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In this paper, we are interested in the Probabilistic Traveling Salesman Problem with
Deadlines (PTSPD) where clients must be contacted, in addition to their random avail-
ability before a set deadline. The main objective is to find an optimal route that covers a
random subset of visitors in the same order as they appear on the tour, attempting to keep
the path as short as possible. This problem is regarded as being ♯P-hard. Ant Colony Op-
timization (ACO) has been frequently employed to resolve this challenging optimization
problem. However, we suggest an enhanced ACO employing the Levy flight algorithm in
this study. This allows some ants to take longer jumps based on the Levy distribution,
helping them escape from local optima situations. Our computational experiments using
standard benchmark datasets demonstrate that the proposed algorithm is more efficient
and accurate than traditional ACO.
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1. Introduction

Stochastic Combinatorial Optimization (SCOP) is an important field of study that utilizes probabilistic
methods to optimize complex systems. The objective is to identify the optimal outcome among a
given range of possible solutions, where the quality of each solution is determined by a stochastic
function. SCOP has gained significant attention in recent times and has made a significant impact
in various fields, such as Stochastic Integer Programming, Markov Decision Processes and Simulation
Optimization. It is useful in a variety of practical contexts, including vehicle routing problems, routing
on information networks, finance, organization and location problems.

The Probabilistic Traveling Salesman Problems with Deadlines (PTSPD), introduced by Campbell
and Thomas in 2008, is an important class of SCOP problems [1]. Weyland et al. later presented a
variant of this problem called the Probabilistic Traveler Problem, which takes into account temporal
constraints related to deadlines [2,3]. The PTSPD is an advanced version of the traditional Probabilistic
Traveling Salesman Problem (PTSP) that considers the time limitations and uncertain availability of
customers. The challenge is to determine a route that starts and finishes at a depot, visits each customer
exactly once, ignores any customers who do not need to be visited, and takes temporal dependencies
into account in terms of deadlines. This problem has applications in many fields where it is necessary
to plan tours with deadlines and uncertainties, such as delivery, collection, maintenance, distribution
or visit.

By using the PTSPD, one can minimize the cost of travel, avoid delays or non-deliveries, manage
stocks or expiration dates. There are various approaches to tackle the PTSPD, including the chance
constrained model and two different recourse models. Our research mainly centers on the recourse
model that involves two distinct phases. Firstly, we determine a preliminary solution that determines
the sequence in which customers will be served. Secondly, we execute the stochastic variables and
initiate a recourse action based on the initial solution.

290 c© 2024 Lviv Polytechnic National University



A combined ant colony optimization with Levy flight mechanism for the probabilistic traveling . . . 291

The PTSPD is considered to be ♯P-hard for Euclidean examples [3]. Numerous objective function
approximations have been used in practical applications [4]. To solve difficult probabilistic combina-
torial optimization issues, metaheuristics have been created. One of the most popular methods among
them is Ant Colony Optimization (ACO), which was developed by Dorigo and Caro in [5]. The idea
behind ACO was influenced by the pheromone-based trail-laying and trail-following behavior of ac-
tual ants. Since its inception in the 1990s, the number of researchers and ACO algorithms has grown
rapidly, with all ACO algorithms sharing the same basic idea. However, ACO still has limitations
such as long search times and local extremal. To overcome these limitations, some studies propose
combining ACO with other techniques such as Levy flight [6].

The Levy flight (LF) mechanism has gained popularity as a search strategy in many metaheuristics
optimization algorithms, due to its ability to help escape from being stuck in local optima. LF is named
after French mathematician Paul Pierre Levy, who was the first to study Levy motion. Many animals’
foraging movements have LF features, the majority of their feeding time is spent near a current food
source, with occasional long-distance migration required to locate the next food source efficiently. It
means that in ACO with LF, some ants will do long jumps in accordance with a Levy distribution to
avoid becoming trapped in local optima. Several studies have proposed to combine ACO with LF to
solve different combinatorial optimization problems, such as the traveling salesman problem [7], the
heating route design [8]. Our goal is to suggest an ant colony optimization (ACO) metaheuristic that
solve the PTSPD using the Levy flying method.

