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1. Introduction

In the early literature, various numerical methods were introduced to tackle the numerical analysis
and simulation of periodic equations. Among these methods, the collocation method stands out as
a powerful technique for finding periodic solutions. This method, extensively discussed in [1, 2]. In
addition to the collocation method, other numerical techniques have also been proposed for solving
periodic equations. For example, [3] has introduced a quasi-linear numerical method, which offers an
alternative approach for calculating periodic solutions. Furthermore, the authors in [4] have developed
the Lattice Boltzmann method, which provides a unique perspective on simulating periodic systems.

In the meantime, nowadays, numerical methods have become an indispensable tool in a wide range
of scientific, technological and industrial fields, playing a crucial role in simplifying the study of complex
differential and partial differential equations. Researchers are constantly striving to develop innovative
methods and tools to tackle these equations, with the aim of simulating real-life phenomena with
greater accuracy and efficiency. Among these digital methods, deep learning and machine learning
techniques have made revolutionary advances. Machine learning is now ubiquitous in fields such as
image recognition and finance. Neural networks, which are designed to mimic the functionality of the
human brain, have become a popular class of machine learning models.

Neural network architectures like Convolutional Neural Networks (CNNs) [5], Recurrent Neural
Networks (RNNs) [6], and Autoencoders [7] have seen significant advancements in the last 60 years.
These architectures are inspired by the structure and function of the human brain.

In recent years, deep learning methods based on deep neural networks have made significant ad-
vances in a wide range of fields, including image classification [8], natural language processing [9]
and error detection [10]. These advances have been driven by the success of deep neural networks
in mimicking the intricate functions of the human brain, enabling them to tackle complex problems
with remarkable accuracy and efficiency. Deep neural networks have shown tremendous performance
in tasks such as computer vision, speech recognition and language translation. This is due to their
ability to learn and extract patterns from large datasets.

The Universal Approximation Theorem states that a feed-forward neural network with a single
hidden layer and a finite number of neurons, has the ability to approximate continuous functions
on compact subsets of Rn under mild assumptions [8, 11]. This fundamental theorem highlights the
power of neural networks to approximate complex functions, making them versatile tools for a wide
range of applications. Indeed, neural networks offer significant advantages in terms of functional
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customization. Their ability to adapt, learn from data and process information efficiently makes them
indispensable in a wide range of applications, transforming various fields and enabling new possibilities
in computational science and engineering. These advantages are particularly evident in tasks such as:
image classification, neural language processing, speech recognition and error detection.

Neural network-based methods are becoming increasingly important in the study of ordinary dif-
ferential systems, exploiting the power of neural networks to efficiently solve systems of ordinary differ-
ential equations (ODEs). Scientists have developed innovative techniques to deal with the complexity
of ODEs and improve numerical solutions by reformulating the problem using neural networks. These
methods have shown promise in various applications, including: modeling and simulation, parameter
identification, Data-driven Solutions.

Neural network techniques offer a promising approach to solving mathematical problems such as
differential equations, showing their versatility and potential to improve computational methods for
solving ODEs [12–14].

A number of studies have been carried out, including [15, 16]. The physical information neural
network proposed by [15,16], demonstrates a novel approach to solving forward and inverse problems
related to nonlinear partial differential equations. This innovative approach combines deep learning
techniques with the principles of physics to address complex problems involving nonlinear PDEs. The
authors in [15] aimed to provide efficient and accurate solutions by training neural networks to respect
physical laws while solving supervised tasks. By integrating physics into the neural network training
process, the framework offered a promising way to tackle challenging problems in various fields involving
nonlinear partial differential equations. Reference [16] focused specifically on computing data-driven
solutions to partial differential equations, highlighting the ability of physics-informed neural networks
to infer solutions and generate physics-informed surrogate models that are fully differentiable with
respect to all input coordinates and free parameters.

In [17–19], adaptive activation functions were introduced into physically informative deep neural
networks (PINNs) to better approximate solutions of complex functions and partial differential equa-
tions. Based on previous research on PINNs, this study optimizes the method and constructs a physi-
cally informative neural network for the wave equation, the KdV-Burgers equation, the KdV equation,
the rigid Brusselator raction-diffusion equation, and the generalized Burgers–Huxley equations.

