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Cancer stands as the foremost global cause of mortality, with millions of new cases diag-
nosed each year. Many research papers have discussed the potential benefits of Machine
Learning (ML) in cancer prediction, including improved early detection and personalized
treatment options. The literature also highlights the challenges facing the field, such as the
need for large and diverse datasets as well as interpretable models with high performance.
The aim of this paper is to suggest a new approach in order to select and assess the gen-
eralization performance of ML models in cancer prediction, particularly for datasets with
limited size. The estimates of the generalization performance are generally influenced by
numerous factors throughout the process of training and testing. These factors include
the impact of the training–testing ratio as well as the random selection of datasets for
training and testing purposes.
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1. Introduction

Machine learning has emerged as a promising tool for cancer prediction and diagnosis in recent years,
with a plethora of studies showcasing its potential in various cancer types [1–5]. Traditional methods
of cancer diagnosis, such as biopsy and radiography, can be invasive, time-consuming, and sometimes
inconclusive. However, machine learning techniques can analyze complex data patterns and identify
subtle changes in the human body, leading to earlier and more accurate cancer detection.

However, despite the promising results of ML, there are still challenges in applying machine learning
to cancer prediction and diagnosis. One of the major challenges is the lack of large-scale, high-quality
datasets, which are essential for training accurate machine learning models. Additionally, the inter-
pretability of machine learning models in the context of cancer diagnosis is still an open research
question.

When it comes to cancer prediction in small datasets, assessing the performance of a machine
learning model becomes challenging. In order to overcome the limitations of standard approaches
and improve the evaluation process of Machine Learning models, this study aims to suggest a novel
framework for model selection in cancer prediction based on a Hesitant Fuzzy MCDM methods.

The remaining sections of the paper are organized as follows: in Section 2, we provide a concise
explanation of the significance of MCDM in performance evaluation of ML models; in Section 3, we
present our proposed approach; in Section 4, we introduce the Hesitant fuzzy TOPSIS and Hesitant
fuzzy VIKOR; in Section 5, we demonstrate the application of our suggested approach to select an
optimal ML model for cancer prediction. Finally, in Section 6, we conclude the study.

2. Performance assessment of machine learning models

The assessment and selection of ML algorithms is a very interesting research topic in data science [6,7].
One way to assess the prediction quality of a machine learning model is through a training testing
strategy. The initial data is to be split into training and test set. The training set will be used for
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hyper-parameters tuning and models’ training and then the test set is to be used for the model’s
evaluation.

Table 1. Confusion matrix.

Predicted 0 Predicted 1

Actual 0 TN FP

Actual 1 FN TP

The literature highlights a panoply of performance
measures for ML classifiers [8]. These criteria include:
accuracy score, precision, recall, F1-score and area under
curve (AUC).

These criteria are based mainly on the confusion ma-
trix (Table 1) and are commonly used by researchers and practitioners. Let TP, FP, TN and FN stand
for:

• True positive (TP) refers to the instances where a model correctly predicts a positive outcome;
• False positive (FP)occurs when a model incorrectly predicts a negative outcome as positive;
• True negative (TN) refers to the instances where a model correctly predicts a negative outcome;
• False negative (FN)occurs when a model incorrectly predicts a positive outcome as negative.

The aforementioned criteria are defined as follows:

— Accuracy: It is the number of observations correctly identified to the total number of observations.
This ratio is recommended when we have balanced classes; which means there is an equal number
of observations belonging to each class.

— Precision: It represents the percentage of predicted positive values that are really positive. The
precision measure is recommended when the cost associated with the false positive is high. For
example, if a sick patient is predicted as not sick, the risk will be very high if the sickness is
contagious.

— Sensitivity: Also known as recall, or the true positive rate (TPR). It represents the percentage
of actual positive values that are predicted positive. This measure must be chosen when the cost
associated with the false negative is high.

