 + (yi,jt )2
)2

)

− λ
i,j
3,t+1

2n1by
i,j
t z

i,j
t

(b+ (yi,jt )2)2
− α2

(

λ
i−1,j
2,t+1 + λ

i+1,j
2,t+1 + λ

i−1,j
2,t+1 + λ

i+1,j
2,t+1 − 4λi,j

2,t+1

)

+ λ
i,j
2,t+11w(i, j)qEu

i,j
1,ty

i,j
t ,

∆(ζ3)
i,j
t+1 = C + λ

i,j
2,t+1

n(yi,jt )2zi,jt

b1 + (yi,jt )2
− λ

i,j
3,t+1

(

1 +
n1(y

i,j
t )2

b+ (yi,jt )2
+

m1(x
i,j
t )2zi,jt

b+ (xi,jt )2
− d2

)

− α3

(

λ
i−1,j
3,t+1 + λ

i+1,j
3,t+1 + λ

i−1,j
3,t+1 + λ

i+1,j
3,t+1 − 4λi,j

3,t+1

)

+ λ
i,j
3,t+11w(i, j)qEu

i,j
2,tz

i,j
t .

With (i, j) ∈ w = [I ′1, I
′
2]× [J ′

1, J
′
2], t = 1, . . . , T and with transversality conditions:

(ζ1)
i,j
t+1 = A, (ζ2)

i,j
t+1 = −B, (ζ3)

i,j
t+1 = −C.

To acquire the ideal conditions, we consider the variation in relation to control ui,j1,t, u
i,j
2,t and set it

equal to zero, we get
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∂H
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= u
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Thereby, for (i, j) ∈ w = [I ′1, I
′
2]× [J ′

1, J
′
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Then we obtain the optimal controls:

u
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1,t =

λ
i,j
2,t+1qEy

i,j
t

τ1
and u

i,j
2,t =

λ
i,j
3,t+1qEz

i,j
t

τ2
,

with (i, j) ∈ w = [I ′1, I
′
2]× [J ′

1, J
′
2].

It is simple to obtain by the boundaries in U of the control, (ui,j1,t)
∗, (ui,j2,t)

∗ for (i, j) ∈ w =
[I ′1, I

′
2]× [J ′

1, J
′
2] in the following form
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{
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λ
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3,t+1qEz
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t
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)

, umax
2

}

.

�

4. Numerical simulation

We present in this part a set of numerical simulations to explain the theoretical findings of our work.
The numerical scheme used in our simulation is based on the forward backward sweep method [19].
Utilizing a cyclic approach, we resolve the optimality. First, because of the transversality conditions,

the case system using preliminary estimation is solved forward in time, and the adjoint system is
resolved backward in time. Following that, we used the estimations of the state and variable costs
acquired in the preceding steps to update the optimal control values. Finally, we run the algorithm
until we reach a tolerance criterion, and we use the following parameters [9]: x

i,j
1 = 160, yi,j1 = 90,

z
i,j
1 = 70, with different density in i ∈ {0, 1, . . . , I} and j ∈ {0, 1, . . . , J} with I = 10 km and J = 10 km,
r = 0.058, k = 280, a = 102, β = 0.02, α = 0.022, m = 0.005, m1 = 0.005, n = 0.005, n1 = 0.005,
b = 61, b1 = 0.616, b2 = 0.13, d1 = 0.0002, d2 = 0.0001, α1 = 0.01, α2 = 0.05, α3 = 0.09, q = 0.162,
E = 0.211.

PREY, PREDATOR AND SUPER-PREDATOR

WITHOUT CONTROL

100

150

200

100

150

200

250

100

150

200

250

Fig. 1. Evolution of prey, predators and super-predator
before applying the controls.

In our discussion of both systems without
controls and with controls. Over the course of
a year for the variation of prey, predator and
super-predator.

The experience focused on a space chose al-
ready ω, the Figure 1 shows that in the day 1
we had the prey all over the space, the predator
start with 90 and the super-predator with 70 in
the space chosen for the experiences. After the
first day, the change began to be noticeable and
below is a detailed explanation of the change
that occurred over time.

The number of predator about 90 in the first
day, after one year the predator increase fast to 380. The same for the super-predator.

4.1. The coexistence of fish without any interference from humans

In the region chosen, Figure 1 shows that the prey number is 160 at t = 0, the number of the prey
decreases to be 70 after one year but we can very clearly see every four months the prey is decreases
because Consumed by predators and super-predators.
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Not the same thing for the predator it is because we have 90 at t = 0, the number of the predator
increasing to be 375 after one year and the number of the super-predator start with 70 at t = 0, the
number of the super-predator increasing to 140 after one year.

We can see in Figure 1 after 360 days in the absence of control, i.e. in the normal condition. The
decline in prey numbers is due to consumption by predators and super-predators, so the predator
spreads rapidly throughout space as a force of the super-predator.