In this study, we focus on the type of problem (1) that has arisen in the modeling of various models
relevant not only in electro-rheology, thermorheology, but also in robotics, fluid dynamics and image
processing [20]. Section 2 is devoted to the mathematical preliminaries, where we give the definition of
the notion of weak periodic solution as well as the appropriate mathematical framework. Section 3 is
devoted to the presentation of the DeepXDE library [21], which is dedicated to deep learning numerical
simulation of ordinary differential equations and partial differential equations. In section 4, a numerical
analysis is carried out to simulate these periodic solutions using deep learning.

The numerical simulations prove that the method based on deep learning is a promising approach
to solve this type of highly nonlinear periodic problem, knowing that classical simulation methods are
not efficient. Our numerical experiences show that this requires good knowledge for the correct choice
of hyper-parameters and network architecture.

2. Preliminaries and problem position

Our focus in this paper is to provide a theoretical and numerical solution to a to a nonlinear periodic
parabolic equation with p(x)-growth modeled as















∂u

∂t
− div

(

|∇u|p(x)−2∇u
)

= f(t, x) in QT :=]0, T [×Ω,

u(0, ·) = u(T, ·) in Ω,
u(t, x) = 0 on ΣT :=]0, T [×∂Ω.

(1)

Let Ω be a bounded open subset of RN with smooth boundary ∂Ω, T > 0 is the period, f designates
a measurable T-periodic function with period T , belonging to a suitable Banach space. We define the

Mathematical Modeling and Computing, Vol. 11, No. 2, pp. 571–582 (2024)



Numerical simulation by Deep Learning of a time periodic p(x)-Laplace equation 573

p(x)-Laplacian operator as ∆p(x)u = div
(

|∇u|p(x)−2∇u
)

, where the exponent p(·) is assumed to be
either a continuous function: p : Ω̄ →]1,+∞[.

We begin by giving the appropriate mathematical framework for analyzing this type of equation
and then define the notion of periodic solution.

2.1. A quick reminder about variable exponent spaces

Here we review some definitions and properties of variable exponent Lebesgue and Sobolev spaces. Let
p : Ω →]1,+∞[ be a continuous function satisfying

1 < p− 6 p(x) 6 p+ < ∞, (2)

where

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

The variable exponent Lebesgue space Lp(x)(Ω) is defined as follows

Lp(x)(Ω) =
{

u : Ω → R measurable such that ρp(x)(u) < ∞
}

,

where ρp(·) is the following convex modular

ρp(x)(u) =

∫

Ω
|u(x)|p(x)dx.

The space Lp(x)(Ω) is equipped by the Luxembourg norm

‖u‖Lp(x)(Ω) = inf

{

α > 0, ρp(x)

(

u

α

)

6 1

}

.

The space
(

Lp(x)(Ω), ‖ · ‖p(x)
)

is a separable and reflexive Banach space. Its dual space is defined by

Lp′(x)(Ω), where p′(x) = p(x)
p(x)−1 . Furthermore, for any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), one can prove

the following p(x)-Hölder inequality
∫

Ω
|uv| dx 6

(

1

p−
+

1

p′−

)

‖u‖p(x)‖v‖p′(x) 6 2‖u‖p(x)‖v‖p′(x).

An interesting property for Lebesgue spaces with variable exponents is given by

min
{

‖u‖p
−

p(x), ‖u‖
p+

p(x)

}

6 ρp(x)(u) 6 max
{

‖u‖p
−

p(x), ‖u‖
p+

p(x)

}

,

min

{

ρ
1

p−

p(x)(u), ρ
1

p+

p(x)(u)

}

6 ‖u‖p(x) 6 max

{

ρ
1

p−

p(x)(u), ρ
1

p+

p(x)(u)

}

.

Here we define the variable exponent Lebesgue space Lp(x)(QT ) by the following sense

Lp(x)(QT ) =

{

u : QT → R measurable with

∫

QT

|u(t, x)|p(x)dx dt < ∞

}

.

It is equipped with the following norm

‖u‖p(x) = inf

{

α > 0,

∫

QT

∣

∣

∣

∣

u(t, x)

α

∣

∣

∣

∣

p(x)

dx dt 6 1

}

,

the space
(

Lp(x)(QT ), ‖ · ‖p(x)
)

is a separable, reflexive Banach.
The Sobolev space with variable exponent is defined as

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω), |∇u| ∈
(

Lp(x)(Ω)
)N

}

.

