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Abstract. In astronomical research, the problem of measuring the trajectories of the gravitational maneuver of space vehi- 

cles in the gravitational field of large celestial bodies arises. The known measurement results differ from those predicted by classi- 

cal celestial mechanics. A practical solution to this anomaly is possible only based on an adequate mathematical model. For this 

purpose, we have adapted Newton’s law of universal gravitation to the case of moving masses in a possible range of speeds in flat 

space and physical time. At the same time, the finite speed of propagation of the gravitational field is taken into account. The dif- 

ferential equations of motion of cosmic bodies have been obtained. In the heliocentric and planetocentric coordinate systems, tran- 

sient processes in the cosmic three-mass system are simulated – star, planet, and man-made spacecraft (Sun-Mercury-space probe). 

To more deeply identify the essence of gravitational interaction, transient processes of both acceleration and deceleration of the 

space vehicle were simulated depending on the specified space-velocity initial conditions for the differential equations of motion. 

The results of the simulation of transient processes are attached. 

Key words: Gravitational maneuver anomaly, Euclidean space, physical time, Newton’s law of gravitation of moving 

masses, differential equations of motion of celestial bodies, and cosmic three-body system. 

 

1. Introduction 

The article is a direct addition to the work [1] 

published on the pages of this magazine, devoted to the 

refutation of the anomaly of the movement of the Pio- 

neer spacecraft in the Sun’s gravitational field. A similar 

solution to the problem of the anomaly in the passive 

gravitational maneuver of spacecraft in the gravitational 

field of large celestial bodies is proposed here. Gravita- 

tional maneuver or slingshot effect is an acceleration, 

deceleration, or change in the direction of flight of a 

spacecraft under the influence of the gravitational fields 

of celestial bodies. It is used to save fuel and achieve 

high speeds during flights of automatic interplanetary 

stations to distant planets of the Solar System [2-3]. 

Thus, the kinetic energy of the spacecraft can be changed 

without fuel consumption. The most profitable gravita- 

tional maneuvers are near giant planets, but most often 

maneuvers occur near Venus, Earth, Mars, and even the 

Moon. 

Yury Kondratyuk, who was murdered by the same Rus- 

sians. As early as 1918, in his work “To Those Who Will 

Read to Build” (printed in 1937), he proposed that a 

spacecraft traveling between two planets could acceler- 

ate at the beginning of its trajectory and slow down at 

the end of it with the help of gravity heavenly bodies. 

 

2. Goal 

Considering the finite speed of propagation of the 

gravitational field, to develop on a strict mathematical 

basis the nonlinear differential equations of motion of 

celestial bodies; based on the results of their integration, 

to obtain mathematical criteria for the passive gravita- 

tional maneuver of space vehicles in the gravitational 

field of a 3-body space system and to carry out its simu- 

lation in dynamics. 

 

3. The equation of motion of celestial 

bodies 

It is believed that the first gravitational maneuver 

was carried out in 1974 by the Mariner-10 spacecraft – it 

approached Venus, after which the spacecraft headed for 

Mercury. A complex combination of gravitational ma- 

neuvers was used by the automatic interplanetary station 

Cassini. For acceleration, the device used the gravita- 

tional field of three planets – Venus (twice), Earth, and 

Successful mathematical modeling of transient 

processes of the gravitational maneuver of spacecraft in 

Euclidean space and physical time is possible only based 

on the equations of celestial mechanics, in which New- 

ton’s law adapted to the case of moving masses is in- 

volved [4-6]. The differential equations of moving n 

masses interconnected by gravity are the following: 

Jupiter. The Russians, as usual, pull the blanket of su- 

premacy over themselves in hindsight. The idea of the 
 dvi  

= 
 1  

dt m  Fik ; 
 dri  

dt = vi , i, k = 1, 2,..., n, (1) 

gravity maneuver belongs to the Ukrainian scientist i k =1;k i 
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where ri , vi is the radius vector of the trajectory 4. Applied part of the problem 

and the velocity vector of the i-th mass mi ; Fik is the For the sake of certainty, let’s consider the tran- 

vector of the gravitational interaction of the i-th and the 

k-th masses; t is the time. Equations (1) require explana- 

tion, as they may be about sub-light velocities. Func- 

tional dependence  m = m(v) is one of the unfortunate 

sient process of the interaction of three cosmic bodies: 

the Sun m1 , Jupiter m2 , and a man-made spacecraft m3 . 

