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In this work, we address the partial observation–detection problem for finite-dimensional
dynamical linear systems that may not be fully observable or detectable. We introduce
the concepts of ‘observation–detection’ and ‘partial observation–detection,’ which involve
reconstructing either the entirety or a portion of the system state and the source re-
acting on the system, even when the system is not fully observable or detectable. We
provide characterizations of ‘observable–detectable systems’ and ‘observable–detectable
spaces.’ The reconstruction of the state and source on the observable–detectable subspace
is achieved through orthogonal projection, leveraging the algebraic structure of the given
finite-dimensional system. Additionally, we present examples to illustrate our approach.
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1. Introduction

A dynamical system is a kind of multiple objects interacting with each other. Mathematically, this
interaction can be represented by a model of equations and signs. The system is linked to its environ-
ment through input elements (physical elements acting on the system) and outputs (measurements or
observations). The analysis of several concepts is necessary to better understand a given dynamical
system and its functioning in order to optimize its use. Among the fundamental concepts constituting
the analysis of systems are those of controllability, observability, stability and stabilizability [1–8].

The observation problem consists of extracting the state of the system by using the output equation
and the dynamic of the system. In the case of a non-observable system, we will never be able to
extract the totality of the system state; that is why we have opted for partial observability. This kind
of observability consists of observing and extracting the reconstructible part of the system state from
the output equation unless the system is not fully observable. In this paper, we focus just on the
observability problem for finite-dimensional linear systems.

The detection notion is introduced by A. El Jai and his team [9]. It consists of reconstructing an
unknown source reacting to the considered system by using a measurement tool. The application field
of this notion is too large and can be applied to multiple disciplines. We can cite examples such as
medicine, pollution phenomena, and the military among others.

The partial analysis of a dynamical system is necessary when the system is not observable or
controllable. It is worth mentioning here the Kalman decomposition [10,11]: Kalman has decomposed
the state space into a direct sum of four vector subspaces, based on the two notions of observability
and controllability. He gives the canonical form of the corresponding equations. The proof of the
state space decomposition theorem was made by Kalman and L. Weiss [11]. In particular, when
considering the properties of controllability and observability, several possibilities of this decomposition
are indicated [11]; despite this, a complete and rigorous proof is still not produced.

Partial observation will be useful when we concentrate our attention only on a very specific param-
eters or a combination of state parameters. In this case, the study can be reduced and concentrated
on the desired parameters or a combination of parameters. We cite as an example the work done by
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D. Bichara and All [12], in which the concern is on measuring the circulating parasitemia y1 + y2 to
estimate the sequestered parasitemia y3 + y4 + y5 in a patient.

One can be interested in partial observation when dealing with a system in which many parameters
act making it impossible to observe the system. As an example, it is impossible to do all medical tests
and analyses in order to know the health state of the patient, that is why we limit our concentration
and interest to the measurement of only some parameters, such as the temperature and pressure of
the patient, to know approximately the health condition. This fact confronts us with the observation
of a system that is not necessarily totally observable, which pushes us to deal with only a part of the
patient’s health condition.

The “partial” analysis is also necessary when the system under study does not check the standard
operating conditions, i.e., when the system contains an ambiguity that prevents the behavior of the
system from being known so that it can be used and controlled. We cite as examples among many
others: incomplete measurement systems, complex systems and large systems. In this context, several
approaches have been adopted for the partial analysis of the system. We cite the work of T. Boukhobza
and his team, who proposed a method based on a graphical theoretical approach [13]. There is also
a qualitative study of the two notions of observability and controllability, made by W. Kang and
L. Xu [14]. In their work, they used dynamic optimization and its calculation methods as a tool to
quantitatively define and measure observability and accessibility.

In our work, we considered two different problems, observation and detection, assembled and treated
at the same time. Indeed, we will try to observe the state and detect the external source reaction on
our system at the same time. For that, we did introduce the so-called observation–detection problem.
Our approach involves combining two systems into one, where the first one describes the dynamics of
the studied system. The second one describes the dynamic of the source distribution. The observation–
detection problem becomes just an observational one for the final combined system.

In this work, the notion of observation–detection has been introduced, defined and characterized.
A similar result has been demonstrated in the Kalman characterization of the observation of a given
linear finite dimensional dynamical system for observation–detection problem. Generalization has been
introduced too, by defining the so called partial observation–detection. Characterization of this notion
has been proved and applied in some examples. We have determined the biggest observable–detectable
part and reconstructed it. Generalization of Kalman characterization has also been given.

