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In this paper, we construct and analyse a new fishing mathematical model, which describes
the time evolution of a fish stock, which is harvested by a fishing fleet, described by its
fishing effort. We consider that the price, which is given by the difference between supply
and demand, is varying with respect to time. For the harvesting function, we use the
Holling II function. On the other hand, we consider two different time scales: a fast one
for the price variation and a slow one for fish stock and fishing effort variations. We
use an “aggregation of variables” method to get the aggregated model that governs fish
biomass and fishing effort in the slow time. By analyzing this reduced model, and under
some conditions, we prove that three interesting equilibria can occur. Furthermore, we
show how one can control the model to avoid the undesirable situations and to reach the
stable equilibrium. Another interesting aspect given in this manuscript is the possibility
of the implementation of Marine Protected Areas (MPAs). We show how that MPAs
permits us to contribute significantly to the rehabilitation of depleted fish populations.
This is achieved by disrupting the state of “Fish Extinction” equilibrium, and establishing
a stable one.
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1. Introduction

Many bio-economic models have been created to describe the economic and biologic aspects of the
dynamics of fishery [1]. Furthermore, elementary models suppose that the population of fish grows in
a logistic way, and usually assumed a catch term that is relative to the fish and to harvesting vessels.
Thus, we consider, in the model, another equation which describes the fishing effort variations. This
equation is represented by the difference between the net income (i.e. the catch function proportional
to the market price of the resource) and the costs of the harvesting effort ‘c’. This leads to the most
common predator–prey fishery models [2, 3].

On the other hand, in many mathematical fishing models, the resource’s market price is supposed
to be constant [4, 5]. In other works, the price is not fixed and is determined by the catch-function,
the fish biomass, or the number of fishing fleets [6]. That is why it became necessary to add a third
equation, concerning the price variation with respect to time, which is generally represented by the
difference between the amount caught (the supply) and the demand [7].

In several works [8–11], authors assumed a linear famous catch-function, it is a Schaefer func-
tion [12], i.e. the catch-ability is directly proportional to both the fish biomass and the fishing effort.
The reason there exist many restrictions to this catch-function; the Schaefer function increases in a
limited way with fishing effort, ‘E’ for a fixed fish biomass, ‘n’. Authors in [8, 10] studied the catch
with a varying price, they assume a linear demand function D(p) = A−αp in this situation, when the
price becomes higher, the demand is close to zero, that means when the price on the market become
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very expensive there is no demand. In [13] they studied the case of a network of patches connected,
with a linear harvesting which corresponds to the Schaefer function [12] but with a nonlinear demand
i.e. D(p) = A

p
, in this state, even if the price is very high, the demand tend to a positive value. The

main result was the possibility of an over-exploitation equilibrium causing fish extinction. In [14] au-
thors prolonged the last model to include a nonlinear harvesting function, i.e. h(t) = qEn

n+D
but the

demand function used supposed linear; D(p) = A − αp. Under certain conditions, it is possible to
achieve sustainable fishing.

In the present paper, we integrate two main approaches, which means; we consider a non-linear
harvesting function, relative to Holling type II, i.e. h(t) = qEn

n+D
(Figure 1). This harvesting function is

more realistic than a linear one, which is usually presented as a Schaefer function, we can see clearly
that there exist many limitation of the linear harvesting function such as it suppose that the harvesting
vessels can harvest the stock unbounded quantity of fish stock. We also consider an hyperbolic demand
function; D(p) = A

1+βp
. These two aspects will be illustrated by a mathematical model that combines

the fish and the fishing efforts evolution, and the price variation. We will focus on controlling our model
to prevent undesirable cases and showing that we can implement Marine Protected Areas (MPAs) to
rebuild fish stocks and prevent over-fishing.

The manuscript is structured as follows. Section 2 is dedicated to describing a mathematical model
that is represented by three ordinary differential equations. Due to the presence of varying time scales,
we can derive a reduced model. In Section 3, we analyze the aggregated model and present numerical
simulations. Section 4 is dedicated to introducing a control parameter in the system which help us to
avoid the Fish Extinction case. In Section 5, we study the impacts of installation of Marine Protected
Areas (MPAs), on the fish stock dynamics. The last section of our study investigates the surface size
area that results in the optimal capture at equilibrium.