The rest of this paper is organized as follows: in Section 2, we present the mathematical formulation
of the PTSPD; the ant colony optimization is presented and discussed in Section 3; Section 4 is devoted
to ACO with Levy flight for the PTSPD. Computational experiments are presented in Section 5.
Finally, in Section 6, we draw conclusions based on the results obtained from our study.

2. Model formulation

The PTSPD consists to find a tour that starts and ends at depot, visits each customer exactly once,
skipping those that do not need to be visited, and respects the delivery dates and minimizes the
expected length of the tour. To formalize this goal mathematically, let N = {1, . . . , n} be a set of
customers, and let 0 be a special element representing the depot. For each customer i ∈ N , we have
a distance dij to any other customer j ∈ N ∪ {0} such that dij is the Euclidean distance formula,
is defined as dij =

√

(xi − xj)2 + (yi − yj)2, where (xi, yi) and (xj , yj) are the coordinates of nodes
i and j, respectively, and dij = dji. We consider pi is a probability of needing service, a deadline li,
and a penalty λi for missing the deadline. An a priori solution is then represented by a permutation
ξ : {0, 1, . . . , n} → N ∪ {0} such that ξ(0) = 0 and ξ(i) 6= 0 for all i > 0. The objective is to minimize
the expected cost of the route, taking into account the uncertainties that affect the customers and the
deadlines, which can be written as:

E(travel time for ξ) + E(penalties for ξ), (1)

where E denotes the expected value operator.
The expected travel time can be computed in the same way as it is for the well-known PTSP

mentioned in [1]:

E(travel time for ξ) =

n
∑

j=1

pjd0j

j−1
∏

k=1

(1− pk) +

n−1
∑

i=1

n
∑

j=i+1

pipjdij

j−1
∏

k=i+1

(1− pk)

+
n
∑

i=1

pidi0

n
∏

k=i+1

(1− pk) (2)

The equation (2) has three terms that correspond to the travel time from the depot to the first customer,
from one customer to another, and from the last customer to the depot. Each there is weighted by the
probability of visiting or skipping the customers.
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We design a delivery service with fixed penalties for late arrivals. These penalties are applied
when we have to reimburse the customers due to missed deadlines. To estimate the penalties, we use
the expected value approximation method, which uses only the times of expected arrival if a visit is
necessary, this method is suitable for fixed penalties, as Campbell’s study proved [9].

The formula for expected penalties is simplified as we can find in [2]:

E(penalties for ξ) =
n
∑

i=2

piλiVi. (3)

Here, the indicator variable Vi takes a value of 1 if the expected arrival time at customer i is later than
the target date and 0 otherwise, and λi is a fixed penalty value for violating the deadline.

3. Ant colony optimization for the PTSPD

3.1. Overview of ant colony optimization

Ant colony optimization (ACO) is a popular metaheuristic algorithm that draws its inspiration from
the foraging habits of actual ants. In ACO, a team of artificial ants solves optimization problems by
traversing a network or graph of interconnected nodes. To share information regarding the quality of
their solutions, the algorithm utilizes pheromone trails, similar to the communication method employed
by real ants. Since the introduction of the first ACO algorithm in the early 1990s, ACO algorithms and
the number of researchers have been growing rapidly. All ACO algorithms share the same fundamental
concept, Table 1 shows the list of ACO algorithms with their authors and years of publication.

Table 1. List of ACO algorithms.

Algorithm Authors Year
ACO Deneubourg el al. [10] 1990

ANT SYSTEM (AS) Dorigo et al. [11] 1991
ELITIST Dorigo et al. [12] 1992
ANT-Q Gambardella and Dorigo [13] 1995

ANT COLONY SYSTEM Dorigo and Gambardella [14] 1996
MAX-MIN AS Stützle and Hoos [15] 1996
ANT-CLASS Monmarche et al. [16] 1999

BWAS Cordon et al. [17] 2000
ANT-CLUST Labroche [18] 2001
ANT-TREE Azzag [19] 2004

3.2. Construction of ACO process for the PTSPD

The PTSPD Euclidean problem involves finding a closed tour that covers each node exactly once (ex-
cluding those that do not require a visit), begins and concludes at the depot, and satisfies a known
deadline while minimizing the expected cost. Each node represents a customer, and each edge repre-
sents the distance between two nodes. The ACO process for the PTSPD consists of a population of m
artificial ants. The number of ants at node i at time t is denoted by bi(t), where i = 1, . . . , n, and the
total number of ants is calculated as m =

∑n
i=1 bi(t).