This paper is organized as follows. In the first part, we give our problem statement, as some
preliminary results used thereafter. In the second part, we present the observation–detection notion
and some characterization of it. In the third part, we give the definition of an observable–detectable
subspace as well as some characterizations. In the fourth part, we explain the entire procedure and the
theoretical approach followed for the partial reconstruction of the system state and the perturbation
source.

2. Preliminary and problem statement

2.1. Example and problematic

Let us consider the system defined in the interval [0, T ] given by the following equation:
(

ż1(t)
ż2(t)

)

=

(

1 1
0 2

)(

z1(t)
z2(t)

)

+

(

f1(t)
f2(t)

)

(1)

with output equation

y(t) = z2(t). (2)
General solution of this system can be written as

(

z1(t)
z2(t)

)

=

(

etz0,1 +
(

e2t − et
)

z0,2 +
∫ t

0 e
t−sf1(s) ds

e2tz0,2 +
∫ t

0 e
t−sf2(s) ds

)

, (3)

then output function is given by the following equation:

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 211–224 (2024)



Total and partial observation–detection in linear dynamical systems with characterized sources: . . . 213

y(t) = z0,2 e
2t +

∫ t

0
f2(s) e

2(t−s) ds. (4)

This system is not observable and not detector. Indeed, if we take the two following initial states,

z0 =

(

1
0

)

and z̃0 =

(

−2
0

)

and the following two sources:

f(t) =

(

t

0

)

and f̃(t) =

(

−2t
0

)

,

the corresponding output functions to (z0, f) and (z̃0, f̃) are y and ỹ successively with,

y(t) = ỹ(t) = 0 (5)

for all t ∈]0, T [, then the system is not observable and cant detect the totality of source function.
We have

y(t) = e2t z0,2 +

∫ t

0
et−sf2(s) ds, (6)

then
1

2
ẏ(t) = e2tz0,2 +

∫ t

0
e2(t−s)f2(s) ds+

1

2
f2(t) (7)

by subtracting (6) from (7), we obtain the following equation,

f2(t) =
�
y(t)− 2y(t). (8)

Hence we reconstructed f2 the second component of the source f . This result lead as to think to
possibility of doing the same think to all non observable linear system in the kind of (1), (2). We can
then ask the following questions: If a system with the out-put equation can not detect the perturbation
source, can we know some information about this source or not? If that is possible, how we can do it
and characterize it? What is the relation between detection (partial detection) and observation (partial
observation)?

Before trying to answer to this questions, we will try to introduce the definition of observation–
detection system and characterize it. This will be the object if of section 3.

2.2. Considered problem

Let us consider the following finite dimensional linear dynamical system:
{

ż(t) = Az(t) + f(t), t0 < t < T, A ∈ Mn(R),
z(t0) = z0 ∈ R

n,
(9)

augmented by the following output function
y = C z(t). (10)

In this work, we will try to reconstruct, totally or partially, the state z and the source f , by using the
output function y in case where the source f verify the following system

{

ḟ(t) = A1 f(t), t0 < t < T, A1 ∈ Mn(R),
f(t0) ∈ R

n.
(11)

The system (9), (10) and (11) can be written in the following form:














ż = Az(t) + f(t),
z(0) = z0,

ḟ(t) = A1 f(t),
f(0) = f0

for all t ∈]t0, T [, or














(

ż(t)

ḟ(t)

)

=

(

Az(t) + f(t)
A1 f(t)

)

, ∀t ∈]t0, T [,
(

z(0)
f(0)

)

=

(

z0
f0

)

,

which is equivalent to
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













(

ż(t)

ḟ(t)

)

=

[

A In×n

0n×n A1

](

z(t)
f(t)

)

, ∀t ∈]t0, T [,
(

z(0)
f(0)

)

=

(

z0
f0

)

.

This can be also written as
{

u̇(t) = Au(t), ∀t ∈]t0, T [,
u(0) = u0.

(12)

The output equation can be also written as

y(t) = C u(t), ∀t ∈ [t0, T ] (13)

with

A =

[

A In×n

0n×n A1

]

, C = [C 0n×n] , u(t) =

(

z(t)
f(t)

)

, u(0) = u0 =

(

z0
f0

)

.

The detection–observation of the state z and the source f is transformed, by using the system (12),
(13), to a simple observation problem.