2. Mathematical model with nonlinear price equation

2.1. Complete model

Here we consider a three-dimensional model governing three main variables; the fish stock which is
denoted by n, the harvesting effort noted by E, and the price on the market cited by p. The fish grows
and the harvesting effort occurs at a slower time scale, as compared with the price variation which
follows a faster one, τ = t

ε
.

According to these assumptions, we obtain:


































dn

dτ
= ε

[

rn
(

1−
n

k

)

−

qnE

n+D

]

,

dE

dτ
= εE

(

−c+ p
qn

n+D

)

,

dp

dτ
= α

(

D(p)−
qnE

n+D

)

.

(1)

The first equation of the system describes the growth of fish stock in time. If we neglect the fishing
activity, the fish biomass follows a logistic function in its growth. Where the positive constants k and r

represent the carrying capacity and the intrinsic growth rate of the stock respectively. The fish biomass
is targeted by a non-linear harvesting function, which is relative to a Holling type II i.e. qnE

n+D
is then

proportional to the harvesting effort E, the catch-ability q, the fish biomass size n, and with D is the
half-saturation level of stock (see Figure 1).

The second remaining equation describes the gap between the net income and the cost of harvesting
fleet c. The fish price dynamics (the third equation). In our work, we assumed that the price varies
according to a monotonically decreasing hyperbolic function i.e. D(p) = A

1+βp
where the demand

achieves a maximum A when the price equal zero and the parameter β determines the degree of
responsiveness of the demand to changes in price, and it is always a positive value (see Figure 2).
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Fig. 1. The curve of Holling type 2 function for E = 1,
q = 0.8, D = 2.

Fig. 2. The curve of the nonlinear demand function
for A = 1 and β = 1.

2.2. Derivation of an aggregated model

We consider that the market price progresses more rapidly, and we utilizes methods of aggregation.
Our model can be reduced to a model with two global variables n and E.

The price in the catch in the second equation of (1) is replaced with the solutions of the following
equation (see Appendix 1):

dp

dτ
= α

(

A

1 + βp
−

qnE

n+D

)

= 0. (2)

We get one solution of this equation, p∗ given by

p∗ =
A(n +D)− qnE

βqEn
. (3)

Therefore, the second equation is represented as:

dE

dt
= −cE +

A(n+D)− qnE

β(n+D)
.

2.3. Aggregated model

The reduced model is obtained by replacing the price (3) into the complete system (1).
Consequently, we obtain the stable model:















dn

dt
= n

[

r
(

1−
n

k

)

−

qE

n+D

]

,

dE

dt
= −cE +

A(n+D)− qnE

β(n+D)
.

(4)

3. Analysis of the aggregated model

3.1. Existence of equilibria

The n-nullclines are n = 0 and E = r
qk
(k − n)(n + D), and E-nullclines are: E = A(n+D)

cβ(n+D)+qn
(see

Appendix 3), we have a point of equilibrium at the coordinates:
(

0, A
cβ

)

, we also have the interior
equilibria point (n∗, E∗) which solve the following system:















E(n) =
r

qk
(k − n)(n+D),

E(n) =
A(n+D)

cβ(n+D) + qn
.

(5)

We will look for the existence of positive interior equilibria of system (4). Which are solutions of (5),
n∗ is a positive solution of this equation
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F (n) = n2(rcβ + rq) + n(rcβD − rcβk − rqk) + (Aqk − rcβkD).

The derivative of F read

F ′(n) = r(βc+ q)

[

2n− k +
βcD

βc+ q

]

.

The number of fixed points of (4) is represented by the number of positive solutions of F (n) = 0.
The following Theorem proves the existence of equilibria.

Theorem 1. System (4) may have up to two positive interior equilibria.

◮ Case 1: If 1
2

(

k −
βcD
βc+q

)

> 0:

• If F (0) < 0 so equation F (n) = 0 have a single positive solution (n∗, E∗).

• If F (0) > 0 and F
(

1
2

(

k −
βcD
βc+q

))

< 0, then equation F (n) = 0 have two positive solution

(n∗
1, E

∗
1 ) and (n∗

2, E
∗
2) verifying n∗

1 <
1
2

(

k −
βcD
βc+q

)

< n∗
2.

• If F (0) > 0 and F
(

1
2

(

k −
βcD
βc+q

))

> 0, then equation F (n) = 0 do not have positive solutions.