The balance of forces (1) in the heliocentric coordinates 

of the stationary Sun is written as: 

misunderstandings of the special theory of relativity, not  dv2 =
 

1 
(F + F ); 

dr2 = v ; 
a mathematical one, but an incorrect physical interpreta- dt m2 21 23 

dt 
2 

tion. The fact is that the Lorentz coefficient refers to the 

force interaction of masses, not the masses themselves! 
 dv3 =

 (F31 + F32 ); 
 dr3 = v . 

(5) 

This is crystallized in the process of taking into account 

the finite velocity of gravity propagation. 

We write the force vector in the general form [4]: 

m m  v2 v  

dt   m3 dt 

The vectors of the distance between celestial bod- 

ies and their relative velocity are found by the results of 

integration (5): 
Fi,k = G 

  i  k  
1+ 

 ik  
+ 2 

 ik  
rik 0  vik 0  rik 0 , (2) v23 = v2 − v3; r23 = r2 − r3. (6) 

r2   c2 c  

ik    

where rik is the radius of the distance between the masses; 
To simplify the analysis, we solve the problem in 

2D space due to the logical orientation of the Cartesian 

vik is the mutual instantaneous movement speed; G is coordinate system with the center coinciding with the 

the gravity constant; rik 0 , vik 0 are the unit vectors of dis- center of the star: 

tance and movement speed. We can define the module of dv2 x =
 

1 
(F + F ); 

dr2 x = v ; 

the force vector (2) component by component: 

 

dt m2 
21x 

 

23x 
dt 

2 x 

mm m m v2 dv2 y 
=
 

1 
(F + F ); 

dr2 y 
= v  ; 

FNik = G   i  k  , FLik = G   i  k  ik  , 
 

 dt m 21y 23 y 
dt 

2 y 
2 2 2 

ik ik 

m m  v  

 

 dv3x  = 

2 

(F31x + F32 x );  dr3x  = v ; 
(7) 

FTik = 2G   i  k  
 

 ik  r0  v0  (3) dt m3 dt 
2 

ik dv3 y 
= 

1
 dr3 y 

Here FNik is  Newton’s  gravitational  force, 
 

 

dt m3 
(F31 y + F32 y ); dt 

= v3 y . 

FLik , FTik which is the tangential and radial velocity The projections of gravitational forces according 
components of the gravitational force. It is clear that at 

vik → 0 , the modulus of force interaction (2) degener- 
to (2) are the next: 

Gm1m2 r21k 
 v

2
 

 
r21xv2 x + r21 yv2 y  

ates into (3). The marginal fate participation in the force F21k = − 1+  2k  + 2 ; 

interaction of the first and third components (3), based 

on the speed and orientation characteristics, is obvious: 

 
 

3  2 

21  
Gm1m3r31k  

 v
2
 

 
 

2  
21  

r31xv3 x + r31 yv3 y  
F31k = − 1+  3k  + 2 ; 

FL = (0 1)FN ; FT = ((−2)  (+2))FN . (4) 
3  2 

31  
2  

31  
It was proved in [4, 6] that the second force com- 

ponent (2), determined by the tangential velocity com- 
k = x, y; 

Gm m r  v2 
 

r  v + r v 

(8) 

 
ponent, effectively coincides with the Lorentz force in 

F23k = −  2  3 23k  
1+  23k  + 2 

 23x 23x 23 y 23 y  
;

 

the electric field, which in classical electrodynamics 

represents the force effect of the magnetic field or the so- 

called relativistic effect in the electric field. Being pro- 

3 
23 

F32k = − F23k , 

Where: 

 c2 2  
23  

longed for mechanical interaction, it represents the cor- 

responding gravitomagnetic force [7-8]. 
r23k = r21k − r31k ; v23k = v21k − v31k , k = x, y. (9) 

The functional dependence on the speed of   

movement of the third component (3) is higher than in 
(2) because under the condition v  c the multiplier 

rk = , k = 21,31, 23;  
(10) 

v / c in the second component is raised to the second 
vk = , k = 2,3,23. 

power and in the third one to the first power. Finally, it is 

namely the third component that closes the hitherto un- 

known triune essence of gravitational forces and makes 

it possible to solve the given problem on a strictly 

Expressions (7)–(10) form a complete system of alge- 

braic-differential equations for the analysis of transient proc- 

esses in the space system star–planet–spacecraft. To obtain 

the desired unique solution, it is necessary to set constant 

mathematical basis. parameters G, m1, m2 and space-velocity initial conditions: 

r 2 + r2 kx ky 

v2 + v2 kx ky 

r 

3 x 

r 

r cr 

r cr 

r cr 

1 

1 
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r2k (0), r3k (0); v2k (0), v3k (0), k = x, y. (11) (0) =  / 4; v3x (0) = 0; v3 y (0) = 40000; 

As for the mass of the space vehicle, according to r3x (0) =5507.358432 108;  (16) 
(7)-(8), it does not participate in the calculations, since 

decreases. This is consistent with the principle of equiva- 

lence [9]. 