2.3. Useful results

In this subsection we present some results that will be used throughout. We introduce the observability–
detectability operator given by

R : u0 ∈ R
2n −→ L2 [t0, T ;R

q] (Ru0)(t) = Cu(t) = [C 0n×n]u(t),

with

(Ru0)(t) = C z(t) = C eA(t−t0)z0 +

∫ t

t0

C et−se(s−t0)A1f0 ds.

R can also be written as

(Ru0)(t) =

[

C eA(t−t0)

∫ t

t0

C et−se(s−t0)A1 ds

]

u0, ∀t ∈ [t0, T ],

whose adjoint operator

R∗ : L2 [t0, T ;R
q] −→ R

2n

can be written as

R∗η =

∫ T

t0

e(t−t0)AT

CTη(t) dt, η ∈ L2[t0, T ;Y ].

We denote by M the following matrix

M ≡ R∗R =

∫ T

t0

e(t−t0)AT

CTC e(t−t0)A dt ∈ M2n(R).

Remark 1. (1) The matrix M is symmetric and positive semi-definite. (2) The system is observable
if and only if, the matrix M is positive definite. (3) We have

Im(R∗) = Im(M), ker(R) = ker(M)

and

R
2n = Im(M)⊕ ker(M). (14)

We suppose for the rest of this work, without losing generality, that Im(M) = vect{v1, v2, . . . , vp}
with p 6 2n, and we take

N =
(

v1 | v2 | . . . | vp
)

.

N is 2n× p injective matrix with rank(N) = p.

Proposition 1. The matrix NTMN is invertible.

Remark 2. Before begin the proof of the proposition, let us mention that if ξ ∈ Im(N) (or ξ ∈
Im(M)) and Nξ = 0 (or and Mξ = 0) then ξ = 0.

Proof. NTMN is a symmetric matrix, then NTMN is surjective.
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Let us show now that NTMN is injective. Let us take v ∈ R
p, we have

NTMN v = 0 =⇒ MNv = 0, (from remark 2 because MN v ∈ Im(N) and Im(M) = Im(N))
=⇒ Nv = 0, (from remark 2 because Nv ∈ Im(N) and Im(M) = Im(N))
=⇒ v = 0, (because N is injective).

That is for all v ∈ R
p, then NTMN is injective. Finally we can conclude that NTMN is invertible. �

Lemma 1. Let R be a m × 2n matrix, T > t0 and x ∈ R
2n. Then the following properties are

equivalent:
(1) Re(t−t0)Ax = 0, ∀t ∈ [t0, T ];
(2) RAkx = 0, ∀k ∈ N;
(3) RetAx = 0, ∀t ∈ R;
(4) RAk−1x = 0, 1 6 k 6 2n.

Proof.

– The implications (3) =⇒ (1) and (2) =⇒ (4) are equivalent.
– (1) =⇒ (2): If Re(t−t0)Ax = 0, for all t ∈ [t0, T ] then for all t ∈ [t0, T ] we have

Rx+ (t− t0)RAx+
(t− t0)

2

2
RA2x+

(t− t0)
3

6
RA3x+ . . .+

(t− t0)
j

j!
RAjx+ . . . = 0.

The kth derivative with respect to t gives

RAkx+(t− t0)RAk+1x+
(t− t0)

2

2
RAk+2x+

(t− t0)
3

6
RAk+3x+ . . .+

(t− t0)
j

j!
RAk+jx+ . . . = 0,

which, for t = t0, becomes RAkx = 0, for all k ∈ N.
– (2) =⇒ (3): If RAkx = 0, for all k ∈ N, then for every t > t0, we have

Re(t−t0)A x = Rx+(t−t0)RAx+
(t− t0)

2

2
RA2x+

(t− t0)
3

6
RA3x+. . .+

(t− t0)
j

j!
RAjx+. . . = 0.

– (4) =⇒ (2): Let us assume that RAk−1x = 0, 1 6 k 6 2n, Cayley–Hamilton’s theorem gives the
decomposition

A2n =

2n−1
∑

j=0

β2n,jA
j, β2n,j ∈ R.

We deduce (by recurrence) a similar decomposition of Ak

Ak =

2n−1
∑

j=0

βkjA
j , βkj ∈ R,

and then

RAkx =

2n−1
∑

j=0

βkjRAjx = 0, ∀k > 2n. �

Let us denote

O =











C
CA
...

CA2n−1











.

We have the following proposition.