◮ Case 2: If 1
2

(

k −
βcD
βc+q

)

6 0:

• If F (0) < 0, so equation F (n) = 0 have a single positive solution (n∗, E∗).

• If F (0) > 0 and F
(

1
2

(

k −
βcD
βc+q

))

< 0, then equation F (n) = 0 do not have positive solutions.

Proof. See Appendix 3. �

3.2. Analysis of local stability

The Jacobian matrix reads

Jac(n,E) =

(

r − 2rn
k

− qD E
(n+D)2

−qn
n+D

−
qED

β(n+D)2
−c− qn

β(n+D)

)

. (6)

• At E0 =
(

0, A
cβ

)

:

Jac(
0, A

cβ

) =

(

r − qA
cDβ

0
qA

cDβ2 −c

)

.

The eigenvalues at
(

0, A
cβ

)

are: λ1 =
(

r − qA
cDβ

)

− c and λ2 = −c
(

r − qA
cDβ

)

.

If c < qA
rDβ

, the equilibrium E0 =
(

0, A
cβ

)

is stable, if not is a saddle point.

• At E∗ = (n∗, E∗) (represented by E1 and E2):

Jac(n∗,E∗) =

(

−
rn∗

k
+ qn∗E∗

(n∗+D)2
−qn∗

n∗+D

−
qDE∗

β(n∗+D)2 −(c+ qn∗

β(n∗+D))

)

.

Proposition 1.

◮ Case 1: If 1
2

(

k −
βcD
βc+q

)

> 0:
1.1 If F (0) < 0, then equation F (n) = 0 have a single positive solution with a determinant which

positive, so (n∗, E∗) is stable while
(

0, A
cβ

)

is a saddle point.

1.2 If F (0) > 0 and F
(

1
2

(

k −
βcD
βc+q

))

< 0, then equation F (n) = 0 have two positive solution

(n∗
1, E

∗
1 ) and (n∗

2, E
∗
2) verifying n∗

1 <
1
2

(

k −
βcD
βc+q

)

< n∗
2 with (n∗

1, E
∗
1) is saddle, (n∗

2, E
∗
2) is stable and

(

0, A
cβ

)

is stable.

1.3 If F (0) > 0 and F
(

1
2

(

k −
βcD
βc+q

))

> 0, then equation F (n) = 0 do not have positive solutions.

◮ Case 2: If 1
2

(

k −
βcD
βc+q

)

6 0:
2.1 If F (0) < 0, so equation F (n) = 0 have a single positive solution (n∗, E∗) which stable.

2.2 If F (0) > 0 and F
(

1
2

(

k −
βcD
βc+q

))

< 0, then equation F (n) = 0 do not have positive solutions.

Proof. See Appendix 4. �
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4. Discussion of the results and numerical simulations

Figures 3 and 4 illustrate the case of the FEE which is stable if and only if F (0) > 0 i.e. (c < Aq
rDβ

)
and that means, when c decreases, it will lead to a rise in fishing activity, which is equivalent to a
downward trend in biomass until the extinction of the species. At equilibrium the fish species become
extinct, and the fishing fleet converges to a positive value A

cβ
, when we approach to equilibrium the

price tends to a higher value (see Figure 7). This situation aligns with the fish extinction.

n
0

E

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7
Time

0

n
 E

0

1

2

3

4

5

6

7

8

9

n

E

5 10 15 20 25 30

Fig. 3. Phase plan for the case of FEE, with param-
eters set: c = 1, q = 1.7, A = 4, r = 1, D = 2, k = 5,

β = 1.

Fig. 4. Illustration of the FEE with parameters set:
c = 0.5, q = 1, A = 4, r = 1, D = 2, k = 5, β = 1,

n(0) = 6, E(0) = 3.

Figure 5 describes the subcases 1.1 and 2.1 showing the variations of fish biomass and fishing fleet in
time. When F (0) < 0 means that the cost of fishing effort increases, it will lead to a decrease in fishing
effort, which is equivalent to a high trend in biomass. At equilibrium, the fish population becomes
higher and higher due to the high taxation on boat owners, and fishing efforts start to decrease. As a
result, the resource can recover. This case corresponds to sustainable and durable fisheries. Figure 6
illustrates that any trajectory initiating in the positive quadrant converges to the sustainable fishery
equilibrium (n∗, E∗).
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Fig. 5. Phase plan for the subcases 1.1 and 2.1, with
parameters set: c = 0.5, q = 1, A = 1, k = 5, r = 1,

D = 8, β = 1.