Each ant is an agent that carries out the following tasks: moving from node i to node j, leaving
a pheromone trail one edge (i, j), and determining the next node to visit based on a probability
influenced by the node’s distance and the quantity of pheromone on the connected edge. Importantly,
an ant avoids revisiting previously explored nodes until completing full tour to ensure the validity of
the solutions.

The intensity of the pheromone trail at time t on edge (i, j) is represented by τi,j(t), the trail
intensity undergoes an iterative update using a formula that includes a coefficient ρ representing trail
disappearance and the change in pheromone ∆τi,j(t, t+1), which is the amount of pheromone deposited
by ants on edge (i, j) between times t and t+ 1.
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The ACO process facilitates the collaborative search of ants to discover high-quality solutions by
strategically selecting paths that balance distance and pheromone information. Over iterations, the
process adapts pheromone intensities to improve exploration and exploitation of potential solutions.

Tour construction. At the start of the construction process in ACO for the PTSPD, a set of
m ants are placed at the depot. During each iteration, the ants will select a new city to visit based
on a decision that takes into account both the local heuristic information ηij and the pheromone
trail strength τij(t). Typically, the arc length is used to define the heuristic information ηij , such as
ηij =

1
dij

. The following equation, can be used to calculate the probability that an ant k in city i will

move to city j [20]:

pki,j(t) =











[τi,j(t)]
αηβi,j

∑

l∈Nk
i
[τi,l(t)]αη

β
i,l

if j ∈ Nk
i ,

0 else.

(4)

The significance of trail intensity, τi,j(t), and visibility, ηi,j , are determined by two parameters, α
and β, respectively. The set of cities that the ant has not yet visited is represented by the feasible
neighborhood of ant k, denoted by Nk

i . To generate a valid Hamiltonian cycle. The ants are permitted
to return to their route after finishing the trip. This allows them to spread pheromone along the arcs
they traveled.

Pheromone update. The pheromone values are modified at each iteration depending on the
solutions generated by m ants. The following equation updates the pheromone associated with the
edge between cities i and j, indicated by τi,j [21]:

τi,j ←− (1− ρ)τi,j +
m
∑

k=1

∆τki,j. (5)

The evaporation rate is ρ in this case, and the quantity of pheromone that ant k lay on the edge (i, j)
is represented by ∆τki,j.

Ant-density, Ant-quantity and Ant-cycle are three alternative instances of the ant algorithm that
result in three different possibilities for how to compute ∆τki,j(t, t + 1) and when to update τi,j(t). In

the case of Ant-cycle, ∆τki,j is computed only after a complete tour and is given by equation (6). The

expression for ∆τki,j given in [21] is defined as follows:

∆τki,j =







Q

E(travel time) + E(penalties)
if (i, j) ∈ T k(t),

0 if else.
(6)

Here, T k(t) is the path chosen by ant k at time t, Q is a fixed parameter and E(travel time) +
E(penalties) represents the expected path length.

The value of evaporation rate coefficient ρ is set to a value less than 1 (typically between 0 and 1)
to prevent excessive buildup of trail [11]. In our studies, a specific initial value is selected for the trail
intensity τi,j(0) on each edge (i, j). Figure 1 presents the process to solve PTSPD by ACO algorithm.

4. Ant colony optimization with Levy flight for the PTSPD

ACO is a metaheuristic method used to solve stochastic combinatorial optimization problems such as
the PTSPD. This method is inspired by the foraging behavior of ants when searching for food. The
fundamental approach of ACO involves employing probabilistic path selection rules that are based on
the quantity of pheromone present on the graph’s edges, to guide the ants in their search for optimal
solutions. However, this algorithm may be limited in its capacity to efficiently explore the search space,
which can lead to getting trapped in suboptimal solutions.