Proposition 2. (1) We have

ker(M) = ∩2n
k=1 ker

(

C Ak−1
)

= ker(O), (15)

and then rg(M) = rg(O).
(2) ker (M) is stable by Ak with k = 1, 2, 3, . . . and then by e(t−t0)A, ∀t > t0.
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Proof.

– Let x ∈ R
2n. x ∈ ker(M) = ker(R) equivalent to C e(t−t0)Ax = 0, for all t ∈ [t0, T ]. Or by taking

R = C in the Lemma (1) C Ak−1x = 0, 1 6 k 6 2n, which is none other than x ∈ ∩2n
k=1 ker(C Ak−1).

This relation is equivalent to










C x

C Ax
...

C A2n−1 x











= 0,

or even x ∈ ker(O) and the following properties follow. By taking the orthogonal in the relation
ker(M) = ker(O) we obtain Im(M) = Im(OT) then rg(M) = rg(OT) = rg(O).

– If x ∈ ker(M) = ker(R) then C e(t−t0)Ax = 0, for all t ∈ [t0, T ] which, according to the Lemma 1,
is equivalent to C Ajx = 0, for all j ∈ N, then for k ∈ N we have

C Aj(Akx) = 0, ∀j ∈ N,

then for j = 0 we have Akx ∈ ker(R). From that, since

e(t−t0)Ax =
∑

k>1

(t− t0)
k

k!
Akx ∈ ker(R),

then the stability of ker(R) = ker(M) follows.

�

For a subspace H of R2n, let us introduce the matrices GH of order 2n and QH of type (2n)2× 2n:

GH =

∫ T

t0

e(t−t0)AT

(PH)TPHe(t−t0)A dt, QH =











PH

PHA
...

PHA2n−1











. (16)

Lemma 2. We have for every subspace H of R2n

ker(GH) = ∩_t0 6 t 6 T ker
(

PHe(t−t0)A
)

= ∩2n
k=1 ker

(

PHAk−1
)

= ker(QH). (17)

Proof. The proof is similar to that of the Proposition 2 by taking PH instead of C and by applying
the Lemma 1 with R = PH . �

3. Observation–detection

3.1. Definitions and characterizations

The detection notion is trying to reconstruct an unknown source that reacting (or disturbing) on a
given system, the following definition is given in [9].

Definition 1. A source is said to be detectable (or reconstructible) on ]t0, T [ if the knowledge of the
system, together with the output, is sufficient to make the associated operator Q is injective with:

Q : f0 ∈ R
n −→ y(·) ∈ L2 [t0, T ;R

q] .

This definition can lead us to source reconstruction. In this work, since the initial state is considered
unknown, we shoos to try reconstruction of the state and the source in the same time. For that, the
problem will become observation and detection in the same time. Thus the following definition.

Definition 2. The system (9), (10) is said observable-Sf -detector during the time interval [t0, T ] if
for two given couples (z0,1, f0,1) and (z0,2, f0,2) that gives the same output on [t0, T ], then necessary
they are equal:

y1(t) = y2(t), ∀t ∈ [t0, T ] =⇒ z0,1 = z0,2 and f0,1 = f0,2. (18)
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Remark 3. (1) The previews definition is equivalent to: For all couple (z0, f0) that gives null output
function, then they are null.

y(t) = 0, ∀t ∈ [t0, T ] =⇒ z0 = 0 and f0 = 0. (19)

(2) If the system is observable-Sf -detector then we can reconstruct the initial state and the source in
the same time.

Proposition 3. The system (9), (10) is observable-Sf -detector, if and only if (12), (13) is observable.

Proof. We can obtain the result simply, by taking u = ( z
f ) and u0 =

( z0
f0

)

. �

Remark 4. (1) The system (12), (13) is observable if and only if R is injective

ker(R) = {0}. (20)

(2) If R is injective then R∗R is invertible then we can write

u0 = [R∗R]−1 R y(t). (21)

Proposition 4. The system (9), (10) is observable-Sf -detector if and only if

rank(O) = 2n. (22)

Proof. The system (9), (10) is observable-Sf -detector if and only if R is injective, which equivalent to
M = R∗R is invertible, or to rank(M) = 2n, since from (1) of the proposition 2, rank(O) = rank(M),
the system (9), (10) is observable-Sf -detector if and only if rank(O) = 2n. �

Example 1. Let us consider the system defined in the interval [t0, T ] given by the following equation:
(

ż1(t)
ż2(t)

)

=

(

1 1
0 2

)(

z1(t)
z2(t)

)

+

(

f1(t)
f2(t)

)

(23)

with output equation

y(t) = z2(t). (24)

We consider that the source f is constant during the time interval [0, T ]. Then f(t) = f0 for all t ∈]0, T ].
The the matrix A is given by A1 = 0n×n. We want now to verify if the system is observable-Sf -detector
by using the previous proposition. We have

P =











C
CA
...