Fig. 6. Illustration of the interior equilibrium with
parameters set: c = 0.3, q = 0.1, A = 30, k = 150,

r = 0.5, D = 30, β = 1, n(0) = 10, E(0) = 10.

Subcases 1.2 demonstrate the existence of two positive equilibria (n∗
1, E

∗
1 ) and (n∗

2, E
∗
2) with n∗

1 < n∗
2.

The point
(

0, A
βc

)

is a locally asymptotically stable (l.a.s.) equilibrium. The equilibrium with the small
biomass is a saddle point while (n∗

2, E
∗
2) is locally asymptotically stable. In this case, there exists a

separatrix (see Figure 8); depending on the starting conditions, the trajectory will either tend towards
(

0, A
βc

)

or towards the fishery equilibrium (n∗
2, E

∗
2 ). In simpler terms, either the fish biomass will

become extinct with a rise in price, or a sustainable fishery will be reached.
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5. Introduction of a control parameter

As demonstrated in the preceding section, depending on the values of certain parameters, the system
dynamics can result in either a sustainable equilibrium or a state of fish extinction. To avoid this
situation, it is preferable to minimize significant fluctuations in the overall fish stock and fishing effort.

Thus, it would be advantageous to incorporate a control parameter into the model. This was
proposed in the context of spatial fisheries, [11]. This parameter, denoted as “u”, is a real constant
that satisfies the condition: 0 < u < 1. One straightforward approach that a coastal state can adopt
to manage its fishery is to regulate the technical capabilities of boats, such as by imposing restrictions
on the types of fishing techniques that can be employed or by limiting the overall catch of fishing fleets.
A reduction in the technical capacities of vessels could lead to a decrease in their catch-ability. To
account for this, we introduce a catch-ability term denoted as “u”, which is uniform across the entire
fishing fleet. To implement this, we multiply the harvested terms qEn

n+D
by the parameter u in every

equations of the system (1), resulting in the following system:
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[
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k
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,
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= εE

(

−c+ p
uqn

n+D

)

,
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(
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)
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(7)

In that case, the aggregated system is














dn

dt
= n

[

r
(

1−
n

k

)

−

uqE

n+D

]

,

dE

dt
= −cE +

A(n+D)− uqnE

β(n+D)
.

(8)

The study of this model is straightforward. The Jacobian matrix is given by

Jac(n,E) =

(

r − 2rn
k

− uD qE
(n+D)2

−uqn
n+D

−
uqED

β(n+D)2
−c− uqn

β(n+D)

)

. (9)

In the case where E0 =
(

0, A
cβ

)

. The eigenvalues are respectively given by: λ1 =
(

r −
uqA
cDβ

)

− c and

λ2 = −c
(

r −
uqA
cDβ

)

.

If c > uqA
rDβ

the equilibrium E0 =
(

0, A
cβ

)

is saddle point. In order to have c > uqA
rDβ

, which ensures

the existence of an unstable equilibrium
(

0, A
cβ

)

, it is essential to keep the control parameter under a
set maximum value:

0 < u <
crDβ

Aq
. (10)

Thus, when H = crDβ
Aq

is higher than 1, (n∗, E∗) is always stable without control. Conversely, if H
is less than 1, the system must be regulated by adjusting the parameter u.
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Fig. 9. Case without control of a stable Fish Ex-
tinction equilibrium with parameter values r = 0.6,
k = 30, q = 1, D = 20, c = 0.4, A = 8, n(0) = 5,

E(0) = 15.

Fig. 10. Control parameter added after t = 5, u =
0.6, we notice that the control parameter destabilizes
the Fish Extinction equilibrium and converges to the

regular state of the system.

We now, we will take a look at a case where we have a Fish Extinction Equilibrium, Figure 9 without
adding a control parameter. In Figure 10, we add a control ‘u’ to our system after a time interval t,
to maintain a sustainable dynamic equilibrium in the system, and thus avoid the fish extinction case.
We can notice that the stock is rebounding and converging towards a stable state.

Although managing the fishing catch may not be the most favored approach among fishermen,
establishing a Marine Protected Area (MPA) could be a more viable solution for reviving depleted
fishing stocks.

