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In this paper, we propose a mathematical model that describes the effect of rumors on
the success of vaccination programs against Covid-19 in an environment infected by the
coronavirus. The aim of this study is to highlight the role of addressing the spread of
rumors regarding vaccination risks and booster doses in the success of vaccination programs
and in achieving herd immunity. Additionally, we formulate an optimal control problem
by proposing several strategies, including awareness and anti-rumor programs, to assist
country officials in achieving successful vaccination programs with optimal effort. The
existence of optimal controls is investigated, and Pontryagin’s maximum principle is used
to characterize them. The optimality system is solved using an iterative method. Finally,
we conduct numerical simulations to verify the theoretical analysis using Matlab.

Keywords: mathematical modeling; optimal control; rumors; vaccination; Covid-19.

2010 MSC: 97M10, 93C15, 49J15, 97A40 DOI: 10.23939/mmc2024.01.250

1. Introduction

On May 14, 1796, English doctor Edward Jenner performed the first vaccination of a young boy with
cowpox pus (or vaccinia), which immunized him against the disease [1]. Jenner became the first to
scientifically experiment with ‘vaccination’, although the concept had been practiced in various forms
prior to his work. Chinese writings from the 16th century mention the practice of inoculation, involving
deliberately injecting smallpox taken from a weakly ill patient to immunize others. This suggests that
the origins of this practice might extend back to the Middle Ages.

Since Jenner’s methods caught on in Europe, opposition to vaccines was actually based on religious
and medical beliefs at that time, which led early to rumors spreading about risks and dangers of
vaccination. French health historian Patrick Zylberman states that “The contestation of vaccination is
as old as vaccination itself” [2]. Therefore, whenever a vaccine against a new disease appears, several
rumors surface about the risks of vaccination, as is the case with vaccines against Covid-19.

Rumor is usually defined as the unconfirmed elaboration or annotation of things, events, or issues
of public interest that spread through various channels, being neither true nor false [1, 3, 4]. In the
past, rumors were disseminated orally, in magazines, and newspapers. However, with the advent of
the Internet and social media, rumors have a greater potential to spread more widely and faster than
ever before.

Rumors can shape public opinion and influence the opinions and beliefs of individuals, which may
lead to changes in individuals’ attitudes towards various health, economic, political and social issues.
Therefore, understanding the dynamics of the spread of rumors and how to effectively control and curb
their spread is a topic worth investigating.
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Since the announcement vaccines production against Covid-19 and their approval by the World
Health Organization [5], many rumors have emerged about vaccination and its health risks. For
example, we cite the following rumors: “I have already had Covid-19, so I do not need to get the
vaccine”, “the vaccine may cause infertility”, “the mRNA vaccine will alter my DNA.”, “the vaccines
were rushed and there has not been enough testing.” and “the vaccines are not safe for people with
allergies”. Rumors spread faster more than truth [6], which has a negatively affects for the success of
vaccination programs.

The statistics depicted in (Figure 1) illustrate the progress of vaccinations in selected countries
around the world.

Through this graph, we see discrepancies in the speed of progress of vaccination programs, par-
ticularly in developing countries and in certain African countries, where illiteracy and ignorance are
prevalent. Such conditions facilitate the spread of rumors about the risks of vaccination and booster
doses. This has been confirmed by many officials of these countries during their statements and press
conferences. Rumors spread in these countries due to many reasons including: lack of confidence, fear
of the unknown, illiteracy and lack of awareness, and also lack of information.

Fig. 1. Share of people vaccinated against Covid-19 in some countries.

From these data and other statistics, we conclude that besides the efforts made to provide the
vaccine and facilitate access to it, it is also necessary to work on resisting and dealing with the rumors
that impedes citizens’ from getting vaccination and take booster doses. If rumors are not adequately
combated, they will inevitably hamper the objective of achieving collective immunity.

