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In the realm of industrial enterprises, enhancing logistical efficiency stands as a focal
concern. The objective lies in orchestrating an optimized service with seamless flow of
goods while minimizing expenses. A crucial component within any logistics framework is
the administration and strategizing of distribution networks for vehicle fleets, commonly
referred to as the Vehicle Routing Problem (VRP). This composition delves into an explo-
ration of VRP and its various iterations, offering categorization and depiction of prevalent
formulations and algorithms prevalent in scholarly works over the past two decades.
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1. Introduction

In 1959, Dantzig and Ramser [1] introduced the concept of the “Truck Dispatching Problem” as a
means to optimize the allocation of a fleet of identical trucks for efficiently meeting the oil demand of
multiple gas stations from a central hub while minimizing total distance traveled. Building upon this
foundation, Clarke and Wright [2] expanded the problem into a linear optimization framework that
has become a cornerstone in the fields of logistics and transportation. Their work involved effectively
serving geographically dispersed customers from a central depot, accounting for trucks with different
capacities.

However, the contemporary VRP models have undergone significant advancements compared to
the initial formulations presented by Dantzig, Ramser, Clarke, and Wright. The objective now is
to incorporate real-world complexities into the problem formulation, leading to the exploration of
numerous variants. Some notable variants include the VRP with Time Windows (VRPTW), the VRP
with Pickup and Delivery Problem (VRPDP), the VRP with Heterogeneous Fleets (HFVRP), the
Time-Dependent VRP (TD-VRP), the Open VRP (OVRP), and the Multi-Depot VRP (MDVRP),
among others.

The practical significance of these problems has attracted the attention of numerous researchers,
fostering collaborations between academic institutions and companies. As a result, contemporary
VRP software solutions have been widely adopted across diverse sectors, including public, private, and
multinational organizations. Companies such as Coca-Cola Enterprises and Amazon have recognized
the pivotal role of VRP software in optimizing their operations. According to a report by Toth and Vigo
in 2002 [3], implementing computerized techniques in distribution processes can yield transportation
cost savings ranging from 5% to 20%.

It is important to note that the VRP has been proven to be NP-hard by Lenstra and Rionnooy
Kan [4] in 1981. This implies that no polynomial-time algorithm exists to solve the problem optimally,
necessitating the adoption of heuristic and meta-heuristic methods to obtain approximate solutions
for large-scale instances. Exact methods are only viable for small-scale instances and cannot provide
solutions within a reasonable timeframe. Consequently, a plethora of models and algorithms have been
proposed for optimal and approximate solutions to the various VRP variants.
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Throughout the years, the VRP has captured the attention of researchers and practitioners alike
due to its relevance and applicability in various industries. The optimization of vehicle routes and
distribution networks plays a crucial role in minimizing costs, reducing environmental impact, and en-
hancing customer satisfaction. As a result, extensive research efforts have been dedicated to developing
innovative approaches, algorithms, and mathematical models to tackle the challenges posed by the
VRP and its variants. The continuous evolution and refinement of these techniques have contributed
to significant advancements in the field of logistics and transportation management. By exploring
and harnessing the potential of these advancements, organizations can unlock new possibilities for
improving operational efficiency, resource utilization, and overall supply chain performance.

This review paper focuses on providing an overview of widely used formulations and solutions for
the Capacitated Vehicle Routing Problem (CVRP) in Sections 2 and 3. It also highlights significant
papers on the VRP from the past two decades in Section 4, shedding light on the recent advancements
and trends in the field.

2. Formulations and variants of the VRP

The literature presents various formulations for modeling VRP, offering different perspectives.
Presently, the most prevalent approaches can be categorized into two main classes: index vehicle
flow formulations and set partitioning formulations. In this section, we provide an in-depth description
of both approaches in the context of modeling the CVRP.

Considering an undirected graph G = (V ′, E) with n + 1 vertices where V ′ = {0, 1, . . . , n} and
E represent the set of edges, where vertex 0 serves as the depot and V = V ′/{0} corresponds to n
customers. Each edge i, j ∈ E has a non-negative cost dij . Each customer i ∈ V requires a supply
of qi units from the depot, where q0 = 0. The problem involves m identical vehicles stationed at the
depot with a capacity of Q. The objective is to utilize the depot (represented by vertex 0) to distribute
goods or services to the customers. A route is defined as a cost-effective cycle in graph G that includes
the depot 0, where the total demand of the visited vertices does not exceed the vehicle capacity. The
goal is to design m routes, one for each vehicle, ensuring that all customers are visited exactly once
and the total cost of all routes is minimized.

For a subset F ⊆ E, G(F ) denotes the subgraph (V ′(F ), F ) induced by F , where V ′(F ) represents
the set of vertices that are connected to at least one edge of F . Additionally, for a given set S ⊆ V , the
complement of S is denoted as S̄ = V ′\S and δ(S) is the cutset defined by S, where δ(S) = {{i, j} ∈
E : i ∈ S, j /∈ S or i /∈ S, j ∈ S}. Moreover, q(S) is the total demand of customers in S, and k(S)
represents the minimum number of vehicles with a capacity of Q needed to serve all customers in S.