To address these limitations, ACO with Levy Flight (LFACO) has been proposed as an extension
of the basic ACO algorithm. This technique uses a foraging strategy inspired by Levy flight, to guide
ants in the search for optimal solutions for the PTSPD. By using this strategy, ants can avoid becoming
trapped in local suboptimal areas and search for more promising solutions in the search space.
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Initialization of ACO parameters

Create ants

Place all ants on the depot node

Ant start moving from depot

For each ant in colony:k

Do these for all ants

Update pheromone level

Stop?

Yes

No No

End

Return to the depot

Yes

All node visited

Add it to the route, mark it as visited

Select next node using transition rule

Mark all nodes as unvisited

Return the next node

Generate

Fig. 1. Diagram illustrating the different steps of applying the ACO algorithm to solve the PTSPD.

4.1. ACO algorithm with Levy’s flight

The steps of a random walk known as the Levy Flight follow a distribution known as the Levy dis-
tribution. In this distribution, the mean value is a specific type and the power law has an infinite
variance [22]:

Levy(β) ∼ u = t−β, 1 < β 6 3. (7)

There are multiple ways to generate random numbers using the Levy Flight method, but one of the
easiest and most efficient is to use Mantegna’s formulas to calculate the S step [23]:

S =
u

|v|
1

β

, (8)

where u and v denote Gaussian centered distribution, and thus

u = N(0, σ2
u), v = N(0, σ2

v) (9)
with

σ2
u =

Γ(1 + β) sin(πβ/2)

Γ((1 + β)/2)β 2(β−1)/2
, σ2

v = 1, (10)

where Γ(z) is the Gamma function:

Γ(z) =

∫ +∞

0
tz−1e−tdt (11)

calculating the Levy flight using formulas (7) to (11) can be complex and time-consuming for ACO
algorithm. A proposed approach, Levy Flight-ACO (LFACO), introduces a conversion formula with
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formula (14) and modified version of formula (8) (now formula (12)) to address this issue [24]:

Snew =







1

A
·
1− Pthreshold

1− PLevy

, if Snew > 1;

1, else,
(12)

1− Pnew =
1

Snew
· (1− Pnow), (13)

Pnew =







1−A ·
1− PLevy

1− Pthreshold

· (1− Pnow), if PLevy > Pthreshold;

Pnow, else.
(14)

In this approach, Snew for Levy’s flight is fixed with A (Levy flight Altering ratio) and Pthreshold (Levy
flight threshold) as parameters. The turning on/off of Levy flight altering is represented by PLevy and
the original selection probability is represented by Pnow. The resulting selection probability after Levy
flight altering is Pnew.

The Levy flight conversion process transforms step lengths higher than 1 into values between
0 and 1 using formulas (12) to (14). The Levy flight threshold and amplification ration are two
predefined parameters required for the conversion. Formula (14) introduces a new selection probability
to encourage exploration of a wider range of solutions and facilitate escape from local optima.

4.2. ACO with Levy flight for the PTSPD

This paper introduces a new ACO algorithm designed for the PTSPD described bellow.

Algorithm 1 Ant Colony Optimization with Levy flight for the PTSPD.

1: initialization: t← 0; for each arc (i, j), initialize the intensity of the trail to τij(0)← τ0;
2: Step 2: Starting node

3: for each ant k
4: Place the ant k on the starting node (the station node) and store this information in Tabuk;
5: Step 3: Build a tour for each ant

6: for i from 1 to n
7: for k from 1 to m
8: Choose the next node j, j /∈ Tabuk, where j is selected based on probability:

pki,j(t) =
[τi,j(t)]

α[ηi,j ]
β

∑
l/∈Tabuk

[τi,l(t)]α[ηi,l]β

9: Generate a uniform random Pnow ∈ [0, 1], PLevy ∈ [0, 1];
10: if PLevy > Pthreshold then

11: Pnew = 1−A ·
1−PLevy

1−Pthreshold
· Pnow;

12: else

13: Pnew = Pnow;
14: The next node will be selected using Pnew from the candidate list;
15: Store the chosen node in Tabuk;
16: Step 4: Global update of the trail

17: Calculate the expected value of the tour, E(travel time) + E(penalties), for each ant k;
18: Apply the local improvement method to the routes of all k ants and recalculateE(travel time)+E(penalties);
19: for each edge (i, j) ∈ Cycle⋆