Its associated standard norm is given by

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x).

A popular equivalent norm is defined as

‖u‖1,p(x) = inf

{

α > 0,

∫

Ω

(
∣

∣

∣

∣

∇u(x)

α

∣

∣

∣

∣

p(x)

+

∣

∣

∣

∣

u(x)

α

∣

∣

∣

∣

p(x))

dx 6 1

}

.
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Thereafter, if there exists a constant C, such that p(x) satisfies the log-Hölder continuity condition:

|p(x1)− p(x2)| 6
C

− log |x1 − x2|
, ∀x1, x2 ∈ Ω, with |x1 − x2| <

1

2
,

then C∞
c (Ω) is dense in W 1,p(x)(Ω).

Now, one can define W
1,p(x)
0 (Ω) := C∞

c (Ω)
W 1,p(x)(Ω)

and denote
(

W
1,p(x)
0 (Ω)

)∗
its dual space. The

spaces W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Banach’s. For any u ∈ W

1,p(x)
0 (Ω), the

following p(x)-Poincaré inequality holds

‖u‖p(x) 6 C‖∇u‖p(x),

where C is a constant depending only on p(x) and Ω. After this, the following norm is a validated one

on W
1,p(x)
0 (Ω)

‖u‖
W

1,p(x)
0 (Ω)

= ‖∇u‖p(x).

For a comprehensive reference on these spaces, readers are referred to Radulescu’s work in [20].

2.2. Problem position

We introduce the appropriate functional framework for our problem (1). For 0 < T < +∞, consider
the space

Lp−
(

0, T ;W
1,p(x)
0 (Ω)

)

=

{

u ∈ Lp(x)(QT ) :

∫ T

0
‖∇u‖p

−

p(x)dt < ∞

}

.

Let Lp−
(

0, T ;W
1,p(x)
0 (Ω)

)

have the following norm

‖u‖
Lp−

(

0,T ;W
1,p(x)
0 (Ω)

) =

(
∫ T

0
‖∇u‖p

−

p(x)
dt

)

1
p−

.

We also introduce the space V frequently used in this type of non-linear parabolic problem with growth
p(x). We set

V =
{

u ∈ Lp−
(

0, T ;W
1,p(x)
0 (Ω)

)

: |∇u| ∈
(

Lp(x)(QT )
)N

}

with the following norm ‖u‖V = ‖∇u‖Lp(x)(QT ).
It is easy to show that the ‖ · ‖V norm is equivalent to the following usual norm

‖u‖V = ‖u‖
Lp−

(

0,T ;W
1,p(x)
0 (Ω)

) + ‖∇u‖p(x).

The space (V, ‖ · ‖V) is a separable and reflexive Banach space. Let V∗ be the dual space of V. In the
following result, we summarize some properties of the space V.

Lemma 1 (Ref. [22]). Let V denotes the space defined as above. Then,
i)

Lp+
(

0, T ;W
1,p(x)
0 (Ω)

)

→֒ V →֒ Lp−
(

0, T ;W
1,p(x)
0 (Ω)

)

,

C∞
c (QT ) is dense in Lp+

(

0, T ;W
1,p(x)
0 (Ω)

)

, and in V.
For the corresponding dual spaces we have

L(p−)′
(

0, T ; (W
1,p(x)
0 (Ω))∗

)

→֒ V∗ →֒ L(p+)′
(

0, T ; (W
1,p(x)
0 (Ω))∗

)

.

ii) Moreover, the elements of V∗ can be represented as follow: for all ζ ∈ V∗, there exists

ξ = (ξ1, . . . , ξN ) ∈
(

Lp′(x)(QT )
)N

such that: ζ = div(ξ) and

〈ζ, ϕ〉V∗,V =

∫

QT

ξ∇ϕdx dt

for any ϕ ∈ V. Then,

‖ζ‖V∗ = max
{

‖ξi‖Lp(x)(QT ), i = 1, . . . , N
}

.

iii) For any u ∈ V the following equation is true

min
{

‖u‖p
−

V , ‖u‖p
+

V

}

6

∫

QT

|∇u|p(x) dx dt 6 max
{

‖u‖p
−

V , ‖u‖p
+

V

}

(3)
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To conclude this paragraph, we recall the following result.