The classical mathematical model of rumor spreading was introduced by Daley and Kendal [7, 8].
Based on the SIR epidemic model, the population is subdivided into three groups: those who are
unaware of the rumor (ignorants), those who spread the rumor (spreaders), and those who are aware
of the rumor but choose not to spread it (stiflers). Following Daley and Kendal’s work, several studies
and mathematical models have been introduced to address this issue from different angles using various
approaches ( [9–16] and the references mentioned therein). Several mathematical modeling studies have
emerged that aim to use different methods and approaches to understand the coronavirus, describe
its dynamics, and also propose optimal strategies in order to succeed in the vaccination programs.
However, they have not taken into account the impact of the spread of rumors on the success of
vaccination programs. We cite for example, [17–22].
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In this study, we propose a mathematical model that describes the spread of rumors about vaccina-
tion and the risks of the booster doses in an environment infected by Covid-19. The aim is to emphasize
the importance of combining two measures: dealing with the spread of rumors and awareness programs
about the necessity of vaccination. We propose optimal control strategies in order to maximize the
number of vaccinated individuals during the time interval [t0, tf ] and also to minimize the cost spent on
this strategy. To achieve this objective, we include two controls u1 and u2. The control u1 represents
the effort of combating the spread of rumors about the vaccination against Covid-19. The control
u2 represents the effort of awareness campaigns to encourage people to get vaccinated and complete
the doses. The optimal control problem is formulated and the existence of the optimal controls is
investigated. The Pontryagin’s maximum principle is used to characterize the optimal controls and the
optimality system is solved by an iterative method. Finally, some numerical simulations are performed
to verify the theoretical analysis using Matlab.

The paper is organized as follows. In section 2, we present the proposed mathematical model and
we give some basic properties of the model. In section 3, we present the optimal control problem
for the proposed model where we give some results concerning the existence of the optimal controls
and we characterize these optimal controls using Pontryagin’s maximum principle. Also, in section 4,
numerical simulations are presented. Finally, we conclude the paper in section 5.

2. Mathematical model

We consider a mathematical model that describes the spread of rumors about vaccination and booster
doses in an environment where Corona virus is transmitted among individuals. We also consider the
impact of rumors spread on the success of the vaccination programs.

We divide the population denoted by N into seven compartments:

— The compartment Sp represents the individuals who are likely to be infected with Covid-19 and
at the same time they spread rumors about the risks of vaccination and booster doses. This
compartment is increased by a recruitment rate Λ and by a portion of individuals who decide not
to be vaccinated by booster doses, either due to a personal conviction at a rate α8, or due to effective
contact with individuals of the compartment Sp at a rate δ8. The Sp compartment is decreased by
a portion of susceptible individuals who have been infected with Covid-19 due to effective contact
with individuals of ISp and ISt respectively at a rate β1 and β2. Also, this compartment is decreased
by a natural death rate µ and by the portion of individuals who decide to stop sharing rumors about
vaccination, either by personal will at a rate α1, or by a positive effect of individuals of St on the
compartment Sp at a rate δ1.

— The compartment St represents the individuals who are likely to be infected with Covid-19 and at
the same time they stop the spread of rumors about vaccination. This compartment is increased
by the individuals of Sp who decide to stop sharing rumors at rates α1 and δ1. It is decreased by
a natural death rate µ and by a rate α7 of individuals who decide to be vaccinated. Also, this
compartment is decreased by the portion of individuals of susceptible individuals who have been
infected with Covid-19 due to effective contact with individuals of ISp and ISt respectively at a rate
β3 and β4.

— The compartment ISp represents the individuals infected by Corona virus and at the same time
they are spreaders of rumors about vaccination and booster doses. This compartment is increased
by the new infected individuals of compartment Sp, and decreased by a natural death rate µ and
the infected people who decide to stop spreading the rumors. It is also decreased by the positive
effect of individuals of the compartments ISt , St and RSt a rate respectively δ2, δ3 and δ4.

— The compartment ISt represents the individuals infected by Corona virus and are stiflers of rumors
about vaccination and booster doses. This compartment is increased by the individuals infected by
Corona virus who stop the spread of the rumors. It is decreased by recovered individuals at rate
α5 and also by a natural death rate µ.

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 250–263 (2024)



The impact of rumors on the success of Covid-19 vaccination programs in a Coronavirus-infected . . . 253

— The compartment RSp represents the recovered individuals who still spread rumors about vaccina-
tion. This compartment is increased by the newly recovered of ISp at rate α4 and it is decreased
by the individuals who decide to stop spreading rumors due to a personal conviction at rate α3, or
due to the effect of individuals of the compartments RSt , ISt and St respectively at rates δ5, δ6 and
δ7. It is also decreased by a natural death rate µ.

— The compartment RSt represents the recovered individuals who are also stifler of rumors about
vaccination and booster doses. This compartment is increased by the individuals of RSp who stop
the spread of the rumors. It is decreased by a natural death rate µ and by the individuals moving
to vaccination program at a rate α6.

— The compartment V represents the individuals vaccinated with the first dose or with the booster
doses. This compartment is increased by the individuals of St and RSt who are decided to be
vaccinated at rate respectively α7 and α6. It is decreased by a natural death rate µ, and by a
portion of individuals who decide not to be vaccinated by booster doses, either due to personal
conviction at a rate α8, or due to the effect of individuals of the compartment Sp at a rate δ8.