6. Effect of the surface size on MPA to destabilize the fish extinction equilibrium

FISHING AREA

MPA

Fig. 11. Scheme of the system considered.

When the MPA has been implemented, the areas are struc-
tured in two distinct patches. Therefore, there are two
principal components that make up the fish stock. A pro-
tected stock that stays around the MPA and a stock that
which harvested by fishing fleets in the open sea (see Fig-
ure 11), with fish moving between the MPA and the open
sea as well as fleets movements stays in the open sea. As-
suming that fishes move at a fast time scale, and the fish
growth occurs at a slow one. The fish movement rates mi

are supposed to be inversely proportional to the carrying capacity of the site and given by

mi =
m

ki
. (11)

Where k1, and k2 are the carrying capacity of the protected and open sea areas respectively, and m

represents a positive constant. k = k1 + k2 is the total fish carrying capacity.
Consequently, as per the formulation presented in equation (11), fish tend to stay in areas with

higher carrying capacities, that is locations with plentiful resources. This assumption indicates that
the distribution of fish among areas should conform to the ideal free distribution [11]. The model with
MPA is described as follows:
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(
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,
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A
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E
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)

.

(12)
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We denote the stock in the protected and fishing area by n1 and n2. 1 − s represents the surface
size of the unprotected zone, and s represent the surface size of the protected area. The last complete
model can be aggregated. Firstly, we get the fast system by neglecting the slow part in the complete
system, i.e. (we set ε = 0) in (12). Then, the fast equilibrium is given by

n∗
1 = vn =

k1

k
n,

n∗
2 = (1− v)n =

k2

k
n,

p∗ =
A
[

n−
D
1−v

]

− nE q
1−s

βnE q
1−s

.

We obtain the aggregated model by substituting the equilibrium for price and fish stock into (12),
and by adding fish equations, and using slow time. The reduced system will take the form:















dn

dt
= n

[

r
(

1−
n

k

)

−

QE

n+ L

]

,

dE

dt
= −cE +

A(n+ L)−QnE

β(n+ L)
.

(13)

Where n = n1 + n2 represents the total fish biomass, E represents harvesting vessels, Q = q
1−s

is the

global catch-ability parameter, and L = D
1−v

. This presented system is the same as the previous system

presented in the last section. It has a fish extinction equilibrium
(

0, A
cβ

)

which is unstable when the
stated inequality is valid:

s < 1− (1− v)w = smax, (14)

with w = qA
crβD

. Equation (14) predicts an increase of the fish biomass inside the MPA that increases
its carrying capacity, with the decreasing surface size of the fishing area, while the fish population in
the fishing zone would decrease.
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Fig. 12. Illustration of the case of a stable fish extinc-
tion equilibrium for r = 0.5, k = 30, q = 1, D = 15,

c = 0.4, A = 5, β = 1, n(0) = 5, E(0) = 20.

Fig. 13. Illustration of the case of implementation of
MPA after a time t = 5, u = 0.6, s = 0.2.

Considering the case where we get a fish extinction equilibrium, Figure 12 without the installation
of MPA. In Figure 13, we install MPA to our system after a time interval of t, we can notice that
the fish stock is restoring and converging to a steady state of the system. In the next section, we
identify the ideal surface zone and carrying capacity required for a MPA to achieve maximum capture
at equilibrium.

7. MSY and the optimal size of a MPA

The maximum sustainable yield, denoted by “MSY” is the maximum rate of the resource catch at
equilibrium state. The choice of the surface size of the MPA, has an important consequence on the
harvesting rate. The total capture can be optimized, by optimizing the size of the surface of MPA. At
an equilibrium state, if the harvesting rate exceeds MSY, it can result in the extinction of resources.
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This section focuses on studding the case of stable equilibrium (n∗, E∗) so that we consider the
case where c > qA

rDβ
(i.e. s < 1− (1− v)w).

The total catch-function at equilibrium is

Y ∗ =
Qn∗E∗

n∗ + L
= rn∗

(

1−
n∗

k

)

. (15)

So, that
dY ∗

dn∗
= r

(

1− 2
n∗

k

)

.