Theorem 1 (Ref. [23]). If X is a reflexive Banach space, L : D(L) ⊆ X → X ∗ is a linear max-
imal monotone operator and A : X → X ∗ is a bounded, pseudo-monotone, coercive operator (i.e.
〈A(u),u〉

X∗,X

‖u‖X
→ +∞ as ‖u‖X → ∞) then L+A is surjective.

2.3. Existence and uniqueness result

In this section, we give an existence and uniqueness result for 1. We begin with the notion of a weak
periodic solution.

Definition 1. A measurable function u : QT → R is a weak T-periodic solution to (1) if the following
conditions are satisfied

u ∈ V,
∂u

∂t
∈ V∗, u(0, x) = u(T, x),

∫ T

0

〈

∂u

∂t
, ϕ

〉

dt+

∫

QT

|∇u|p(x)−2∇u∇ϕdx dt =

∫ T

0
〈f, ϕ〉 dt

for all test function ϕ ∈ V.

We can now state the main result of this section.

Theorem 2. Let p ∈ C(Ω) satisfy (2) and f ∈ L2
(

0, T ;
(

W
1,p(x)
0 (Ω)

)∗)
, T-periodic. Then, prob-

lem (1) has a unique weak T-periodic solution.

Proof. To show the existence of a periodic weak solution. We use the result of Theorem 1.
We start by setting

D(L) :=

{

u ∈ V,
∂u

∂t
∈ V∗ and u(0) = u(T )

}

.

Based on the density property of C∞
c (QT ) in V and by employing the fact that C∞

c (QT ) ⊂ D(L),
we conclude that D(L) is dense in V.

We introduce the operator L : D(L) −→ V∗ such that

〈Lu, ϕ〉 :=

∫ T

0

〈

∂u

∂t
, ϕ

〉

dt, for all ϕ ∈ V.

According to the result of [23, Lemma1.1, p. 313], we have L is a maximal closed, asymmetric and
monotone operator. Consider the operator A : V −→ V∗ such that

〈Au, ϕ〉 :=

∫

QT

|∇u|p(x)−2∇u∇ϕdx dt, for all ϕ ∈ V.

We can verify that the existence of a weak periodic solution to (1) is equivalent to the existence of
a solution to the following abstract equation

Lu+Au = F , (4)

where F is an element of V∗ defined as

〈F , ϕ〉 :=

∫ T

0
〈f, ϕ〉 dt, for all ϕ ∈ V.

Let us start by showing that the operator A is bounded.
Let u, v ∈ V, by the help of p(x)-Höder’s inequality, one gets

|〈Au, v〉| 6

∫

QT

|∇u|p(x)−1|∇v| dx dt 6 2
∥

∥|∇u|p(x)−1
∥

∥

p′(x)
‖∇v‖p(x). (5)

On the other hand, the min-max properties of Lp(x) spaces (see (1)) ensure that

∥

∥|∇u|p(x)−1
∥

∥

p′(x)
6 max

{

(
∫

QT

|∇u|p(x)dx dt

)
1

(p′)−

,

(
∫

QT

|∇u|p(x)dx dt

)
1

(p′)+

}
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6 max

{

‖∇u‖
p+

(p′)

p(x), ‖∇u‖
p+

(p′)+

p(x)

}

6 max

{

‖u‖
p+

(p′)−

V , ‖u‖
p+

(p′)+

V

}

.

Using the last estimate in (5), we obtain

‖Au‖V∗ 6 Cmax

{

‖u‖
p+

(p′)−

V , ‖u‖
p+

(p′)+

V

}

.

This means that A is a bounded operator.
Let us prove that the operator A is coercive. Thanks to inequality (3),

〈Au, u〉 :=

∫

QT

|∇u|p(x)dx dt > min
{

‖u‖2V , ‖u‖
p+

V

}

.

Thus

lim
‖u‖V→∞

〈Au, u〉

‖u‖V
> lim

‖u‖V→∞
min

{

‖u‖2−1
V , ‖u‖p

+−1
V

}

= ∞.