The variables Sp(t), St(t), ISp(t), ISt(t), RSp(t), RSt(t), and V (t) are the numbers of the individuals
in the seven classes at time t, respectively. The unit of time can correspond to periods, years, months;

Fig. 2. Diagram transfer.

it depends on the frequency
of the survey studies as
needed. The graphical rep-
resentation of the proposed
model is shown in Figure 2.

Where ψ1 = β1ISp +
β2ISt , ψ2 = β3ISp + β4ISt ,
ϕ1 = δ2ISt + δ3St + δ4RSt

and ϕ2 = δ5RSt + δ6ISt +
δ7St.

The total population
size at time t is denoted by
N(t) with N(t) = Sp(t) +
St(t) + ISt(t) + ISp(t) +
RSp(t)+RSt(t)+V (t). The
dynamics of this model are
governed by the following
nonlinear system of differ-
ential equations:



























































































Ṡp(t) = Λ−
Sp(t)

N
[ψ1(t) + δ1St(t)− δ8V (t)]− (µ+ α1)Sp(t) + α8V (t),

Ṡt(t) =
St(t)

N
[δ1Sp(t)− ψ2(t)] + α1Sp(t)− (µ+ α7)St(t),

İSp(t) =
Sp(t)

N
ψ1(t)−

ISp(t)

N
ϕ1(t)− (µ+ α2 + α4) ISp(t),

İSt(t) =
St(t)

N
[ψ2(t)] +

ISp(t)

N
ϕ1(t) + α2ISp(t)− (µ+ α5) ISt(t),

ṘSp(t) = α4ISp(t)−
RSp(t)

N
ϕ2(t)− (µ+ α3)RSp(t),

ṘSt(t) = α3RSp(t) +
RSp(t)

N
ϕ2(t) + α5ISt(t)− (µ+ α6)RSt(t),

V̇ (t) = α6RSt(t) + α7St(t)− V (t)

[

δ8
Sp(t)

N
+ α8

]

− µV (t),

(1)

where Sp0 > 0, St0 > 0, ISp0 > 0, ISt0 > 0, RSp > 0, RSt > 0, and V0 > 0 are the given initial states.
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2.1. Some proprieties of the model

2.1.1. Boundedness of trajectories

The trajectories of the system (1) are bounded. Indeed, by adding all equations in (1), we obtain
dN

dt
6 Λ− µN.

Thus,

N(t) 6 N(0) exp(−µt)−
Λ

µ
(1− exp(−µt)) ,

where N(0) represents the initial values of the total population. Thus lim
t→∞

supN(t) = Λ
µ . It implies

that all possible solutions of the system (1) enter the region

Ω =

{

(

Sp(t), St(t), ISp(t), ISt(t), RSp(t), RSt(t), V (t)
)

∈ R
7
+, 0 6 N(t) 6

Λ

µ

}

.

2.1.2. Existence of solutions

The system (1) can be rewritten as follows

Ẋ(t) = AX(t) +B(X(t))

= F (X(t)),

where
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














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a1 0 0 0 0 0 0
α1 a2 0 0 0 0 0
0 0 a3 0 0 0 0
0 0 α2 a4 0 0 0
0 0 α4 0 a5 0 0
0 0 0 α5 α3 a6 0
0 α7 0 0 0 α6 −µ
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


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a1 = − (µ+ α1) ,
a2 = − (µ+ α7) ,
a3 = − (µ+ α2 + α4) ,
a4 = − (µ+ α5) ,
a5 = − (µ+ α3) ,
a6 = − (µ+ α6)

and

B(X(t)) =
[

b1 b2 b3 b4 b5 b6 b7
]T
,
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



b1 = Λ−
Sp(t)

N

[

β1ISp(t) + β2ISt(t) + δ1St(t)− δ8V (t)
]

,

b2 =
St(t)

N

[

δ1Sp(t)− β3ISp(t)− β4ISt(t)
]

+ α1Sp(t),

b3 =
Sp(t)

N

[

β1ISp(t) + β2ISt(t)
]

−
ISp(t)

N
[δ2ISt(t) + δ3St(t) + δ4RSt(t)] ,

b4 =
St(t)

N

[

β3ISp(t) + β4ISt(t)
]

+
ISp(t)

N
[δ2ISt(t) + δ3St(t) + δ4RSt(t)] ,

b5 = −
RSp(t)

N
[δ5RSt(t) + δ6ISt(t) + δ7St(t)] ,

b6 =
RSp(t)

N
[δ5RSt(t) + δ6ISt(t) + δ7St(t)] ,

b7 = −V (t)

[

δ8
Sp(t)

N
+ α8

]

,

X(t) =
[

Sp St ISp ISt RSp RSt V
]T
.