20: Update the trail according to: τi,j(t+ 1) = (1 − ρ)τi,j(t) +
∑m

k=1 ∆τki,j(t)

21: with ∆τki,j(t) = Q/(E(LCycle⋆)+E(penalties)) if the ant k uses the (i, j) arc in its tour, and ∆τki,j(t) = 0
22: otherwise;

t← t+ 1
23: Step 5: Conditions of termination

24: Memorize the shortest circuit found up to this point;
25: if not (end-test) then

26: Empty all Tabuk and go to Step 2;
27: else

28: Stop;
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The algorithm consists of two main components that guide the ants in finding the most optimal
tours: pheromone intensity τ0 and a tabu list tabuk. The pheromone intensity determines the attrac-
tiveness of each edge, whereas the tabu list prevents ants from revisiting the same node. The algorithm
updates the pheromone values based on the expected tour value. This process is repeated until the
stopping condition is met. The Levy ACO algorithm modifies the candidate selection by utilizing the
Levy flight step length to adjust the random number and generate diverse solutions. It incorporates
parameters such as Pthreshold and A to enhance the algorithm’s efficiency.

5. Computation experiment

In this section, we describe a computational study that aims to determine the efficacy of our newly de-
veloped Levy ACO algorithm in comparison with the conventional ACO algorithm. In our experiment,
we consider the same instances that are given in [1, 25]. We used two sets of instances: the “Range”
and “Mixed” data sets. The former have uniformly distributed probabilities for each customer, while
the latter have random probabilities of 0.1 or 1 to represent scenarios where businesses of different sizes
are served by the same delivery person. In both cases, we set a penalty of 5, to represent the costs
related of failing to meet customer deadlines. The deadline of a task depends on its time window. If
the time window has a non-zero opening time, the deadline is defined by that specific time. Otherwise,
the deadline is equal to the closing time of the window.

We measure the computation time required to run each algorithm and evaluate the quality of the
obtained solutions. The experimental setup is conducted in Python on a machine equipped with an
Intel Core i5-7200U processor at 2.50 GHz, 8 GB of RAM, and a 64-bit operating system with an x64
processor.

Table 2. Comparison of ACO and LFACO based
on expected values for the PTSPD.

Probability Range Mixed

Data set LFACO ACO LFACO ACO
5 5.29 5.27 2.751 2.753
22 275.69 304.87 94.97 102.91
42 252.63 387.43 222.90 247.90
62 430.23 455.35 323.10 323.81
102 673.71 677.78 629.06 685.36

We use the same parameter settings for both
algorithms: τ0 = 0.01, m = 7, α = 1, β = 2,
ρ = 0.5, Pthreshold = 0.8, A = 1, and Q = 1.
These values are determined based on the previ-
ous literature and empirical studies.

Table 2, show that LFACO outperforms ACO
in terms of expected values for both Range and
Mixed data sets, except for the case of data set
62 in the Mixed data set, where the difference
between the two algorithms is negligible.

The difference in expected values between two algorithms is relatively small for small instances
(e.g., data set 5), but it becomes more significant as the size of the problem increases (e.g., data sets
42, 62, and 102).

It is interesting to note that LFACO performs better than ACO even for data sets where the
probabilities are uniformly distributed (i.e., Range data set), which suggests that the Levy Flight
mechanism is effective in improving the algorithm’s search capability beyond the effect of the probability
distribution of the problem.

Table 3. Comparison of ACO and LFACO based
on CPU values for the PTSPD.

Probability Range Mixed

Data set LFACO ACO LFACO ACO
5 0 0 0 0
22 1 1 1 1
42 4 6 3 6
62 21 31 20 23
102 95 206 94 273

The performance difference between two al-
gorithms is more pronounced for the Mixed data
set, where the probabilities are randomly as-
signed with either a small or large value. This
suggests that the ability of LFACO to explore
the search space more efficiently is particularly
useful for problems with heterogeneous probabil-
ity distributions.

According to Table 3, LFACO requires less
CPU time (in seconds) than ACO for all data
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sets and both Range and Mixed data sets. The difference is especially significant for larger instances
(e.g., data sets 42, 62, and 102).