Then dY ∗

dn∗
= 0 means: n∗ = k

2 . Consequently, the value n∗ = k
2 , gives the maximum catch and it is

presented in the following manner:

Y ∗
MSY =

rk

4
at n∗ =

k

2
. (16)

Then, Y ∗ achieves a maximum equal to rk
4 for n∗ = k

2 and it relates to the Maximum Sustainable
Yield (MSY).

Substituting n∗ = k
2 and Y ∗

MSY = rk
4 in (15) gives sopt as

s = sopt = 1−
q

rcβ

(1− v)(4 − rk)

k(1 − v) + 2D
, (17)

where sopt represents the optimal surface size of MPA at equilibrium to prevent the Fish Extinction
state.
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Fig. 14. Illustration of the catch at equilibrium with
respect to n∗, with parameters set: r = 0.6, k = 100,

c = 0.6, q = 1.

Fig. 15. Curve of the optimal surface size in terms of
fish distribution.

In Figure 14, we can notice that the total catch shows a maximum for n∗ = k
2 , this is equivalent

to the formula derived in equation (16), and Figure 15 shows that an increase of the fish biomass in
the protected zone that increases its carrying capacity then it is surface size by consequence the fish
biomass in MPA would increase.

8. Conclusion and perspectives

A mathematical model presented that includes two main aspects, the use of a non-linear harvesting
function, and economical aspects corresponding to the price variation, according to the gap between
the demand which was supposed to be a nonlinear; monotonous decreasing function, and the supply
which is the capture. Moreover, we have assumed that the price occurs at a faster time scale and the
fishery dynamics and the population growth follow a slow one. Under these assumptions, we obtain
an aggregated model with 2 ordinary differential equations. The use of a nonlinear demand function
and a nonlinear harvesting function has a significant impact on the ecosystem of the fishery.

The study of the model reveals that, according to parameter values, one up to two non-trivial
positive equilibrium points can exist. We have established distinct criteria for the parameters that
result in various cases. To summarise, the study of the reduced system shows that three-main cases
can occur:
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1) The existence of a unique positive equilibrium that can be stable if the cost per unit of fishing
effort increased, this lead to a decrease in fishing activities, and as a consequence, the fish biomass
recovers.

2) A noticeable case corresponding to fish extinction. When the fish population becomes close to
extinction, the price in the market remains very expensive so the income remains good for boat
owners, that is why the harvesting vessels continue to harvest the stock until depleted due to the
large net benefit.

3) The coexistence of two interior positive equilibria. An equilibrium with a low biomass level with
a risk of extinction which is a saddle point, and another one with a large biomass level, far from
extinction but the fishery can only handle a small amount of fishing pressure, which is locally
asymptotically stable. In this case, the FEE remains stable. As a result, there exists a separatrix
between both stable equilibria. That means; either the fish biomass will become extinct with a rise
in price, or a stable sustainable state will be reached.

By using a non-linear demand function an interesting case occurred corresponding to fish extinction.
To avoid this catastrophic case, it is essential to identify strategies that prevent fish extinction case.
Firstly, we add a control parameter to the system, by controlling the fishing effort. We find that it
is essential to keep the control parameter below a specific threshold value to avoid the fish extinction
case. Secondly, another crucial aspect we explored, is determining the ideal size and capacity of
marine protected areas (MPAs) to prevent fish species from extinction while also maximizing catch
equilibrium. We studied a fishery mathematical model with a protected area (MPA) and an unprotected
zone (i.e. fishing zone). By utilizing this model, we can observe the impact of implementing MPAs on
depleted fishing stocks. Through this model, we were able to identify the most effective surface area
and carrying capacity of an MPA to achieve maximum catch at equilibrium.

As a perspective, Artificial intelligence (AI) and neuroscience can be applied in fisheries in various
ways to improve the efficiency and sustainability of fishing practices. We would like to look for the use
of neuroscience to analyze the behavior of fish in their natural habitats. This information can be used
to develop better fishing areas. It is also crucial to study the influence of the multi-patches on the
dynamics of the fishery and the conversion of a depleted fishery represented by an over-exploitation
to a sustainable state. We can modify the fishing effort equation to include a time-dependent control
function, representing the proportion of fishing profits invested, and also to use stock-effort-dependent
prices and coasts, which would be more interesting.

Appendix

A1. Calculation of the fast equilibria

At the fast time: D(p)− qnE
n+D

= 0. It follows that A
1+βp

= qnE
n+D

, and p∗ = A(n+D)−qnE

βqnE
.