The function B satisfies

‖B (X1(t))−B (X2(t))‖ 6M ‖X1(t)−X2(t)‖ ,

where M is a positive constant.
Moreover,

‖F (X1(t))− F (X2(t))‖ 6 L ‖X1(t)−X2(t)‖ ,

where L = max (‖A‖,M).
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Thus, it follows that the function F is uniformly Lipschitz continuous, we conclude that the solution
of the system (1) exists (see [23]).

3. Optimal Control Problem

3.1. Problem statement

Immediately after the emergence of vaccination against Covid-19, several countries rushed to launch
vaccination programs to achieve collective immunity against Corona virus. However, given the statistics
indicated in the introduction, many countries still suffer from low citizen demand for vaccination or
even completion of the second and third dose. Several factors result in this low demand, including the
significant spread of rumors about vaccination and its health complications.

Therefore, successful vaccination programs require resisting the spread of rumors in parallel with
awareness campaigns to encourage people to be vaccinated.

Achieving this objective necessitates developing optimal strategies for awareness programs and anti-
rumors programs that help countries to achieve successful vaccination programs with optimal effort.
The effort made always involves time, logistics, money, and human resources. So, our objective in this
proposed strategy of control is to maximize the number of vaccinated V (t) during the time interval
[t0, tf ] and also to minimize the cost spent on this strategy.

In the model (1), we include two controls u1(t) and u2(t) for t ∈ [t0, tf ]. The control u1 represents
the effort provided to combat the spread of rumors about the vaccination against Covid-19. The
control u2 represents the effort of awareness campaigns to encourage people to vaccination programs
and complete the doses.

So, the controlled mathematical system is given by the following system of differential equations:
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Ṡp(t) = Λ−
Sp(t)

N
[ψ1(t) + δ1St(t)− δ8(1− u2(t))V (t)]− (µ+ α1 + u1(t))Sp(t)

+α8(1− u2(t))V (t),

Ṡt(t) =
St(t)

N
[δ1Sp(t)− ψ2(t)] + (α1 + u1(t))Sp(t)− (µ+ α7 + u2(t))St(t),

İSp(t) =
Sp(t)

N
ψ1(t)−

ISp(t)

N
ϕ1(t)− (µ+ α2 + α4 + u1(t))ISp(t)

İSt(t) =
St(t)

N
[ψ2(t)] +

ISp(t)

N
ϕ1(t) + (α2 + u1(t))ISp(t)− (µ + α5)ISt(t),

ṘSp(t) = α4ISp(t)−
RSp(t)

N
ϕ2(t)− (µ + α3 + u1(t))RSp(t),

ṘSt(t) = (α3 + u1(t))RSp(t) +
RSp(t)

N
ϕ2(t) + α5ISt(t)− (µ+ α6 + u2(t))RSt(t),

V̇ (t) = α6RSt(t) + α7St(t)− (1− u2(t))V (t)

[

δ8
Sp(t)

N
+ α8

]

− µV (t)

+u2(t)(St(t) +RSt(t)),

(2)

where Sp0 > 0, St0 > 0, ISp0
> 0, ISt0

> 0, RSp0
> 0, RSt0

> 0, and V0 > 0 are the given initial states.
Then, the problem is to minimize the objective functional

J(u1, u2) = −V (tf ) +

∫ tf

t0

[

−V (s) +
A

2
u21(s) +

B

2
u22(s)

]

ds.

Where the parameters A and B are the strictly positive cost coefficients. They are selected to weight
the relative importance of u1 and u2 at time t; tf is the final time.

In other words, we seek the optimal controls u1 and u2 such that

J(u∗1, u
∗
2) = min

(u1,u2)∈U2

ad

J(u1, u2).

Where Uad is the set of admissible controls defined by

Uad =
{

ui(t) : 0 6 ui 6 1, for i = 1, 2 and t ∈ [t0, tf ]
}

.
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3.2. Existence of the optimal controls

The existence of the optimal controls can be obtained using a result by Fleming and Rishel [24] (see
Corollary 4.1).

Theorem 1. Consider the control problem with system (2). There exists an optimal control
(u∗1, u

∗
2) ∈ U2

ad such that J(u∗1, u
∗
2) = min

(u1,u2)∈U2

ad

J(u1, u2). If the following conditions are met:

1) The set of controls and corresponding state variables is nonempty.
2) The control set Uad is convex and closed.
3) The right-hand side of the state system is bounded by a linear function in the state and control

variables.
4) The integrand, L(Sp, St, ISp , ISt , RSp , RSt , V, u1, u2), of the objective functional is convex on Uad

and there exist constants c1, c2 ≻ 0 and β ≻ 1 such that

L(Sp, St, ISp , ISt , RSp , RSt , V, u1, u2) > −c1 + c2
(

|u1|
2 + |u2|

2
)β/2

.