4.1. Practical analysis 

In practical calculations, the system of differential 

equations (7) can be halved if we accept the logical as- 

 

r3 y (0) = 5500.167332 108.  

sumption that the mass of the spacecraft m3 does not 

affect the trajectory of the planet’s flight ( m2 ): 

dv3x =
 

1 
(F + F ); 

  

dt m3 
31x 32x 

dr3x = v ; dv3 y 
=
 1 

(F + F ); (12) 
 

dt 
3x 

 dr3 y  
= v .

 

  

dt m3 
31y 32 y 

Fig. 1. Curvature of the trajectory of the movement r3(t )  

in the heliocentric coordinates of the spacecraft under action 

dt   
3 y 

Assuming the planet’s orbit is close to circular, 

the mechanical characteristics of its motion can be de- 

pendent on the angle  of the orbital motion: 

gravitational forces of Jupiter during a flying outside its 

trajectory (approach 366468 km) at a time interval of 26712 s 

The duration of the transient process is 26712 s, 

which corresponds to approximately 7 hours. 25 min. The 

 = 0 + t, (13) speed characteristic of the transient process in Fig. 1 is 

where ω is the orbital angular velocity of the 

planet, 0 is the initial value  , as: 

r2 x = r12 cos; r2 y = r12 sin ; 

shown in Fig. 2. It illustrates the effect of the gravitational 

acceleration of the spacecraft at a given time interval in 

the heliocentric coordinates from 40000 m s-1 to 43280 m 

s-1. Then there was a deceleration to 41495 m s-1. The 

v2 x = r12 cos( + /  2); 

v2 y = r12 sin( +  / 2). 

(14) space navigation effect under the specified space-velocity 

initial conditions is approximately 1.5 km s-1. 

To obtain the required unique solution (12)−(14), 

it is necessary to set constant parameters 

G, m1, m2 , , r12 and space-velocity initial conditions: 

0 , r3k (0), v3k (0), 

4.2. Simulation results 

k = x, y. (15) 

The results of the compatible implementation of 

(11)-(15) by the numerical method are shown in Fig. 1–8 

at the stable parameters 

Gm1 =13,271281019, 

Gm2 = 12.67095 1016 (m3s−2 ), 

 = 0.0174532925 10−8 s−1, 

r12 = 7.7835668221011 m, 

corresponding to the Sun, the Mercury, and the space- 

craft. All dimensions in the simulation results are in SI. 

Our numerical results are far from practically justified. 

We only want to confirm utilizing computer simulation 

the presence of the gravitational effect and the workabil- 

ity of the theoretical results of its mathematical support. 

4.3. Overclocking stage 

Fig. 1 shows the time dependence of the hodo- 

graph of the spatial radius obtained under the initial spa- 

tial-velocity conditions: 

 

 

 

 

 

Fig. 2. Time dependence of the speed v3(t)  

in the transient process shown in Fig. 1 

 

Please note that this effect strongly depends on 

the initial conditions. According to [2-3], its maximum 

value in the gravitational field of Jupiter can reach up to 

42.73 km s-1. In the Earth’s gravitational field – up to 

7.91 km s-1. While it is completely absent in the planeto- 

centric coordinates. Here, the acceleration effect is 

commensurate with the braking effect, which is demon- 

strated in Fig. 3. 

We draw your attention to the fact that in this time 

interval, the planet Jupiter also overcomes outer space 

according to (13)-(14). The corresponding segment of 

the arc of its circumsolar orbit with a length of 356825 

km is shown in Fig. 4. 
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Fig. 5 shows the power characteristics of the tran- 

sition process depicted in Fig. 1-2. 

4.4. Braking stage 

Fig. 6 shows the time dependence of the hodo- 

graph of the spatial radius r3 (t) , obtained under the 
 

 

 

 

 

 

Fig. 3. Time dependence of the velocity v3(t) in the planeto- 

centric coordinates of Jupiter in the transition process shown 

in Fig. 1-2 

 

 

Fig. 4. The arc of Jupiter’s trajectory in heliocentric 

coordinates over time of the transient process corresponding to 

the curves of Fig. 1-2. 

 

space-temporal initial conditions (16) adopted during the 

simulation of the acceleration of the spacecraft 

r3x (0) = 5500.267332 108. This was done for the space- 

craft to approach the planet from the middle of its orbit. 