CAn−1











=









0 1 0 0
0 2 0 1
0 4 0 2
0 8 0 4









,

then we can simply verify that rank(P) = 2 which implies that the system is not observable-Sf -detector.

Corollary 1. If

rank





























C

CA

CA2

...
CA2n−1





























= 2n or rank









































C

C(A+A1)
C(A2 +AA1 +A2

1)
...

C

2n−2
∑

i=0

A2n−2−iA1









































= 2n,

then the system (9), (10) is observable-Sf -detector.

Proof. From proposition 4 the system is observable-Sf -detector if and only if
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rank





























C
CA
CA2

...
CA2n−1





























= 2n,

which is equivalent to

rank

























































[C 0p×n]

[C 0p×n]

[

A In×n

0n×n A1

]

[C 0p×n]

[

A In×n

0n×n A1

]2

...

[C 0p×n]

[

A In×n

0n×n A1

]2n−1

























































= 2n

or to

rank





























C 0q×n

CA C

CA2 C(A+A1)
...

...

CA2n−1 C
∑2n−2

i=0 A2n−2−iA1





























= 2n

we have

2n > rank





























C 0q×n

CA C

CA2 C(A+A1)
...

...

CA2n−1 C
∑2n−2

i=0 A2n−2−iA1





























> rank





























C

C(A+A1)
C(A2 +AA1 +A2

1)
...

C
∑2n−2

i=0 A2n−2−iA1





























and

2n > rank





























C 0q×n

CA C

CA2 C(A+A1)
...

...

CA2n−1 C
∑2n−2

i=0 A2n−2−iA1





























> rank





























C

CA

CA2

...
CA2n−1





























,

then if

rank





























C

CA

CA2

...
CA2n−1





























= 2n or rank





























C

C(A+A1)
C(A2 +AA1 +A2

1)
...

C
∑2n−2

i=0 A2n−2−iA1





























= 2n,

then

rank





























C 0q×n

CA C

CA2 C(A+A1)
...

...

CA2n−1 C
∑2n−2

i=0 A2n−2−iA1





























= 2n, rank





























C
CA
CA2

...
CA2n−1





























= 2n

then, from proposition 4, the system (9), (10) is observable-Sf -detector. �

Lets take, for the rest of this article, H as a subspace of R2n not reduced to {0}.
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4. Partial observation–detection

4.1. Definition

In this section, we will consider partial observation-detection which consist to observe the observable
part of the system state and detect the detectable part of the source in the same time even if the
system is not observable-detector. For this we will introduce the following definition.

Definition 3. The system (9), (10) is said to be H-observable-Sf -detector if for all u0 ∈ R
2n we

have,

Ru0 = 0 =⇒ PHu0 = 0. (25)

Remark 5. (1) The partial observation-detection notion is more general that the observation-
detection one. (2) If the system (9), (10) is R

n-observable-Sf -detector then (9), (10) is observable-Sf -
detector.

Definition 4. H is said to be observable-Sf -detectable if the system (9), (10) is H-observable-Sf -
detector.

4.2. Characterization and properties

In this section, we present some properties and characterization results for partial observation–
detection.

Proposition 5. H is observable-Sf -detectable on [t0, T ] if, and only if,

ker(M) ⊆
⋂

t06t6T

ker
(

PHe(t−t0)A
)

. (26)

Proof. Let u0 ∈ R
2n an initial state giving the state u. On the first hand (y(t) = 0, ∀t ∈ [t0, T ]) is

equivalent to Mu0 = 0. On the second hand (PHu(t) = 0, ∀t ∈ [t0, T ]) is equivalent to

PHe(t−t0)Au0 = 0, ∀t ∈ [t0, T ]

or to

u0 ∈ ker
(

PHe(t−t0)A
)

, ∀t ∈ [t0, T ] ,

which reduces to u0 ∈ ∩t06t6T ker
(

PHe(t−t0)A
)

. H is therefore observable-Sf -detectable if and only if,
for all u0 ∈ R

2n,

Ru0 = 0 =⇒ u0 ∈
⋂

t06t6T

ker
(

PHe(t−t0)A
)

,

or ker(M) ⊆ ∩t06t6T ker
(

PHe(t−t0)A
)

. �

Remark 6. The system is observable-Sf -detector if and only if every subspace of R2n is observable-
Sf -detectable.