— F1 score: This metrics is used when we seek a balance between both the recall and precision, its
formula is as follows:

2×
Precision× recall

Precision + recall
— Area under curve: The area under curve (AUC): the AUC range is from 0 to 1. The higher the

value of AUC is, the higher the performance of the model; the AUC is given by

AUC =
1 + TPR− FPR

2
.

In practice, generally, there is no classifier that has the best results across all performance metrics.
So, it is slightly difficult to select the best ML model. According to Kou [9], the selection of machine
learning algorithms can be seen as a MCDM problem that involves more than one criterion.

MCDM techniques are a mathematical approach designed to help make decisions in the presence
of multiple and conflicting criteria. The idea of MCDM is to define a set of objectives or alternatives,
select criteria to assess these objectives, assign weights for criteria, and then apply an algorithm to
rank and classify alternatives [10].

Let M1,M2, . . . ,Mn be a set of alternatives to be classified with respect to a set of criteria
C1, C2, . . . , Cm, and W = (w1, w2, . . . , wm) be the weighs’ vector of all criteria. A MCDM problem is
defined as











r11 r12 . . . r1m
r21 r22 . . . r2m
...

...
. . .

...
rn1 rn2 . . . rnm











,

where rij is the rating of the ith alternative with respect to the jth criterion. To solve such a kind
of problem, a panoply of Multi-Criteria-Decision-Making (MCDM) methods were developed such as
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TOPSIS and VIKOR. These methods were first developed to hand quantitative data, then they were
extended to cover qualitative, subjective, or uncertain data as well.

In classical MCDM techniques, the alternatives’ ratings rij are supposed known precisely, however
in many real-world situations, including the evaluation of a ML model, the ratings may be imprecise
and uncertain. Thus, fuzzy MCDM methods may be a practical solution.

In many real-world applications, which include cancer prediction, obtaining a large dataset poses a
significant challenge. There is a strong interest in exploring effective strategies to maximize the utility of
datasets with limited size [7]. Numerous approaches have been suggested to evaluate the performance
of machine learning (ML) models, with a primary focus on the size of the available dataset. The
holdout method [11] is among the widely adopted approaches. Despite its simplicity in programming
and speedy execution, the holdout method is statistically less robust. Whenever the initial dataset is
randomly divided into two parts, there is a possibility of altering the sample statistics [12] and then
we may obtain different results of the performance estimates [13]. The generalization performance of
a machine learning model is additionally influenced by the training-testing ratio [6, 11].

The objective of this study is to propose an innovative approach for evaluating the predictive perfor-
mance of machine learning (ML) algorithms while considering the uncertainty inherent in performance
estimates. Our primary focus is on addressing the uncertainty stemming from both the training-testing
ratio and the random selection of training and testing data.

3. The proposed approach

In order to provide a comprehensive assessment of a machine learning model, we propose assessing its
performance using three distinct training-testing ratios (Table 2). We repeat the train-test splitting
procedure ten times for each ratio and subsequently calculate the average results of each performance
estimate.

Table 2. Commonly used training-testing ratios.

Training dataset Testing dataset

60% 40%
70% 30%
80% 20%

A model Mi performance according to a perfor-
mance estimate Cj is then given by three possible
values pij = (γ1ij , γ

2
ij , γ

3
ij) each value represents the

obtained score according to a specific training-testing
ratio. To calculate the different values of pij the fol-
lowing steps are adopted:

1. Gain insights into the data and perform necessary cleaning processes;
2. Select relevant variables for the model;
3. If required, address data imbalance issues that may negatively affect model training;
4. Repeat the following steps k times:

— Separate the data randomly into training and testing sets using a predefined training-testing
ratio, denoted as α ∈]0, 1[;

— Optimize the hyperparameters of the model using Cross validation on the training data.
— After identifying the optimal hyperparameters, train the final optimized classifier using the

complete training dataset.
— Assess the predictive performance of the machine learning model on the testing data.

5. Calculate the performance γij of the model Mi based on a specific criterion Cj and a predetermined
training-testing ratio by taking the average of the scores acquired from the k repetitions.