4.2. Strategy 1: predatory fishing i.e. the first control application u1

PREY, PREDATOR AND SUPER-PREDATOR

WITH CONTROL u1

100
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150

200

250

100

150

200

250

50

Fig. 2. The evolution of the prey, predator and super-predator
with the control u1.

After we applied the cell control (2, 2)
and (4, 4), in the first stage, we focused
on applying the control on the predator,
and the result is clear, for the prey, we
started with 160, it increases to 270 but
after a while, we notice a decrease in the
prey to reach to 125, for the predator we
mentioned as 90 at t = 0 and after one
year we can see the predator drop be-
low then 5, and for the super-predator
we have no control over for that super-
predator it slowly increases from 70 and
after one year to 120.

4.3. Strategy 2: super-predatory fishing i.e. the second control application u2

PREY, PREDATOR AND SUPER-PREDATOR

WITH CONTROL u2
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Fig. 3. The evolution of the prey, predator and
super-predator with the control u2.

We apply the control in cell (2, 2) and (4, 4), in the
second stage, this time we focused on applying the
control to the super-predator, the result was as fol-
lows, for the prey we started with 160 at t = 0, and
after one month later, we notice a slow increase to
220 and after that the prey go back to decrease to
be 110, for the predator we started with 90, and af-
ter one year we can see the predator rising to 600
because we don’t have any controls applied to the
predator, and for the super-predator we have apply
the controls, so for this super-predator, the rest is
pretty stable: we start at 70 and a year later we are
at 60.

4.4. Strategy 3: predatory and super-predatory fishing i.e. controls application u1 and u2

PREY, PREDATOR AND SUPER-PREDATOR

WITH CONTROL ANDu u1

100
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200
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100

150
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250

2

Fig. 4. The evolution of the prey, predator and super-
predator with the controls u1 and u2.

In the same cell we apply controls over the
predator and the super-predator, and this is
reflected in the whole system. We start with
the prey, as noted in the document, we started
with 160 and after a one month it goes to
230 and after another ten months the prey in-
crease to 110, for the predator and the super-
predator we started with 90 and 70 respec-
tively, and after a year we notice that two
compartments go back to 12 and 40 respec-
tively. These were the goals to be reached to
return to the virgo nature.
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Fig. 5. The evolution of the prey without controls.
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Fig. 6. The evolution of the predator without controls.
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Fig. 7. The evolution of the predator without controls.
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The last figure brief everything we discussed in four scenarios and from it we conclude that the
control u1 and u2 has been applied and gives all the required results in that, after we controlled the
predator and super-predator. The second and third scenarios do not give satisfactory results because
we get a disruption in the food chain.
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Fig. 8. The evolution of the super-predator without controls.

5. Conclusion

In the sea, as nature, we have prey and predators, but the changes caused by humans put the sea food
chain in a state of great turmoil, so we propose this work to return the sea food chain to its natural
state. On the other hand, we discuss our model in three scenarios: we controlled the predator, the
super-predator, and we controlled both at once. The system we developed has produced important
results. After seeing the effect of the applied controls, we obtained the expected results. The increase
and decrease of predators and prey occurs periodically after a while it becomes normal, meaning we
will be sure the marine food chain returns to normal. This effort is of particular importance in the
marine environment, as human management of marine resources in an irrational manner may lead to
the extinction of some species, which is an assault on the environment and its stability, as well as harm
to the entire regional economy and a fault in nature.
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Проблема оптимального керування дискретною
просторово-часовою моделлю рибальства

“жертва–хижак” трьох видiв

Саккум А., Туфга Х., Хiзазi Х., Лхаус М., Магрi Е. М.

Лабораторiя фундаментальної та прикладної математики,

Факультет наук Айн Чок, Унiверситет Хасана II Касабланки,

8 км Дороги Ель-Джадiда, п.с. 5366 Маарiф, 20100

У цiй статтi обговорюємо просторово-часову дискретну модель “хижака–жертва”. Во-
на складається з трьох складових: здобич, хижак i суперхижак. Запропонована мо-
дель описує взаємодiю мiж жертвою, хижаком i суперхижаком в областi з дискретним
перемiщенням. Також проводиться дослiдження вiдповiдних регiональних стратегiй
керування. Елементи керування застосовуються вiдповiдно до хижака та суперхижа-
ка; вони представляють вилов їх у вимiряних кiлькостях у вибраному просторi та
часi. Мета — збiльшити кiлькiсть здобичi та зменшити чисельнiсть хижакiв, вiдно-
вити систему харчового ланцюга та забезпечити її стiйкiсть. Накiнець, подано гра-
фiчну вiзуалiзацiю та чисельне моделювання для пiдтвердження наших аналiтичних
висновкiв.

Ключовi слова: здобич–хижак; просторово-часова дискретна модель; оптимальне

керування, принцип максимуму Понтрягiна.
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