A2. Derivation of the reduced models

Replacing the fast price equilibrium p∗, then

dn

dτ
= εn

[

r
(

1−
n

k

)

−

qE

n+D

]

,

dE

dτ
= εE

(

−c+
qn

n+D
p∗
)

.

Then, the total fish stock equation is

dn

dt
= n

[

r
(

1−
n

k

)

−

qE

n+D

]

.

Respectively, the total fishing efforts equation is

dE

dτ
=

(

−c+ p∗
qE

n+D

)

E,

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 264–276 (2024)



274 El Hakki I., Mchich R., Bergam A.

then
dE

dt
= −cE +

A(n+D)− qnE

β(n+D)
.

A3. Stability analysis of equilibria

Consider the positive equilibrium (n∗, E∗) of system (4) that solve:










E(n) =
r

qk
(k − n)(n+D),

E(n) = E =
A(n+D)

cβ(n +D) + qn
.

(18)

Because

F (n) = n2(rcβ + rq) + n(rcβD − rcβk − rqk) + (Aqk − rcβkD),

then

F ′(n) = r(βc+ q)

[

2n− k +
βcD

βc+ q

]

and F ′(n) = 0 if n = 1
2(k −

βcD
βc+q

).
The number of equilibria with positive values of the system (4) is given by the solutions of F (n) = 0.

We get:
◮ Case 1: If 1

2

(

k −
βcD
βc+q

)

> 0,

n

F ′(n)

F (n)

0 1
2

(

k −
βcD
βc+q

)

+∞

− 0 +

−rβcD +Aq−rβcD +Aq

F
(

1
2

(

k −
βcD
βc+q

)

)

F
(

1
2

(

k −
βcD
βc+q

)

)

+∞+∞

• If Aq − rβcD < 0, so equation F (n) = 0 have a single positive solution.
• If Aq − rβcD > 0 and F

(

1
2

(

k −
βcD
βc+q

))

< 0, then equation F (n) = 0 have two positive solution

(n∗
1, E

∗
1 ) and (n∗

2, E
∗
2) verifying n∗

1 <
1
2

(

k −
βcD
βc+q

)

< n∗
2.

• If Aq− rβcD > 0 and F
(

1
2

(

k− βcD
βc+q

))

> 0, then equation F (n) = 0 do not have positive solutions.

◮ Case 2: If 1
2

(

k −
βcD
βc+q

)

< 0,

n

F ′(n)

F (n)

0 1
2

(

k −
βcD
βc+q

)

+∞

+

−rβcD +Aq−rβcD +Aq

+∞+∞

• If Aq − rβcD < 0, so equation F (n) = 0 have a single positive solution.
• If Aq− rβcD > 0 and F

(

1
2

(

k− βcD
βc+q

))

< 0, then equation F (n) = 0 do not have positive solutions.
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A4. Local stability analysis of the non-trivial equilibria

At (n∗, E∗), the Jacobian matrix of system (4) is

Jac(n∗,E∗) =





rn∗

k(n∗+D) [(k −D)− 2n∗] −qn∗

n∗+D

−

Dr(1−n∗

k
)

β(n∗+D) −
βc(n∗+D)+qn∗

β(n∗+D) )



 .

The trace is given by

tr Jac∗ =
rn∗

k(n∗ +D)
[(k −D)− 2n∗]−

βc(n∗ +D) + qn∗

β(n∗ +D)

=
−1

k(n∗ +D)β

[

2rβn∗2 + n∗
[

rβ(D − k) + k(βc + q)
]

+ βckD
]

6 −

F ′(n∗)n∗

k(n∗ +D)(βc + q)
−

(

c+
qn∗

β(n∗ +D)

)

.

So, if F ′(n∗) > 0, tr Jac∗ become negative.
The determinant is given by

detJac∗=
n∗

kβ(n∗ +D)

[

−2n∗2(βc+ q)+n∗
[

k(βc+ q)− 2D(βc + q)− βcD
]

+
[

kD(βc+ q)− βcD2
]

]

.

Given that: F (n∗) = rn∗2(βc+ q) + n∗r(βc+ q)
[

βcD
(βc+q) − k

]

+ k(Aq − rβcD),

detJac∗ =
n∗

kβ(n∗ +D)
F ′(n∗).