Hence the result.
Finally, we will prove that the operator A is pseudo-monotone. Consider a sequence (un) in V such

that (un) converges weakly to u in V and that

lim
n→∞

sup 〈Aun, un − u〉 6 0. (6)

Proving that A is a pseudo-monotone operator comes to show that

lim
n→∞

inf 〈Aun, un − v〉 > 〈Au, u− v〉 for all v ∈ V. (7)

First, to deduce that (7) is true, we will prove that the sequence (un) converges strongly to u in V.
Let us then consider

E(n) = 〈Aun −Au, un − u〉 =

∫

QT

(

|∇un|
p(x)−2∇un − |∇u|p(x)−2∇u

)

(∇un −∇u) dx dt.

From the weak convergence of (un) in V and (6), we have

lim
n→∞

E(n) 6 0. (8)

Let us recall the following well-known inequalities, for any η, ξ ∈ R
N ,

(

|η|p(x)−2η − |ξ|p(x)−2ξ
)

· (η − ξ) >







22−p+ |η − ξ|p(x), if p(x) > 2,

(p− − 1)
|η − ξ|2

(|η| + |ξ|)2−p(x)
, if 1 < p(x) < 2.

(9)

Then, we write
∫

QT

|∇un −∇u|p(x)dx dt =

∫ T

0

∫

{x∈Ω;p(x)>2}
|∇un −∇u|p(x)dx dt+

∫

0

∫ T

{x∈Ω;1<p(x)<2}
|∇un −∇u|p(x)dx dt

= In1 + In2 . (10)

Inequality (9) implies that the first integral In1 satisfies

In1 6
1

22−p+

∫ T

0

∫

{x∈Ω;p(x)>2}

(

|∇un|
p(x)−2∇un − |∇u|p(x)−2∇u

)

· (∇un −∇u) dx dt

6 2p
+−2E(n). (11)

As for the second integral, we use p(x)-Hölder’s inequality.

In2 =

∫ T

0

∫

{x∈Ω;1<p(x)<2}

|∇un −∇u|p(x)

(|∇un|+ |∇u|)
p(x)
2

(2−p(x))
(|∇un|+ |∇u|)

p(x)
2

(2−p(x))dx dt
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6 2

∥

∥

∥

∥

∥

|∇un −∇u|p(x)

(|∇un|+ |∇u|)
p(x)
2

(2−p(x))

∥

∥

∥

∥

∥

L
2

p(x) (QT )

∥

∥

∥
(|∇un|+ |∇u|)

p(x)
2

(2−p(x))
∥

∥

∥

L
2

2−p(x) (QT )

6 2max

{

(
∫

QT

|∇un −∇u|2

(|∇un|+ |∇u|)2−p(x)
dx dt

)

p±

2

}

max

{

(
∫

QT

(|∇un|+ |∇u|)p(x)dx dt

)
2−p±

2

}

6 Cmax

{

(

1

p− − 1

)
p±

2

(E(n))
p±

2

}

max

{

(
∫

QT

(

|∇un|
p(x) + |∇u|p(x)

)

dx dt

)
2−p±

2

}

.

From the weak convergence of (un) in V, it comes that (∇un) is bounded in
(

Lp(x)(QT )
)N

. Thus

In2 6 Cmax

{

(

1

p− − 1

)
p±

2

(E(n))
p±

2

}

. (12)

From inequalities (8), (10), (11), and (12), we establish

lim
n→∞

∫

QT

|∇un −∇u|p(x)dx dt = 0.

Thus (un) converges strongly to u in V. Hence, it can be deduced that A is a pseudo-monotone
operator. The existence of u ∈ D(L), a solution of the abstract problem (4), can be deduced from the
result of proposition 1. This implies the existence of a weak periodic solution to (1) which satisfies the
weak formulation.

Finally, it is necessary to prove the uniqueness of the weak periodic solutions. Consider u1 and u2,
two weak periodic solutions of (1), and take the difference between their associated weak formulations.
Then, for all ϕ ∈ V

∫ T

0

〈

∂(u1 − u2)

∂t
, ϕ

〉

dt+

∫

QT

(

|∇u1|
p(x)−2∇u1 − |∇u2|

p(x)−2∇u2

)

∇ϕdx dt = 0.