The difference in CPU time, between two algorithms is more pronounced for the Mixed data set,
which suggests that the Levy Flight mechanism allows LFACO to find better solutions more efficiently
in problems with a more complex probability distribution.
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Fig. 2. Comparing ACO and LFACO for the PTSPD
Using Expected Values and Probability Range Analy-

sis.

Fig. 3. Comparing ACO and LFACO for the PTSPD
Using Expected Values and Probability Mixed Analy-

sis.
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Fig. 4. Comparing ACO and LFACO for the PTSPD
Using CPU Values and Probability Range Analysis.

Fig. 5. Comparing ACO and LFACO for the PTSPD
Using CPU Values and Probability Mixed Analysis.

Figures 2, 3 show that our LFACO algorithm outperforms the ACO algorithm in terms of expected
values, for the Range and Mixed datasets, except for instance 62 of the Mixed dataset where the
difference is negligible. This improvement is particularly significant, for larger instances.

Figures 4, 5 show the efficiency of the LFACO algorithm is enhanced for problems with hetero-
geneous probability distributions. Additionally, our algorithm requires less CPU time than the ACO
algorithm for all instances and the Range and Mixed datasets, with this difference being particularly
significant for larger instances of the Mixed dataset.

The obtained results corroborate previous studies that highlighted the difficulty of efficiently solving
the probabilistic traveling salesman problem with deadlines, including the papers [1,25]. However, this
current study provides a novel contribution by proposing an enhancement of ant colony optimization
algorithm with Levy’s flight mechanism to improve its performance beyond the effect of the probability
distribution of the problem.
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6. Conclusion

In this paper, we are interested in solving the probabilistic traveling salesman problem with deadlines
(PTSPD). Through the course of our computational experiments, we have concluded that the Ant
Colony Optimization with Levy Flight (LFACO) algorithm is a promising approach for PTSPD. Our
results show that LFACO outperforms ACO in terms of expected values for both Range and Mixed
datasets with a relatively small difference for small problem instances and a more significant difference
for larger and more complex instances. Moreover, LFACO requires less CPU time than ACO for all
datasets, especially for larger instances. These findings suggest that LFACO is an efficient and accurate
algorithm for finding optimal routes for a salesman to visit a set of locations with a probability of being
visited while meeting the deadlines imposed on each customer. Furthermore, the use of Levy flight in
the ACO algorithm appears to be an effective way to enhance the search capability of the algorithm
and enhance its performance beyond the effect of the probability distribution of the problem.
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Комбiнована оптимiзацiя мурашиної колонiї з механiзмом польоту
Левi для iмовiрнiсної задачi комiвояжера з термiнами виконання

Ель Асрi Ф., Таянi К., Фахурi Х.

Команда SMAD, Полiдисциплiнарний факультет Лараша,

Унiверситет Абдельмалека Ессаадi, Тетуан, Марокко

У цiй статтi нас цiкавить ймовiрнiсна задача комiвояжера з термiнами виконання
(PTSPD), де необхiдно зв’язатися з клiєнтами, на додаток до їх випадкової доступно-
стi, до встановленого кiнцевого термiну. Основна мета — знайти оптимальний марш-
рут, який охоплює випадкову пiдмножину вiдвiдувачiв у тому самому порядку, в
якому вони з’являються пiд час туру, намагаючись зробити шлях якомога коротшим.
Ця проблема вважається ♯P-складною. Оптимiзацiя мурашиної колонiї (ACO) часто
використовується для вирiшення цiєї складної залачi оптимiзацiї. Однак у цьому до-
слiдженнi пропонуємо розширений ACO, використовуючи алгоритм польоту Левi. Це
дозволяє деяким мурахам робити довшi стрибки на основi розподiлу Левi, допомагаю-
чи їм уникнути локальних оптимальних ситуацiй. Нашi обчислювальнi експерименти
з використанням стандартних контрольних наборiв даних демонструють, що запро-
понований алгоритм ефективнiший i точнiший, нiж традицiйний ACO.

Ключовi слова: стохастична комбiнаторна оптимiзацiя; iмовiрнiсна задача ко-

мiвояжера; термiни виконання; метаевристика, оптимiзацiя мурашиних колонiй;

полiт Левi.
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