The duration of the transition process is 27334 s, which 

corresponds to approximately 7 hours. 34 min. 

 

 
Fig. 6. Curvature of the trajectory r3(t) of movement in the 

heliocentric coordinates of the spacecraft under the influence of 

Jupiter’s gravity during a flyby from the inside of its trajectory 

(minimum approach 351634 km) at a time interval of 27334 s. 
 

 

Fig. 7. Time dependence of the speed v3(t)  

in the transient process shown in Fig. 6 

Fig. 8 shows the time dependence of the distance 

between the spacecraft and the surface of Jupiter 

r3J (t) = r32 (t) − rJ , where rJ = 0.69911108 m is the ra- 

 

 

 

 

 

 
Fig. 5. Power characteristics of the gravitational fields of the 

dius of Jupiter, in the transient braking process shown in 

Fig. 6-7. 

So, it was rigorously mathematically confirmed the 

presence of a gravitational effect in heliocentric coordi- 

nates of both acceleration (Fig. 2) and deceleration (Fig. 

7) of spacecraft in the gravitational field of massive celes- 

Sun f1 = F31(t) and Jupiter f1 = F31(t) acting to the spacecraft tial bodies, and at the same time confirmed the absence of 

in the transitional process shown in Fig. 1-2 this phenomenon in planet-centric coordinates (Fig. 3). 
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Fig. 8. Time dependence of the flight distance r3J (t)  

in the transient process shown in Fig. 6 -7. 

 

And is it possible to obtain a reliable result in the practice of cosmonautics? – Yes, but at the same time, it is 

necessary to know the exact initial space-speed condi- tions laid down by the implementers of the particular space 

program to which access is not possible recently for me. 

 

5. Conclusions 

1. The results of computing the transient processes of the “star-planet-spacecraft’ system illustrate the 

possibilities of a new approach to solving some fundamental problems of celestial mechanics that cannot be 

overcome by the methods of classical physics. 

2. The known anomalies in the in-flight gravita- tional navigation of spacecraft (discrepancy between the 

results of measuring trajectories and prediction) are ex- plained not by measurement errors, but by the inapplica- 

bility of the classical laws of statics to solving the prob- lems of space dynamics. Here, a significant effect is caused 

by the theoretically discovered third component of the force of the gravitational field, which depends not only on 

the speed of the moving mass but also on the spatial orientation of its trajectory (in particular, from the radial 

component of speed). 

 

6. Gratitude 

The author is grateful to the Staff of the Department of Information-Measuring Technologies for their mild 

assistance in designing the article for publication. 

 

References 

[1] V. Chaban. Theoretical Substantiation of the Results of Measuring Anomalies of Spacecraft Trajectories. – Measur- ing, 

Equipment and Metrology. Vol 84(3), No 3, 2023, pp. 11-15. OI: https://doi.org/10.23939/istcmtm 2023.03. 011). 

[2] S. J. Pyne. The Grand Tour conceived, in Voyager: Explo- ration, Space, and the Third Great Age of Discovery. Pen- 

guin, 2010. https://books.google.cz/books/about/ Voy- ager.html?id=uNbhImrhAc0C&redir_esc=y. 

[3] S. Schwam. The Making of 2001: A Space Odyssey. Ran- dom House Publishing Group, https://books. 

google.com.ec/books?id=j_EmH_W4I7YC 

[4] V. Tchaban. Electrogravity: movement in electric and gra- vitational fields. Lviv: "Space M", 2023. https:// 

wiki.lpnu.ua/wiki/images/a/a0/GR-Tch.pdf 

[5] V. Tchaban. On some Joint Laws of the Field of Gravity- and Electrometry. – Measuring Equipment and Metrology. 

Vol 81, No 3, 2020, pp. 37–40. DOI: https://doi.org/ 10.23939/istcmtm2020.03.037 

[6] V. Tchaban. Movement in the gravitational and electric fields. – Lviv: "Space M", 2021. – 140 p. ( in Ukrainian). 

https://shron1.chtyvo.org.ua/Chaban_Vasyl/Rukh_u_gravita tsiinomu_i_elektrychnomu_poli.pdf?PHPSESSID= 

ko8bo22biv7otead769jt19fb4 

[7] M. L. Ruggiero, A. Tartaglia. Gravitomagnetic effects. Nuovo Cim. 117B (2002) 743–768 (gr-qc/0207065). 

[8] S. J. Clark, R. W. Tucker. Gauge symmetry and gravito- electromagnetism // Classical and Quantum Gravity: journal. 

– 2000. 

 