6. Repeat steps 4 and 5 for three distinct values of α. The model Mi performance according to Cj is
now given by pij = (γ1ij , γ

2
ij , γ

3
ij). 3 is the number of distinct training-testing ratios.

7. Construct the decision matrix using hesitant fuzzy numbers.

The Multiple Criteria Decision Making (MCDM) problem can be represented as shown in Table 3.
Where M1,M2, . . . ,Mn is a set of machine learning models to be classified with respect to a set of
criteria C1, C2, . . . , Cm.
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Table 3. The proposed decision matrix.

Model C1 . . . Cm

M1 p11 . . . p1m
M2 p21 . . . p2m
...

...
...

...
Mn pn1 . . . pnm

The performance pij = (γ1ij , γ
2
ij , γ

3
ij) of a model

Mi with respect to a specific criterion Cj can be
seen as an hesitant fuzzy number. A hesitant fuzzy
(HFN) [14] offers a more comprehensive represen-
tation of fuzzy and uncertain information, it is ex-
pressed as

h = (γ1, γ2, γ3),

where (γ1, γ2, γ3) is a set of ratings in [0, 1] denoting the possible membership degrees of an element
x ∈ X to a given set A. Under hesitant fuzzy information, the decision matrix is given in Table 4,
where hij = (γ1ij , γ

2
ij , γ

3
ij) is a Hesitant Fuzzy Number (HFN) that represents the evaluation of the

algorithm Mi with respect to the performance estimate Cj according to 3 different training testing
ratios.

Table 4. Decision matrix under hesitant
fuzzy information.

Model C1 . . . Cm

M1 h11 . . . h1m
M2 h21 . . . h2m
...

...
...

...
Mn hn1 . . . hnm

To select the best ML model, we need to solve
the hesitant fuzzy decision-making problem using a
MCDM method like hesitant fuzzy TOPSIS or hesi-
tant fuzzy VIKOR [15]. VIKOR operates by select-
ing a compromise solution from a set of alternatives,
aiming to maximize group utility and minimize indi-
vidual regret. On the other hand, TOPSIS identifies
a solution that has the shortest distance to the ideal
solution and the farthest distance to the negative-ideal solution. Both TOPSIS and VIKOR can be
employed to rank the predictive performance of a collection of ML models and subsequently determine
the optimal choice.

Hesitant fuzzy logic is an expansion of classical fuzzy logic [16] used to address situations where
a single element can have a range of possible membership values [14]. It considers all possible values
instead of using an aggregation operator to obtain a single value.

Definition 1. A hesitant fuzzy set B is defined as B = {〈x, hB(x)〉|x ∈ X}, where h = hB(x) is a

HFN comprising a set of membership degrees in [0, 1] indicating the potential degrees of membership

of element x ∈ X to B. A HFN can be represented as h = (γ1, γ2, . . . , γk).

Consider three HFNs denoted as h, ha, hb, and λ > 0, some arithmetic operations are defined as
follows:

1. The complement of h is given as hc = ∪γ∈h{1− γ};
2. hλ = ∪γ∈h{γ

λ};
3. λh = ∪γ∈h{1 − (1− γ)λ};
4. ha ∪ hb = ∪γ1∈ha,γ2∈hb

max {γ1, γ2};
5. ha ∩ hb = ∪γ1∈ha,γ2∈hb

min {γ1, γ2};
6. ha ⊕ hb = ∪γ1∈ha,γ2∈hb

{γ1 + γ2 − γ1γ2};
7. ha ⊗ hb = ∪γ1∈ha,γ2∈hb

{γ1γ2};
8. The first hesitant Hamming distance between ha and hb is defined as [15]:

D1 (ha, hb) = ‖ha − hb‖ =
1

k

k
∑

l=1

∣

∣

∣hσ(l)a − h
σ(l)
b

∣

∣

∣

where h
σ(l)
a (l = 1, 2, . . . , k) and h

σ(l)
b (l = 1, 2, . . . , k) are the lth smallest value in ha and hb

respectively.
9. The second Hamming distance between ha and hb under hesitant information is defined as [17]:

