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This study addresses a fluid–structure interaction problem that models flow in a channel.
Simulations were conducted to investigate the method’s effectiveness when applied to
real obstacle scenarios, where the obstacle is explicitly represented within the channel. To
tackle the Navier–Stokes equations, we utilized the spectral–Fourier–asymptotic approach,
which is a mesh-free method that combines Chebyshev polynomials and Fourier series with
the asymptotic method based on power series.
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1. Introduction

In recent years, there have been significant advancements in various numerical and modeling approaches
used in fluid flow simulations. These advancements have been driven by the need for more accurate
physical space descriptions, with the rise of more intricate configurations that involve the coupling
of multiple physical and scale factors, there has been a growing need to employ various numerical
techniques to explore fluid behavior under different external and internal forces [5]. To achieve this
goal, researchers have turned to a range of numerical methods such as finite element methods and finite
difference methods, or finite volume methods [2–4] are commonly used to describe the fluid domain in
an Eulerian reference framework [1], producing numerical solutions for fixed spatial meshes. However,
this approach faces challenges when obstacles move within the domain, as in flows around hydraulic
turbines, wind turbines, or mixers. Moreover, studying the interaction between an incompressible fluid
and a structure through numerical simulations has been an active research topic for the past decade,
with numerous studies conducted in this field.

This study offers a comprehensive account of the method, as outlined in sections 3 and 4. Section 2
briefly outlines the theoretical formulation used to derive the Navier–Stokes equations, which are then
solved using the ANM-SM method. The numerical aspects of the resolution of the Navier–Stokes
equations are discussed, along with the techniques employed. A resolution strategy is also presented,
incorporating a mixed formulation that integrates two domains (fluid and solid), along with a fine
coupling at the interface. To evaluate the method’s performance and reliability, validation tests are
conducted, and the results are presented in section 5. The accuracy of the proposed approach is
established by comparing the obtained results with those computed by Ansys, thus validating the
approach’s validity.

2. Geometry of the problem: an investigation into FSI

The primary objective of this study is to analyze the properties of a viscous flow that involves an
incompressible and Newtonian fluid around two types of obstacles: a half disk and a rectangle. Figure 1
provides a visual illustration of the geometry and boundary conditions employed in this investigation.
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The following equations regulate the problem of fluid-structure interaction,
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∂xi
= 0 in Ωf , (b)

V = λVimp over Γf , (c)

Vi = ẏ di over Γc, (d)

m · ÿ ·D + k · y ·D = −

∫

Γc

σ · n · dl. (e)

(1)

Fig. 1. Boundary conditions and interaction-fluid problem geometry.

The stress tensor is represented by σ, while the flow velocity vector is denoted by V and the imposed
velocity is denoted by Vimp. The body force is indicated by fi, and the fluid density by ρ. Additionally,
the obstacle’s mass per unit length and spring stiffness are represented by m and k, respectively.

The equations presented in (1.a) and (1.b) pertain to the continuity of an incompressible fluid flow
that exhibits viscosity. On the other hand, equation (1.c) sets out the velocity condition applied to
the boundary (Γf ), while equation (1.d) specifies the compatibility prerequisite between the velocity
of the fluid and that of the obstacle at the boundary (Γc). Additionally, equation (1.e) provides the
motion equation of the obstacle when it experiences fluid force F that acts perpendicularly to its outer
surface (Γc).

According to the impact of the fluid on the obstruction

F =

∫

Γc

σ · n · dl. (2)

The formulation of the stationary issue makes two assumptions: a geometry velocity of zero (ũ) and a
convection velocity of cj equal to the fluid component velocity in the case of an obstruction in motion
while the fluid flow around it is stationary. As a result, the governing equations for the stationary
problem are as follows:
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(3)

In the continuity equation (3.a), we insert a big parameter G known as the penality parameter to
satisfy the impressibility requirement as follows:

∂Vi

∂xi
−

1

G
· p = 0. (4)
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3. Quadratic term solver for statements

ANM is a solver that uses a high-order Taylor series expansion with respect to a scalar parameter to
solve nonlinear problems. This method enables the user to track the solution curves and solve nonlinear
problems in a step-by-step manner [7, 8]. Essentially, the nonlinear problems are linearized, and the
resulting linear equations are solved using a discretization technique, such as the spectral method used
in this study. It is worth noting that the proposed algorithm is designed to solve the nonlinear terms
of equation systems (3),

{

L(U) +Q(U ,U) = 0 in Ω, (a)

V = λVimp over ∂ΩV . (b)
(5)

To account for ANM, the nonlinear equations expressed in (3) can be reconfigured using linear operators
represented by L(U), quadratic operators indicated as Q(U ,U), and a mixed unknown vector U , which
comprises various unknowns of the problem, including pressure p and velocity V .