Proposition 6. The following propositions are equivalent:
(1) H is observable-Sf -detectable;
(2) ∩2n

k=1 ker
(

CAk−1
)

⊆ ∩2n
k=1 ker

(

PHAk−1
)

;
(3) ker(M) ⊆ ker(GH);
(4) ker(O) ⊆ ker(QH).

Proof. With the Proposition 5. H is observable-Sf -detectable if and only if,

ker(M) ⊆
⋂

t06t6T

ker
(

PHe(t−t0)A
)

,

this one is equivalent according to the Lemma (2) to ∩2n
k=1 ker

(

CAk−1
)

⊆ ∩2n
k=1 ker

(

PHAk−1
)

or to
ker(O) ⊆ ker(QH) which is equivalent also to ker(M) ⊆ ker(GH). �
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Remark 7. We can deduce from this proposition that a subspace H is not observable-Sf -detectable
if

rg(QH) > rg(O).

Indeed, inclusion ker(O) ⊆ ker(QH) gives, by taking the orthogonal, Im
(

[QH ]T
)

⊆ Im
(

OT
)

. Then
rg
(

[QH ]T
)

6 rg
(

OT
)

which gives rg (QH) 6 rg(O).

Proposition 7. Every observable-Sf -detectable is contained in Im(M).

Proof. For all t ∈ [t0, T ] we have
⋂

t06s6T

ker
(

PHe(s−t0)A
)

⊆ ker
(

PHe(t−t0)A
)

.

By taking t = t0 we get ∩t06t6T ker
(

PHe(t−t0)A
)

⊆ ker (PH). If H is observable-Sf -detectable then

ker(M) ⊆ ker (PH) = H⊥ or H ⊆ [ker(M)]⊥ = Im(M). �

Proposition 8. The subspace Im(M) is observable-Sf -detectable.

Proof. Let u0 ∈ ker(M). By using Proposition (2) we have CAk−1u0 = 0, for all 1 6 k 6 2n, which
gives with the Lemma 1 CAku0 = 0, ∀k ∈ N, and CesAu0 = 0, ∀s ∈ R. Let us take t ∈ [t0, T ]. For
s = (τ − t0) + (t− t0) we get Ce(τ−t0)A

[

e(t−t0)Au0
]

= 0, ∀τ ∈ R. In particular, for τ ∈ [t0, T ], we get

Ce(τ−t0)A
[

e(t−t0)Au0

]

= 0, ∀τ ∈ [t0, T ] .

Then e(t−t0)Au0 ∈ ker(R) = ker(M) subsequently

PIm(M)

[

e(t−t0)Au0

]

= 0

and this for all t ∈ [t0, T ]. This shows that Im(M) is observable. �

Theorem 1. Im(M) is the largest observable–detectable subspace (i.e. it contains all the observable-
detectable subspaces).

Proof. This is a direct result of Proposition (7) and the previous proposition. �

Remark 8. (1) Every subspace H of R
2n is an orthogonal direct sum H = H0 ⊕ H1 with H0

observable-Sf -detectable and H1 non observable-Sf -detectable and not containing any observable-Sf -
detectable subspace. This decomposition is then unique. (2) Subspaces H0 and H1 are given by

H0 = H ∩ Im(M), H1 = H ∩ ker(M).

Corollary 2. The subspace

H = Im
(

CT
)

is observable-Sf -detectable.

Proof. We have H = Im
(

CT
)

= Im
(

CT
)

, then H⊥ =
[

Im(CT)
]⊥

= ker(C). Let u0 ∈ ker(M) then

for all t ∈ [t0, T ], Ce
(t−t0)Au0 = 0. Then e(t−t0)Au0 ∈ ker(C) = H⊥ which shows that its projection on

H is null, i.e., PHe(t−t0)Au0 = 0. Then H = Im
(

CT
)

is observable-Sf -detectable. �

Remark 9. We deduce from these two corollaries that ker(M) ⊆ ker(C).

5. Partial reconstruction of the state and the source

Partial reconstruction of the system state and source reacting on the system (9), (10) can be done in
the same time by reconstructing the system state of the system (12), (13). For that, in this section,
we will study the problem of partial state reconstruction of the system (12), (13).