D2(ha, hb) =
1

2
(g(ha, hb) + g(ha, hb)),

where g(hi, hj) =
1

khi

∑

γi∈hi
min
γj∈hj

‖γi − γj‖.
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4. Hesitant fuzzy MCDM approaches

In order to enhance decision-making processes, numerous models and tools have been developed. An il-
lustrious example in this regard is the Multi-Criteria Decision Making (MCDM) framework. It involves
employing a scientific approach to make decisions that take multiple criteria into account [18]. The
fundamental principle of MCDM lies in dissecting a problem into smaller components (alternatives,
criteria, etc.) and subsequently establishing a hierarchical order among the choices, thereby enabling a
comprehensive mathematical understanding of the problem. Within the scope of this study, we under-
take a comparative analysis of two methodologies, namely TOPPSIS and VIKOR, both applied in the
context of hesitant fuzzy information. These methods are highly adaptable, easy to comprehend, and
possess a robust mathematical foundation when compared to various other MCDM approaches [19,20].

Let M1,M2, . . . ,Mn be a set of alternatives to be evaluated with respect to a set of criteria
C1, C2, . . . , Cn and let W = (w1, w2, . . . , wm) be the weight vector of all criteria. A hesitant fuzzy
decision matrix is given by











h11 h12 . . . h1m
h21 h22 . . . h2m
...

...
. . .

...
hn1 hn2 . . . hnm











,

where hij is a Hesitant Fuzzy Number (HFN) which represents the score of the alternative Ai with
regards to the criterion Cj as perceived by the decision makers.

According to [21], the TOPSIS method, when applied in the context of hesitant fuzzy information,
can be succinctly outlined through the following steps:

1. Determine the hesitant positive ideal solution (HPIS) I+ and the hesitant negative ideal solution
(HNIS) I−:

I+ = {h∗1, h
∗
2, . . . , h

∗
n},

where

h∗j = max
{

h
σ(k)
ij

∣

∣

∣
i = 1, 2, . . . ,m

}

=
{

(h1
j)

+
, (h2

j)
+
, . . . , (hl

j)
+
}

, I− =
{

h−1 , h−2 , . . . , h
−
n

}

,

h−j = min
{

h
σ(k)
ij

∣

∣

∣i = 1, 2, . . . ,m
}

=
{

(h1j )
−
, (h2j )

−
, . . . , (hlj)

−
}

,

h
σ(k)
ij is the kth smallest value in hij .

2. Calculate the separation measure Di
+ and Di

− of each alternative from the HPIS and HNIS,
respectively using hesitant Hamming distance:

D+
i =

n
∑

j=1

wj‖hij − h∗j‖, i = 1, 2, . . . ,m,

D−
i =

n
∑

j=1

wj‖hij − h−j ‖, i = 1, 2, . . . ,m,

where wj denotes the weight of jth criterion.
3. To compute the relative closeness coefficient Ci for each alternative with respect to the hesitant

ideal solution, use the following formula:

Ci =
D−

i

D+
i +D−

i

.

The alternatives are then ranked according to Ci values. The best alternative is that with the
highest Ci value.

When it comes to hesitant fuzzy VIKOR, its development process can be summarized as follows [15]:

1. Identify the HPIS I+ and the hesitant HNIS I−.
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2. Compute the values of Ri and Si

Si =

n
∑

j=1

wj

‖hij − h∗j‖

‖h−j − h∗j‖
, i = 1, 2, . . . ,m;

Ri = max
j

wj

‖hij − h∗j‖

‖h−j − h∗j‖
, i = 1, 2, . . . ,m.