Proof. Condition 1:

To prove that the set of controls and corresponding state variables is nonempty, we use a simplified
version of an existence result ( [25] Theorem 7.1.1).

Let Ṡp = FSp(t;Sp, . . . , V ), . . . , V̇ = FV (t;Sp, . . . , V ), where the FSp , . . . , FV form the right hand
side of the system of equations (2). Let ui(t) = Ci for i = 1, 2 for some constant, and since all
parameters are constants and Sp, St, ISp , ISt , RSp , RSt and V are continuous, then FSp , . . . , FV are also
continuous.

Additionally, the partial derivatives ∂FSp/∂Sp, . . . , ∂FSp/∂V ; . . . ; ∂FV /∂Sp, . . . , ∂FV /∂V are all
continuous. Therefore, there exists a unique solution (Sp, St, ISp , ISt , RSp , RSt , V ) that satisfies the
initial conditions. Then, the set of controls and corresponding state variables is nonempty and condi-
tion 1 is satisfied.

Condition 2: By definition, Uad is closed. Take any controls u, v ∈ Uad and λ ∈ [0, 1], then
0 6 λu+ (1− λ) v.

Additionally, we observe that λu 6 λ and (1−λ)v 6 (1−λ), then λu+(1−λ)v 6 λ+(1−λ) = 1.
Hence,

0 6 λu+ (1− λ)v 6 1 for all u, v ∈ Uad and λ ∈ [0, 1].

Therefore, Uad is convex and condition 2 is satisfied.
Condition 3: From the system of differential equations (2), we have

dN

dt
6 Λ− µN.

Then

lim sup
t→∞

N(t) 6
Λ

µ

Therefore, all solutions of the model (2) are bounded. So, there exist positive constants B1, B2, B3,
B4, B5, B6, and B7 such that, ∀t ∈ [t0, tf ] :

Sp(t) 6 B1, St(t) 6 B2, ISp(t) 6 B3, ISt(t) 6 B4, RSp(t) 6 B5, RSt(t) 6 B6, and V (t) 6 B7.

We consider,

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Ṡp(t) = FSp 6 Λ +K1,

Ṡt(t) = FSt 6 Sp(t)K2 + u1(t)B1,

İSp(t) = FISp
6 ISp(t)K3 +K4,

İSt(t) = FISt
6 ISt(t)K5 +K6 + u1(t)B3,

ṘSp(t) = FRSp
6 ISp(t)K7 + u1(t)B5,

ṘSt(t) = FRSt
6 RSt(t)K8 +K9,

V̇ (t) = FV 6 St(t)K10 +K11 + u2(t)(B2 +B6),

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 250–263 (2024)



The impact of rumors on the success of Covid-19 vaccination programs in a Coronavirus-infected . . . 257

where
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B1B4

N
,

K5 = β4
B2

N
+ δ2

B3

N ,



























































K6 =
1

N
[2δ3B3B2 + δ4B3B5 + α2B3] ,

K7 = α4,

K8 = δ5
B5

N
,

K9 =
1

N
[δ6B5B4 + δ7B5B2 + α3B5] ,

K10 = α7,

K11 = α6B7.

So, we can rewrite the system (2) in a matrix form:

F (t;Sp, . . . , V ) 6 Λ̄ +AX(t) +BU(t),

where

F (t;Sp, . . . , V ) =
[

FSp FSt FISp
FISt

FRSp
FRSt

FV

]T
,

Λ̄ =
[

Λ+K1 0 K4 K6 0 K9 K11

]T
,

X(t) =
[

Sp St ISp ISt RSp RSt V
]T
,

U(t) =
[

u1 u2
]T

A =





















0 0 0 0 0 0 0
K2 0 0 0 0 0 0
0 0 K3 0 0 0 0
0 0 0 K5 0 0 0
0 0 K7 0 0 0 0
0 0 0 0 0 K8 0
0 K10 0 0 0 0 0





















, B =





















0 0
B1 0
0 0
B3 0
B5 0
0 0
0 B2 +B6





















,

which gives a linear function of controls vector and state variables vector. Therefore we can write

‖F (t;Sp, . . . , V )‖ 6
∥

∥Λ̄
∥

∥+ ‖A‖ ‖X(t)‖ + ‖B‖ ‖U(t)‖

6 ϕ+ φ (‖X(t)‖ + ‖U(t)‖) ,

where ϕ =
∥

∥Λ̄
∥

∥ and φ = max (‖A‖, ‖B‖). Hence, we see the right hand side of the state system is
bounded by a sum of state and control vector. Therefore, condition 3 is satisfied.