By choosing ϕ = u1 − u2 as a test function, one gets
∫ T

0

〈

∂(u1 − u2)

∂t
, u1 − u2

〉

dt+

∫

QT

(

|∇u1|
p(x)−2∇u1 − |∇u2|

p(x)−2∇u2

)

(∇u1 −∇u2) dx dt = 0.

Since u1 and u2 are periodic in time, we know that
∫ T

0

〈

∂(u1 − u2)

∂t
, u1 − u2

〉

dt = 0.

Therefore
∫

QT

(

|∇u1|
p(x)−2∇u1 − |∇u2|

p(x)−2∇u2

)

(∇u1 −∇u2) dx dt = 0.

Inequality (9) ensures that ∇u1 = ∇u2 a.e. in QT . On the other hand, Dirichlet boundary condition
implies that u1 = u2 a.e. in QT . �

3. Physics informed neural networks (PINN)

PINNs are based on neural network training, that is achieved through an iterative process in which
the neural network is automatically differentiated across boundaries and domains, minimizing learning
loss and ensuring the network is adapted to the physics imposed by the specific problem.

In PINN, we exploit the density properties of neural networks [24, 25] to approximate the solution
of boundary value problems such as







Bt,x[u] = f(x, t), (x, t) ∈ Ω×]0, T [,
u(x, 0) = h(x), x ∈ Ω
u(x, t) = g(x, t), (x, t) ∈ ∂Ω×]0, T [,
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where Bt,x is a general differential operator, x ∈ Ω and t are the spatial and temporal coordinates,
respectively, Ω and ∂Ω denote the computational domain and the boundary. The function f(x, t)
represents the source term, and u(x, t) designates the solution of the PDE with initial condition h(x)
and boundary condition g(x, t).

The procedure is given as follows:

• Initialize a neural network û(t, x,W, b), where W and b are the weights and biases.
• Specify the training data τi = (xi, ti) such that T = τ1, τ2, . . . , τ|T | of size |T |, which is comprised

of scattered points inside the space-time domain Tf , and on the time and space boundaries Tb as
well as TI .

• Compute Lf the loss between the network and the PDE constraints inside the domain

Lf (θ,Tf ) =
1

|Tf |

∑

x∈Tf

‖Bt,x[û](τi)− f(τi)‖
2
2.

• Compute Lb the boundary condition loss

Lb(θ,Tb) =
1

|Tb|

∑

τi∈Tb

‖û(τi)− g(τi)‖
2
2.

• Compute LI the initial condition loss

LI(θ,TI) =
1

|TI |

∑

τi∈TI

‖û(τi)− h(τi)‖
2
2.

Here, θ = {Wl, bl}16L is the set of all the weight matrices and bias vectors of the û neural network.

Fig. 1. Schematic of a PINN for solving a heat equation based PDE problem [21].

Algorithm 1 PINN solver procedure.

1: Let Ω, ∂Ω, h, g, choose the number of points on domain and boundary, tolerance ε, maximal
number of iterations max

it
.

2: Construct a neural network û(θ) with parameters θ

3: if L > ε or k < max
it

4: Optimize the general loss term L = Lf + Lb + LI w.r.t. W and b

5: Update θ by passing them back to the network (backpropagation)
6: k = k + 1

The final output is an optimized network û⋆ that can be used to predict the solution inside the
domain and on the boundaries such that û⋆(t, x) ≈ u(t, x).
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Here we are concerned with a periodic problem in time, to use a simulation by the Deep Learning
method requires some additional adjustments, in particular:

• Snake’ activation function: as suggested in [26], using the function x2 + sin2(x) (called the snake
activation function) provides the desired periodic inductive bias to learn a periodic function, namely
the solution to the proposed equation.

• ‘Hard constraints’: Transforming the architecture of the NN to fit periodic boundary conditions is
another method of solving periodic problems using PINNs. This method has been demonstrated
in [27,28], where it was shown that it is more optimal to decompose the P-periodic input tj into a

weighted sum of the Fourier basis functions (1, cos
2πtj
P

, sin
2πtj
P

, cos
4πtj
P

, sin
4πtj
P

, . . .) to impose the
periodicity in the tj direction. This is more accurate than loss optimization and saves computation.