3. Calculate the Qi values

Qi = ν
(Si − S+)

(S− − S+)
+ (1− ν)

(Ri −R+)

(R− −R+)
, i ∈ {1, 2, . . . ,m},

where

S+ = max
i

Si, S− = min
i

Si,

R+ = max
i

Ri, R− = min
i

Ri,

and ν represents the maximum group utility, typically set to 0.5 [22].
4. Arrange the alternatives in descending order based on the values of S, R, and Q. This process will

yield three separate ranking lists.
5. If the following two conditions are met, the compromise solution M ′ is the alternative with the

minimum value according to the Q measure:
— C1: Acceptable advantage: Q(M ′′)−Q(M ′) > 1

m−1 , M
′′ is the second-best alternative in terms

of Qi and m is the number of alternatives being compared.
— C2 : Acceptable stability in decision making: The alternative M ′ must also be the best in terms

of S and R.
6. If one of two conditions is not satisfied, a set of compromise solutions is proposed, which includes:

— Select the alternatives M ′ and M ′′ if only condition C2 is not satisfied.
— Select the alternatives M ′,M ′′, . . .M (k) if the condition C1 is not satisfied. The alternative

M (k) is determined based on the relation Q(M (k))−Q(M ′) < 1
m−1 .

5. Application in cancer prediction

In this section, the proposed approach is applied in order to compare the performance of different
machine learning models in cancer prediction. The ML models are trained with the Breast cancer
Wisconsin (diagnostic) dataset from scikit-learn library (Table 5).

Table 5. Description of Breast cancer Wisconsin dataset.

Number of Instances 569

Number of Attributes of variables 30 numeric, predictive variables and the class
Missing variable Values None

Class Distribution 212 – Malignant 357 – Benign

It is a widely used benchmark dataset for breast cancer classification. The features are computed
from digitized images of breast mass samples and represent quantitative measures of their morphological
characteristics. The dataset is labeled with binary outcomes, where 1 indicates malignant (cancerous)
and 0 indicates benign (non-cancerous) cases. The goal of using this dataset is to train machine
learning models to accurately classify breast masses as benign or malignant based on the provided
features. This dataset is widely used in research and educational settings to study and develop breast
cancer classification algorithms and assess their performance.

Five ML algorithms are trained using python scikit-learn library and according to the suggested
approach. The performances of the different models are assessed based on four criteria: accuracy,
precision, recall and F1-score. These algorithms are Logistic regression, Decision tree classifier, support
vector machine (SVM), K-Nearest Neighbors (KNN) and Random Forest.
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Logistic regression (LR) is a generalized linear regression classifier very used in binary classification.
LR uses the logistic, called also sigmoid function to predict the probability of belonging to a default
class. The assumptions of logistic regression are quite similar to those of linear regression.

The Support vector machine (SVM) is a classifier used to model linear and non-linear phenomena.
The fundamental idea is to look for the best hyperplane to separate two or more classes based on
training data.

The K-Nearest Neighbors (KNN) is one of the simplest and well-known classifiers. Its main idea is
to use all training data to predict the outcome of unlabeled data based on a similarity measure (e.g.,
Euclidian distance). Each new point is assigned to the most frequent category among its K nearest
neighbors.

Decision tree classifier is a fast classification and regression algorithm that provides a simple vi-
sualization and interpretation of data patterns. However, over-fitting is a significant feature of this
algorithm. One of several solutions to overcome this issue is the ensemble learning. The basic idea is
to develop a model that makes predictions based on a combination of multiple individual models. In
this study Random Forest algorithm was implemented.

Random forest is a popular ensemble-learning algorithm that integrates a large number of decision
tree classifiers and then selects the optimal solution by means of voting.

The obtained results are summarized in Table 6. One can notice that there is no big difference
between the performances of the used machine learning classifiers. That may be explained by the
high-quality of the data, its balanced classes, and its highly relevant features for classifying breast
cancer as malignant or benign.

Table 6. Hesitant fuzzy decision matrix for the adopted machine learning classifiers.