Condition 4: The integrand in the objective functional (2) is convex on Uad. It rests to show that
there exist constants c1, c2 ≻ 0 and β ≻ 1 such that the integrand L(Sp, . . . , V, u1, u2) of the objective
functional satisfies

L(Sp, . . . , V, u1, u2) = −V (t) +
M

2
u21 +

N

2
u22

> −c1 + c2
(

|u1|
2 + |u2|

2
)β/2

.

The state variables being bounded, let c1 = sup
t∈[t0,tf ]

(V (t)), c2 = inf
(

M
2 ,

N
2

)

and β = 2 then it

follows that
L(Sp, . . . , V, u1, u2) > −c1 + c2

(

|u1|
2 + |u2|

2
)β/2

. �

3.3. Characterization of the optimal controls

To characterize the optimal controls for our problem, we apply the Pontryagin’s Maximum Princi-
ple [26]. The key idea is introducing the adjoint function to attach the system of differential equations
to the objective functional resulting in the formation of a function called the Hamiltonian. This prin-
ciple converts the problem of finding the control to optimize the objective functional subject to the
state differential equations with initial condition to find the control to optimize Hamiltonian pointwise
(with respect to the control).
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Now, we have the Hamiltonian H in time t, defined by

H(t) = −V (t) +
M

2
u21(t) +

N

2
u22(t) +

7
∑

i=1

λifi,

where fi is the right side of the system of differential equations (2) of the ith state variable.

Theorem 2. Given an optimal control u∗ = (u∗1, u
∗
2) ∈ U2

ad, and solutions S∗
p , S

∗
t , I

∗
Sp

, I∗St
, R∗

Sp
, R∗

St

and V ∗ of corresponding state system (2), there exist adjoint functions, λ1, λ2, λ3, λ4, λ5, λ6, and λ7
satisfying























































































































































































λ̇1 = λ1

{

1

N
[ψ1(t) + δ1St(t)− δ8(1− u2(t))V (t)] + (µ+ α1 + u1(t))

}

−λ2

{

δ1
St(t)

N
+ (α1 + u1(t))

}

− λ3

{

1

N
ψ1(t)

}

,

λ̇2 = λ1

{

δ1
Sp(t)

N

}

− λ2

{

1

N
[δ1Sp(t)− ψ2(t)]− (µ+ α7 + u2(t))

}

+ λ3

{

δ3
ISp(t)

N

}

−λ4

{

1

N
ψ2(t) + δ3

ISp(t)

N

}

+ λ5

{

δ7
RSp(t)

N

}

− λ6

{

δ7
RSp(t)

N

}

− λ7 {α7 + u2(t)} ,

λ̇3 = λ1

{

β1
Sp(t)

N

}

+ λ2

{

β3
St(t)

N

}

− λ3

{

β1
Sp(t)

N
−

1

N
ϕ1(t)− (µ+ α2 + α4 + u1(t))

}

−λ4

{

β3
St(t)

N
+

1

N
ϕ1(t) + (α2 + u1(t))

}

− λ5 {α4} ,

λ̇4 = λ1

{

β2
Sp(t)

N

}

+ λ2

{

β4
St(t)

N

}

− λ3

{

β2
Sp(t)

N
− δ2

ISp(t)

N

}

−λ4

{

β4
St(t)

N
+ δ2

ISp(t)

N − (µ+ α5)

}

+ λ5

{

δ6
RSp(t)

N

}

− λ6

{

δ6
RSp(t)

N
+ α5

}

λ̇5 = λ5

{

1

N
ϕ2(t) + (µ+ α3 + u1(t))

}

− λ6

{

(α3 + u1(t)) +
1

N
ϕ2(t)

}

λ̇6 = λ3

{

δ4
ISp(t)

N

}

− λ4

{

δ4
ISp(t)

N

}

+ λ5

{

δ5
RSp(t)

N

}

−λ6

{

δ5
RSp(t)

N
− (µ+ α6 + u2(t))

}

− λ7 {α6 + u2(t)}

λ̇7 = −1− λ1(1− u2(t))

{

δ8
Sp(t)

N
+ α8

}

+ λ7

{

(1− u2(t))

[

δ8
Sp(t)

N
+ α8

]

+ µ

}

with the transversality conditions at time tf

λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = λ6(tf ) = 0 and λ7(tf ) = −1.