Let us consider the equations (12) and (13), with initial state u0 = u(t0) ∈ R
2n “unknown” and let

ymes(·) ∈ L2 [t0, T ;R
q] be a measurement obtained on [t0, T ] by a state u(t) generated by the initial

state u0 ∈ R
2n unknown.
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5.1. Reconstruction of the visible part of the state and the source

In this section, we will reconstruct the so-called visible initial state of the system (12), (13) from the
output equation.

Definition 5. We call the visible part of the initial state of the system (12), (13) the orthogonale
projection of the initial state of the system on Im(R∗). We denote it u⋆(t0).

For all u0 ∈ R
2n we have

Mu0 = R∗y, (27)

then

MPIm(M)u0 = R∗y. (28)

We know that PIm(M) = N(NTN)−1NT, then we have

MN(NTN)−1NTu0 = R∗y, (29)

then

NTMN(NTN)−1NTu0 = NTR∗y. (30)

Since NTMN is invertible (from Proposition 1) we have

(NTN)−1NTu0 =
[

NTMN
]−1

NTR∗y, (31)

then

N(NTN)−1NTu0 =
[

NTMN
]−1

NTR∗y, (32)

PIm(M)u0 = N [NTMN ]−1NTR∗y. (33)

Finally,

u⋆(t0) = N
[

NTMN
]−1

NTR∗y. (34)

Proposition 9. The visible part of the initial state of the system (12), (13) has the form

u⋆(t0) = N

[

NT

∫ T

t0

e(τ−t0)AT

CTCe(τ−t0)A dτN

]−1

NT

∫ T

t0

e(s−t0)AT

CTymes(s) ds. (35)

Example 2. We will try, in this example, to reconstruct partially the stat and the source of a non
observable-detector system described by the following equations:

(

ż1(t)
ż2(t)

)

=

(

2 0
−1 1

)(

z1(t)
z2(t)

)

+

(

f1(t)
f2(t)

)

(36)

for all t ∈]0, 1[, with output equation

y(t) = z1(t), ∀t ∈ [0, T ], (37)

where the source function verify the following equation:
(

ḟ1(t)

ḟ2(t)

)

=

(

1 1
0 −1

)(

f1(t)
f2(t)

)

, ∀t ∈]0, 1[. (38)

We take the initial state of the system z0 =
( z0,1
z0,2

)

=
(

1
−1

)

, and initial source f0 =
(

f0,1
f0,2

)

=
(

−2
1

)

.

For that case we have:

A =

[

2 0
−1 1

]

, A1 =

[

1 1
0 −1

]

, C =
[

1 0
]

,

then the system (12), (13), in this case, has the following form:
{

u̇(t) = Au(t), ∀t ∈]0, 1[,
u(0) = u0.

(39)

Augmented by the following output equation:

y(t) = Cu(t), ∀t ∈ [0, 1] (40)
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with

A =









2 0 1 0
−1 1 0 1
0 0 1 1
0 0 0 −1









and C =
[

1 0 0 0
]

.

The system (36), (37) is not observable-Sf -detector. Indeed, we have

P =











C
CA
...

CAn−1











=









1 0 0 0
2 0 1 0
4 0 3 1
8 0 7 2









.

We have rank(P ) = 3, which implies that the system (39), (40) is not observable, then the system (36),
(37) is not observable-Sf -detector.

We want now to reconstruct the visible part of the initial state u0. By using a simple program in
scilab application, we obtain

M =











e4

4 − 1
4 0 e4

4 − e3

3 + 1
12

(e−1)3(e1+1)
12

0 0 0 0
e4

4 − e3

3 + 1
12 0 (3e1+1)(e1−1)3

12
e1

6 + e2

4 − 5e3

18 + e4

12 − 7
18

(e1−1)3(e1+1)
12 0 e1

6 + e2

4 − 5e3

18 + e4

12 − 7
18

e1

9 − e−2

72 + e2

8 − e3

9 + e4

36 − 11
36











and

Im(R∗) = vect{e1, e3, e4} and ker(R) = vect{e2}.