Model Accuracy Precision Recall F1 Score

SVM (.95, .95, .96) (.94, .95, .96) (.97, .97, .98) (.96, .96, .97)
Random forest (.95, .96, .97) (.94, .96, .97) (.97, .97, .98) (.96, .96, .97)

Logistic regression (.94, .94, .95) (.93, .94, .95) (.97, .97, .98) (.95, .95, .96)
CART (.92, .92, .93) (.92, .92, .95) (.94, .95, .96) (.94, .94, .95)
KNN (.93, .93, .94) (.92, .92, .93) (.97, .97, .97) (.95, .95.95)

To select the best machine learning model, extended versions of both TOPSIS and VIKOR methods
are implemented [15]. The weights of criteria are also calculated using an extended version of the
entropy measure under hesitant environment [17]. Let h, a hesitant fuzzy number, the hesitant fuzzy
entropy measure is given by

E(h) = S(h, hc) = 1−D2(h, h
c),

where hc = ∪γ∈h{1− γ}. The criteria weight is obtained as follows:

wj =
1− Ej

m−
∑m

j Ej

, j = 1, . . . ,m,

where Ej =
1
n

∑n
i=1E(hij), j = 1, . . . ,m.

The obtained criteria weights as well as the results of both TOPSIS and VIKOR are given in
Tables 7, 8 and 9 respectively.

Table 7. Obtained weights of criteria.

Accuracy Precision Recall F1 Score

0.245 0.245 0.259 0.251

Table 7 shows that the weights affected to the different criteria are quite similar. Tables 8 and 9
suggest that the random forest classifier is the best algorithm, followed by the SVM, and then KNN.
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Table 8. Results of the Hesitant fuzzy VIKOR.

Model S rank R rank Q rank Final rank

Random forest 0.017 0.01 0 1
SVM 0.182 0.112 0.372 —

Logistic regression 0.2 0.172 0.516 —
KNN 0.273 0.234 0.717 —
CART 0.531 0.25 1 —

Table 9. Results of the Hesitant fuzzy TOPSIS.

Model D+ D− C Final rank

Random forest 0.017 0.580 0.971 1
SVM 0.004 0.014 0.791 2

Logistic regression 0.571 0.571 0.500 4
KNN 0.008 0.012 0.587 3
CART 0.563 0.013 0.023 5

6. Conclusion

The aim of this paper was to introduce a new framework for selecting machine learning models in cancer
prediction under fuzzy environment. The adopted approach could be more practical as it considers
the uncertainty associated with performance estimates, arising from the training-testing ratio and
the random selection of datasets. By acknowledging and addressing these uncertainties head-on, this
framework opens the door to a more robust methodology for assessing ML models in cancer prediction.
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Вибiр моделей машинного навчання в умовах невизначеностi:
застосування в прогнозуваннi раку

Ламранi Алауї Ю.1, Бенмiр М.2, Абулайх Р.2
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Рак є головною глобальною причиною смертностi, з мiльйонами нових випадкiв дiа-
гностування щороку. Багато дослiдницьких статей обговорювали потенцiйнi переваги
машинного навчання (ML) у прогнозуваннi раку, включаючи покращене раннє вияв-
лення та персоналiзованi варiанти лiкування. У лiтературi також висвiтлюються про-
блеми, що постають перед цiєю сферою, наприклад, потреба у великих i рiзноманiт-
них наборах даних, а також високоефективних iнтерпретованих моделях. Метою цiєї
статтi є запропонувати новий пiдхiд до вибору та оцiнки ефективностi узагальнення
моделей ML у прогнозуваннi раку, особливо для наборiв даних обмеженого розмiру.
На оцiнки ефективностi узагальнення, як правило, впливають численнi фактори про-
тягом усього процесу навчання та тестування. Цi фактори включають вплив спiввiд-
ношення навчання та тестування, а також випадковий вибiр наборiв даних для цiлей
навчання та тестування.

Ключовi слова: прогноз раку; машинне навчання; нечiтка логiка; MCDM.
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