If a mixed vector U is shown:

U =

{

V

p

}

. (6)

A non-linear issue with the Reynolds number-corresponding configuration is the system (3).

4. Approach spectral

A set of discretization approaches for solving partial differential equation systems is known as spectral
techniques. These techniques often employ polynomial bases to approximation the solution. We shall
employ the Chebyshev polynomial of collocation-based spectrum approach in this fashion, sometimes
referred to as the pseudo-spectral method due to its simplicity and great precision [6,7]. In our inves-
tigation, collocation points were employed, and they are based on Gauss–Lobatto [8]. The collocation
points are characterized by a periodical function using the Chebyshev polynomial as shown in the
citations below:

xj = cos

(

π
j

N

)

for j = 0, . . . N − 1. (7)

Using spectral theory a way to approximate a function that is born between −1 and 1. There are other

forms for this, as stated in the references on the Chebyshev D
(1)
ij differenciation matrix. The current

investigation primarily focuses on a specific version, denoted as D
(1)
ij . This matrix is considered the

most practical and is defined as:
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(DN )ij , i = j. (b)

(8)

5. Discussion and numerical findings

This study investigates the behavior of obstacles under a transverse flow, as depicted in Figure 1. To
enforce the boundary conditions, we set the outlet condition to zero and the obstacle condition to
Dirichlet. Additionally, we impose a velocity u0 and zero condition on the upper and lower boundaries.
The Chebyshev spectral grid with N = 83 is employed, and the adhesion condition is imposed on
the boundaries of the obstacle domain. To investigate the effect of velocity on the stationary Navier–
Stokes problem, we solve the problem for different Reynolds numbers and focus relating location to
the velocity distribution x for y = 0, as shown in Figure 2. Specifically, we examine the cases where
Re = 10 and Re = 100. We also compare our results with those obtained using Ansys and demonstrate
that our proposed method converges with increasing point distribution.
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Fig. 2. Comparison of the outcomes with those of Ansys: evolution of velocity as a function of vertical
displacement for different Reynolds number values and fixed x or y.

According to Figure 2, the streamlines behind the barriers and the recirculation zone are used to
study the velocity development for various low Re values (Re = 10, Re = 100).

a (Re = 10) b (Re = 10)

c (Re = 100) d (Re = 100)

Fig. 3. For various Reynolds numbers, the flow of streamlines and contours.

Figure 3 demonstrates that there is no apparent velocity vector inside the barriers, providing ev-
idence that the adhesion condition is valid there. The figure also shows the fluid flow patterns and
the impact of the barriers on the flow. When the Re is 10 or 100, obstructions in the flow’s opposite
direction exert a force that creates vortices behind them. However, as the Reynolds number increases,
two symmetrical vortex areas begin to form behind the barriers (as shown in Figure 3), and their size
also increases.

6. Conclusion

In this study, we used the ANM-SM method to explore the fluid-structure interaction (FSI). To achieve
this, we devised a novel method capable of solving nonlinear equilibrium equations. By using Chebyshev
collocation points, we integrated irregular multiple domains. By utilizing this method, we were able to
take into account various boundary conditions, effectively solve the Navier–Stokes equation. Following
several iterations of the ANM, we observed the emergence of well-formed vortices at the back of the
obstacle, which further confirms the reliability and effectiveness of the proposed approach.

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 225–229 (2024)



On the use of the spectral element method for the modeling of fluid–structure interaction problems 229

[1] Bonet J., Wood R. D. Nonlinear continuum mechanics for finite element analysis. Cambridge University
Press (1997).

[2] Burman E., Fernández M. A. Continuous interior penalty finite element method for the time-dependent
Navier–Stokes equations: space discretization and convergence. Numerische Mathematik. 107, 39–77
(2007).

[3] Drissi M., Mesmoudi S., Mansouri M. On the use of a high-order spectral method and the geometric pro-
gression for the analysis of stationary bifurcation of nonlinear problems. International Journal of Dynamics
and Control. 11, 2633–2643 (2023).

[4] Bertoluzza S., Ismail M., Maury B. Analysis of the fully discrete fat boundary method. Numerische Math-
ematik. 118, 49–77 (2011).
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Про використання методу спектральних елементiв для
моделювання задач взаємодiї рiдини та структури
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У цьому дослiдженнi розглядається задача взаємодiї рiдини та структури, яка моде-
лює течiю в каналi. Моделювання проведено, щоб дослiдити ефективнiсть методу при
застосуваннi до реальних сценарiїв з перешкодами, де перешкода явно представлена
в каналi. Для розв’язання рiвнянь Нав’є–Стокса використано спектральний асимпто-
тичний пiдхiд Фур’є, який є безсiтковим методом, що поєднує полiноми Чебишева та
ряди Фур’є з асимптотичним методом, який базується на степеневих рядах.

Ключовi слова: рiдина–структура; асимптотичний метод; спектральний безсiт-

ковий метод.
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