Furthermore, for t ∈ [t0, tf ] the optimal controls u∗1(t) and u∗2(t) are given by

u∗1(t) = min

(

1,max

(

0,
1

M

[

(λ1 − λ2)Sp(t) + (λ3 − λ4)ISp(t) + (λ5 − λ6)RSp(t)
]

))

,

u∗2(t) = min

(

1,max

(

0,
1

N

[

(λ2 − λ7)St(t) + (λ6 − λ7)RSt(t) + (λ1 − λ7)

{

V (t)

[

δ8
Sp(t)

N
+ α8

]}]))

.

Proof. The Hamiltonian in time t is given by

H = −V (t) +
M

2
u21(t) +

N

2
u22(t)

+ λ1

{

Λ−
Sp(t)

N
[ψ1(t) + δ1St(t)− δ8(1− u2(t))V (t)]− (µ+ α1 + u1(t))Sp(t) + α8(1− u2(t))V (t)

}

+ λ2

{

St(t)

N
[δ1Sp(t)− ψ2(t)] + (α1 + u1(t))Sp(t)− (µ+ α7 + u2(t))St(t)

}
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+ λ3

{

Sp(t)

N
ψ1(t)−

ISp(t)

N
ϕ1(t)− (µ + α2 + α4 + u1(t))ISp(t)

}

+ λ4

{

St(t)

N
[ψ2(t)] +

ISp(t)

N
ϕ1(t) + (α2 + u1(t))ISp(t)− (µ+ α5)ISt(t)

}

+ λ5

{

α4ISp(t)−
RSp(t)

N
ϕ2(t)− (µ+ α3 + u1(t))RSp(t)

}

+ λ6

{

(α3 + u1(t))RSp(t) +
RSp(t)

N
ϕ2(t) + α5ISt(t)− (µ+ α6 + u2(t))RSt(t)

}

+ λ7

{

α6RSt(t) + α7St(t)− (1− u2(t))V (t)

[

δ8
Sp(t)

N
+ α8

]

− µV (t) + u2(t) (St(t) +RSt(t))

}

.

For t ∈ [t0, tf ], the adjoint equations and transversality conditions can be obtained by using Pon-
tryagin’s Maximum Principle given in [26] such that



























































































λ̇1 = −
∂H

∂Sp
, λ1(tf ) = 0,

λ̇2 = −
∂H

∂St
, λ2(tf ) = 0,

λ̇3 = −
∂H

∂ISp

, λ3(tf ) = 0,

λ̇4 = −
∂H

∂ISt

, λ4(tf ) = 0,

λ̇5 = −
∂H

∂RSp

, λ5(tf ) = 0,

λ̇6 = −
∂H

∂RSt

, λ6(tf ) = 0,

λ̇7 = −
∂H

∂V
, λ7(tf ) = −1.

For t ∈ [t0, tf ], the optimal controls u∗1(t) and u∗2(t) can be solved from the optimality condition,

∂H

∂u1
= 0 and

∂H

∂u2
= 0.

that is

u1(t) =
1

M

[

(λ1 − λ2)Sp(t) + (λ3 − λ4)ISp(t) + (λ5 − λ6)RSp(t)
]

,

u2(t) =
1

N

[

(λ2 − λ7)St(t) + (λ6 − λ7)RSt(t) + (λ1 − λ7)

{

V (t)

[

δ8
Sp(t)

N
+ α8

]}]

.

By the bounds in Uad of the controls, it is easy to obtain u∗1(t) and u∗2(t) in the form of (2). �

4. Numerical simulation

In this section, we present the results obtained by solving the optimality system numerically. In
our control problem, we have initial conditions for the state variables and terminal conditions for
the adjoints. That is, the optimality system is a two-point boundary value problem with separated
boundary conditions at times step i = t0 and i = tf . We solve the optimality system by an iterative
method with forward solving of the state system followed by backward solving of the adjoint system.
We start with an initial guess for the controls at the first iteration and then before the next iteration, we
update the controls by using the characterization. We continue until convergence of successive iterates
is achieved. A code is written and compiled in Matlab using the following data: Sp(0) = 8 · 106,
St(0) = 4 · 106, ISp(0) = 300, ISt(0) = 700, RSp(0) = 0.4 · 106, RSt(0) = 0.6 · 106, and V (0) = 1 · 106,
Λ = 756, µ = 0.054, α1 = 0.15, α2 = 0.02, α3 = 0.01, α4 = 0.09, α5 = 0.21, α6 = 0.40, α7 = 0.40,
α8 = 0.75, β1 = 0.30, β2 = 0.15, β3 = 0.45, β4 = 0.20, δ1 = 0.10, δ2 = 0.02, δ3 = 0.03, δ4 = 0.04,
δ5 = 0.06, δ6 = 0.07, δ7 = 0.07, δ8 = 0.85.