4. Results and discussion

In this section we implement the algorithm for solving the following periodic equation














∂u

∂t
− div(|∇u|p(x)−2∇u) = f in Q :=]0, 1[×Ω,

u(0, ·) = u(1, ·) in Ω,

u = 0 on Σ :=]0, 1[×∂Ω,

(13)

where

p(x, y) = 2 +
1

1 + x2 + y2
, f(t, x, y) = 1 + sin(2πt) + x2 + y2,

and Ω =]0, 1×]0, 1[ is a unit square of R2.
Simulation by Deep Learning. We use the DeepXDE framework [21] due to its status as

the most advanced Physically Informed Neural Network (PINN) framework [29]. Using DeepXDE
guarantees access to the most advanced tools and a dynamic support network that improves the
efficiency and reliability of our computational research.

The training is conducted in two phases: first through different iterations Nrp of the ‘rmsprop’
optimizer [30], which is a stochastic gradient descent method, followed by the iterative optimizer ‘L-
BFGS-B’ [31, 32], which is a quasi-Newton method.

The parameters and model structure have a significant impact on the result and cannot be chosen
arbitrarily, as the following results show.

After several tests, we varied the size (length × depth) of the hidden layers and the number of
training points in the domain Tf |, and noticed that they have an effect on the result. As long as the
other parameters (activation function, number of iterations, initialization of weights, etc.) have no
significant effect.

It can be concluded that hidden layers of size 40× 6 are sufficient to compute the solution reliably
and consistently over a sufficient number of training points. Smaller sizes regularly risk not converging,
and larger sizes give results that are not sufficient because they require a longer execution time. We
also noticed that L-FGS-B is the most important optimization method, on the other hand RMSprop

is quite slow to converge; this is a consistent observation in most other applications in PINNs.
Our simulations give ‖u(1, x)−u(0, x)‖2

L2(Ω) = 3.9745·10−15 and Figures 2–4 show that the solutions
at times 0 and 1 are identical. This confirms that the solution obtained is periodic.

Finally, as mentioned above, one of the great advantages of using Deep Learning for the numerical
simulation of this type of system is that it allows the solution to be predicted outside the period using
only the model trained over the period [0, 1]. The following Figure 5 shows the solution obtained by
Deep Learning prediction at t = 4.

5. Conclusion

In this paper, we focus on the mathematical and numerical analysis of a parabolic periodic equation
governed by the p(x)-laplacian operator. After showing a result for the existence and iniquity of weak

Mathematical Modeling and Computing, Vol. 11, No. 2, pp. 571–582 (2024)



580 Alaa H., Ait Hsain T., Bentbib A. H., Aqel F., Alaa N. E.

Fig. 2. The predicted solution of the p(x)-Laplacian
equation (13) by Deep Learning for t = 0.

Fig. 3. The predicted solution of the p(x)-Laplacian
equation (13) by Deep Learning for t = 0.5.

Fig. 4. The predicted solution of the p(x)-Laplacian
equation (13) by Deep Learning for t = 1.

Fig. 5. Solution of problem (13) by Deep Learning
for t = 4.

periodic solutions is given. Using the performance of the Deepxde library, a numerical code based on
Deep Learning has been developed to numerically simulate the periodic solutions.

Overall, deep learning is a promising approach for solving highly nonlinear periodic PDEs. It
should be noted that this type of problem cannot be simulated by conventional methods such as
Finite Difference, Fine Elements or Finite Volume. However, further modifications are still required,
depending on the problem to be solved.

Appendix

Simulation programs are available by contacting one of the authors.
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Чисельне моделювання за допомогою глибокого навчання
перiодичного p(x)-рiвняння Лапласа

Алаа Х.1, Айт Хсайн Т.1, Бентбiб А. Х.1, Акел Ф.2, Алаа Н. Е.1
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40000 Марракеш, Марокко

2Лабораторiя комп’ютерiв, мереж, мобiльностi та моделювання (IR2M), Факультет науки i технiки,
Перший унiверситет Хассана, Сеттат, 577 Касабланка-роуд, Марокко

Метою цiєї роботи є вивчення перiодичного часового параболiчного рiвняння зi змiн-
ним показником p(x). Довiвши iснування та унiкальнiсть розв’язку, пропонується
метод його чисельного моделювання з використанням нових технологiй глибокого
навчання.

Ключовi слова: перiодичний розв’язок; p(x)-оператор Лапласа; глибоке навчання.
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