We can see that det Jac∗ and F ′(n∗) have the same sign. It is possible to distinguish two main cases:
◮ Case 1: If 1

2

(

k −
βcD
βc+q

)

> 0.

• If Aq − rβcD < 0, then equation F (n) = 0 have a single positive solution (n∗
2, E

∗
2 ), which

sign
(

detJac(n∗

2
,E∗

2
)

)

= sign
(

F ′(n∗)
)

> 0, and Trac(n∗,E∗) < 0, then it is stable.

• If Aq − rβcD > 0 and F
(

1
2

(

k −
βcD
βc+q

))

< 0, then equation F (n) = 0 have two positive solution

(n∗
1, E

∗
1 ) and (n∗

2, E
∗
2) verifying n∗

1 <
1
2

(

k− βcD
βc+q

)

< n∗
2. Since sign

(

det Jac(n∗,E∗)

)

= sign
(

F ′(n∗)
)

.
Therefore, we can state the following results:
1) The determinant det Jac(n∗

1
,E∗

1
) is negative, the positive equilibrium (n∗

1, E
∗
1) is then a saddle

point.
2) The determinant detJac(n∗

2
,E∗

2
) is positive, because sign

(

det Jac(n∗

2
,E∗

2
)

)

= sign
(

F ′(n∗
1)
)

> 0,
and Trac(n∗

2
,E∗

2
) < 0, then the positive equilibrium (n∗

2, E
∗
2 ) is stable.

• If Aq− rβcD > 0 and F
(

1
2

(

k−
βcD
βc+q

))

> 0, then equation F (n) = 0 do not have positive solutions.

◮ Case 2: If 1
2

(

k −
βcD
βc+q

)

6 0.

• If Aq − rβcD < 0, so equation F (n) = 0 have a single positive solution (n∗
2, E

∗
2 ), which

sign
(

detJac(n∗

2
,E∗

2
)

)

= sign
(

F ′(n∗
2)
)

> 0, and Trac(n∗

2
,E∗

2
) < 0 then it is stable.

• If Aq− rβcD > 0 and F
(

1
2

(

k− βcD
βc+q

))

< 0, then equation F (n) = 0 do not have positive solutions.
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Динамiка рибного промислу з нелiнiйним виловом: контроль,
коливання цiни та MSY

Ель Хаккi I.1, Мчич Р.2, Бергам А.1

1Дослiдницька група математичного моделювання та аналiзу даних (S.M.A.D.),
Полiдисциплiнарний факультет Лараш, Унiверситет Абдельмалека Ессаадi, Марокко

2Дослiдницька група з бiзнес-науки та територiальної полiтики (S.E.P.T.),
Нацiональна школа менеджменту, Танжер, Унiверситет Абдельмалека Ессаадi, Марокко

У цiй статтi будується та аналiзується нова математична модель рибальства, що опи-
сує часову еволюцiю рибних запасiв, якi виловлює рибальський флот, що описується
його промисловим зусиллям. Вважається, що цiна, яка визначається рiзницею мiж
попитом i пропозицiєю, змiнюється з часом. Для функцiї збирання використовуємо
функцiю Холлiнга II. З iншого боку, розглядається два рiзнi часовi масштаби: швид-
кий для змiни цiни та повiльний для рибного запасу та змiни риболовного зусилля.
Використовується метод “агрегування змiнних”, щоб отримати агреговану модель,
яка керує бiомасою риби та рибальським зусиллям у повiльному часi. Аналiзуючи
цю скорочену модель, за певних умов доводиться, що можуть виникнути три цiкавi
рiвноваги. Крiм того, показано як можна керувати моделлю, щоб уникнути небажа-
них ситуацiй i досягти стiйкої рiвноваги. Iншим цiкавим аспектом, наведеним у цiй
статтi, є можливiсть впровадження морських заповiдних територiй (МЗТ). Показано,
як МЗТ дозволяє нам внести значний внесок у вiдновлення виснажених популяцiй
риб. Це досягається шляхом порушення стану рiвноваги “вимирання риби” та вста-
новлення стiйкого стану.

Ключовi слова: рибальська модель; функцiя Холлiнга II; рiзна цiна; агрегуван-
ня змiнних; рiвноваги; стiйкiсть; контроль; морська заповiдна зона; максимальний
стiйкий вихiд.
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