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 250–263 (2024)



260 Balatif O., Kouidere A., Kada D., Rachik M.

We note here that it is possible to use statistical data for a specific country or region in order to
derive conclusions specific to that country or region. This matter requires statistical studies related
to the subject being studied, which can be worked on in a future study. In this work, we only give
general and arbitrary values for the variables and parameters. Eventually, the purpose is to put forward
general conclusions and recommendations and examples of controls strategies that can be adopted as
well as to compare between them and their effects.

The proposed control strategies in this work help country officials to achieve successful vaccination
programs with optimal effort in order to achieve collective immunity and thus approaching to the
elimination of the Corona virus:

Strategy 1: The awareness campaigns about the importance of vaccination.
In this strategy, we focus on the effort of awareness campaigns to encourage people to be vaccinated

and complete the booster doses. We use only the optimal control u2.

Fig. 3. The evolution of the number of vaccinated and the infected individuals with optimal control u2.

From these figures, we observe that the number of vaccinated individuals has increased from 1 · 106

to 6.08 · 106 at the end of this awareness campaign (Figure 3) by a difference of 5.03 · 106 vaccinated
individuals between case with control and the case without control. Also, the number of infected
individuals decreased by 38.06% after introducing the optimal control. These changes are important
but not sufficient to make the vaccination programs successful and combat the spread of the Corona
virus. Therefore, we must also target the reasons that prevent people from getting vaccinated, especially
the spread of rumors by this strategy of control.

Strategy 2: Combining awareness campaigns and confronting rumors.

Fig. 4. The evolution of the number of vaccinated and the infected individuals with optimal controls u1 and u2.

In this strategy, we focus, beside the awareness campaigns, on confronting the spread of rumors
about vaccination and booster doses. We use two optimal controls u1 and u2 at the same time in order
to improve the results of strategy 1 about the vaccinated and infected rates. The optimal control u1
represents the effort provided to combat the spread of rumors about the vaccination against Covid-19.
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From Figure 4, we can see that the number of vaccinated individuals increased more significantly
from 1 · 106 to 11.2 · 106. The number of the vaccinated people at the end of the strategy reaches 80%
of the population, which can lead to collective immunity. Also, Figure 4 demonstrates that the number
of infected decreased by 97.69% at the end of this optimal strategy.

Finally, we conclude that the proposed strategy becomes more effective and can lead to collective
immunity when we combined the awareness campaigns about the importance of vaccination and the
programs of confronting the spread of rumors about risks of vaccination and booster doses.

5. Conclusion

In this work, we formulated a mathematical model that describes the effect of rumors on the success of
the vaccination programs against Covid-19 in an environment infected by Corona virus. The objective is
to highlight the importance of confronting the spread of rumors about risks of vaccination and booster
doses, in order to better execute the vaccination programs and achieve collective immunity. Also,
we proposed optimal strategies for awareness programs and anti-rumors programs that help country
officials to achieve successful vaccination programs with optimal effort. We introduced two controls;
the first control represents the effort provided to combat the spread of rumors about the vaccination
against Covid-19. The second control represents the effort of awareness campaigns to encourage people
to be vaccinated and complete the doses. The optimal control problem is formulated and the existence
of the optimal controls is investigated. Pontryagin’s maximum principle was used to characterize the
optimal controls and the optimality system was solved by an iterative method.

Consequently, the proposed mathematical modeling and the optimal control strategies confirm
that to better execute a vaccination program and to reach collective immunity against the Corona
virus, we must combine awareness campaigns about the importance of vaccination and the program of
confronting the spread of rumors about risks of vaccination and booster doses.
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У цiй статтi запропоновано математичну модель, що описує вплив чуток на успiх
програм вакцинацiї проти Covid-19 у середовищi, яке заражене коронавiрусом. Ме-
та цього дослiдження полягає в тому, щоб пiдкреслити роль боротьби з поширенням
чуток щодо ризикiв вакцинацiї та бустерних доз в успiху програм вакцинацiї та досяг-
неннi колективного iмунiтету. Крiм того, сформульовано задачу оптимального керу-
вання, пропонуючи декiлька стратегiй, включаючи програми пiдвищення обiзнаностi
та боротьби з чутками, щоб допомогти офiцiйним особам країни досягти успiшних
програм вакцинацiї з оптимальними зусиллями. Дослiджено iснування оптимальних
керувань i для їх характеристики використано принцип максимуму Понтрягiна. Си-
стема оптимальностi розв’язується iтерацiйним методом. Нарештi, здiйснено чисельне
моделювання для перевiрки теоретичного аналiзу за допомогою Matlab.

Ключовi слова: математичне моделювання; оптимальний контроль; чутки;

щеплення; Covid-19.
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