In this case,

N =









1 0 0
0 0 0
0 1 0
0 0 1









and NT =





1 0 0 0
0 0 1 0
0 0 0 1



 ,

then

NTMN =

[

NT

∫ 1

0
eτA

T

CTCeτA dτ N

]

=







e4

4 − 1
4

e4

4 − e3

3 + 1
12

(e1−1)3(e+1)
12

e4

4 − e3

3 + 1
12

(3e+1)(e−1)3

12
e1

6 + e2

4 − 5e3

18 + e4

12 − 7
18

(e−1)3(e+1)
12

e1

6 + e2

4 − 5e3

18 + e4

12 −
7
18

e1

9 − e−2
72 + e2

8 − e3

9 + e4

36 − 11
36






.

We have

NT

∫ 1

0
esA

T

CTymes(s) ds =





1 0 0 0
0 0 1 0
0 0 0 1















e
6 +

e3

2 − e4

6 − 1
2

0
e
6 −

3e2

4 + 13e3

18 − e4

6 − 5
36

5e3

18 − e−2

72 − 3e2

8 − e
18 − e4

18 + 7
18











=







e
6 + e3

2 − e4

6 − 1
2

e
6 −

3e2

4 + 13e3

18 − e4

6 − 5
36

5e3

18 − e−2

72 − 3e2

8 − e
18 −

e4

18 + 7
18






,

then, by using (35), the visible part of the initial state u0 is given by

u⋆(t0) =









1 0 0
0 0 0
0 1 0
0 0 1















e4

4 − 1
4

e4

4 − e3

3 + 1
12

(e1−1)3(e+1)
12

e4

4 − e3

3 + 1
12

(3e+1)(e−1)3

12
e1

6 + e2

4 − 5e3

18 + e4

12 − 7
18

(e−1)3(e+1)
12

e1

6 + e2

4 − 5e3

18 + e4

12 − 7
18

e1

9 − e−2
72 + e2

8 − e3

9 + e4

36 − 11
36







−1

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 211–224 (2024)



Total and partial observation–detection in linear dynamical systems with characterized sources: . . . 223







e
6 + e3

2 − e4

6 − 1
2

e
6 −

3e2

4 + 13e3

18 − e4

6 − 5
36

5e3

18 − e−2

72 − 3e2

8 − e
18 −

e4

18 + 7
18






=









1 0 0
0 0 0
0 1 0
0 0 1













1
−2
1



 =









1
0
−2
1









.

Finally, we did reconstruct a part of the initial state u0 with u0 =
( z0
f0

)

, which means that we did
reconstruct the initial source f0 and the first component of the initial state z0.

Remark 10. Its not always possible to reconstruct one or more of component of the initial state and
the source. In general partial reconstruction can give as a linear combination of the component of the
initial state an initial source. This have a direct relation to the algebraic decomposition of Im(M).

6. Conclusion and prospects

In this paper, we have considered the partial and total observation–detection problem for finite di-
mensional linear systems. In this context we have introduced the notion of an observable–detectable
system and observable–detectable subspace one. We give some characterizations for this two notions.
The problem of the reconstruction of the so called visible part of the state and the perturbation source
was also discussed.

An important feature of partial observability–detectability concept is the possibility of using and
studying a dynamical system even if the system is not fully observable–detectable. We can also
reconstruct, if it possible, the most important parameters of the system without worrying about the
other parameters. These ideas may allow us to do the same study for the case of infinite dimensional
systems, for the case of distributed parameter systems or even for the case of semi-linear and non-linear
systems.
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Повне та часткове “спостереження–виявлення” в лiнiйних
динамiчних системах з джерелом, що характеризується iншою
динамiчною лiнiйною системою: скiнченновимiрний випадок

Данiн М. Е.

Унiверситет Абдельмалека Ессаадi

У цiй статтi розглядається задача часткового “спостереження–виявлення” для cкiн-
ченнововимiрних динамiчних лiнiйних систем, якi необов’язково повнiстю спостерi-
гаються або виявляються. Введено поняття “спостереження–виявлення” та ”част-
кове спостереження–виявлення”, якi передбачають вiдновлення або повнiстю, або
частково, стану системи та джерела, що реагує на систему, навiть якщо систе-
ма не є повнiстю спостережуваною або виявною. Надано деякi характеристики
“спостережувано–виявної системи” та “спостережувано–виявних просторiв”. Вiднов-
лення стану та джерела на спостережувано-виявному пiдпросторi здiйснюється за
допомогою ортогональної проекцiї, використовуючи алгебраїчну структуру заданої
скiнченновимiрної системи. Крiм того, наведено приклади для iлюстрацiї запропоно-
ваного пiдходу.

Ключовi слова: спостереження; виявлення; динамiчнi системи; виявлення дже-

рела.
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