2.1. The vehicle flow formulations

Here we will focus only on the two index formulation which is the most popular among these formula-
tions, it was firstly proposed by Laporte et al. [5] and is as follows:
let xij an integer variable which may take value {0, 1}, ∀{i, j} ∈ E\{{0, j}: j ∈ V } and value {0, 1, 2},
∀{0, j} ∈ E, j ∈ V . It should be noted that if a route including a single customer j is selected in the
solution, then x0j is set to 2.

The formulation of the CVRP using a two-index vehicle flow approach is as follows:

min
∑

{i,j}∈E

dijxij (1)

s.t.
∑

{i,j}∈δ({h})

xij = 2, ∀h ∈ V, (2)

∑

{i,j}∈δ(S)

xij > 2k(S), ∀S ∈ S , (3)

∑

j∈V

x0j = 2m, (4)
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xij ∈ {0, 1}, ∀{i, j} ∈ E\{{0, j} : j ∈ V }, (5)

x0j ∈ {0, 1, 2}, ∀{0, j} ∈ E, j ∈ V, (6)

where S = {S : S ⊆ V, |S| > 2}.
The constraints (1) represent the degree constraints for each customer. The constraints (2), (3), also

known as capacity constraints or generalized subtour elimination constraints, enforce that for any subset
S of customers excluding the depot, a minimum of k(S) vehicles must enter and leave S. Constraint (4)
ensures that m vehicles depart from and come back to the depot. Additionally, constraints (5) and (6)
are the integrality constraints.

2.2. The set partitioning formulations

Balinski and Quandt [6] originally introduced the set partitioning formulation of the CVRP, which
assigns a binary variable to every possible route that is considered feasible.

Consider an index set R containing all feasible routes and a subset Ri ⊂ R comprising routes that
cover a given customer i ∈ V . We define a binary coefficient air, which takes the value 1 if vertex
i ∈ V ′ is present in route r ∈ R, and 0 otherwise (noting that a0r = 1, ∀r ∈ R). Additionally, each
route r ∈ R is associated with a cost cr.

We introduce a (0, 1) binary variable yr, which takes the value 1 if and only if route r ∈ R is
selected. The set partitioning formulation of the CVRP is as follows:

min
∑

r∈R

cryr (7)

s.t.
∑

r∈R

airyr = 1, ∀i ∈ V, (8)

∑

r∈R

yr = m, (9)

yr ∈ {0, 1}, ∀r ∈ R. (10)

Constraints (8) specify that each client i ∈ V must be covered by one route and, constraint (9) requires
that m routes are selected.

It is mentioned that set partitioning formulations are often more compact and easier to solve than
vehicle flow formulations. This is because set partitioning formulations involve a smaller number of
decision variables and constraints compared to vehicle flow formulations. However, the vehicle flow
formulations have some advantages over the set partitioning formulations. For example, it can more
easily accommodate additional constraints, such as time windows. The vehicle flow formulations can
also lead to tighter linear programming relaxations compared to the set partitioning formulations.

Finally, it is worth noting that numerous other formulations of the CVRP and its variants have
been proposed in the literature such as the CVRP’s commodity flow formulations which incorporate
assignment constraints to represent vehicle routes and multicommodity flow constraints to represent
the transportation of goods. Initially introduced by Garvin et al. in 1957, [7] to solve an oil delivery
problem. Many of these formulations were developed to address some of the limitations associated
with both the vehicle flow formulations and the set partitioning formulations. For further information
on this subject, we recommend referring to [8, 9].

2.3. Variants of the VRP

The VRP exhibits a rich landscape of variants and extensions that have been studied extensively. One
notable extension is the HFVRP or Mixed Fleet VRP [10], where vehicles with varying capacities are
considered. This variant reflects real-world scenarios where a fleet consists of vehicles with different
capabilities, such as different load capacities or fuel efficiencies [11, 12]. Another intriguing exten-
sion is the MDVRP, assuming that a company may have multiple depots from which it can serve its
customers. This variant allows for more flexibility in terms of distribution strategies and can be partic-
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ularly relevant in large-scale logistics networks or when serving customers across diverse geographical
regions [10, 13].

The VRPTW, which assigns specific time windows for delivery to each client, is another highly
investigated enhancement. Time windows can be divided into two categories: hard time windows,
which rigorously forbid deliveries outside of a predetermined window, and soft time windows, which
permit some flexibility by charging penalties for early or late deliveries. Realistic scheduling issues are
included in this addition, which ensures that deliveries are made within predetermined time periods
while accounting for temporal constraints [14–16].

The Periodic Vehicle Routing Problem (PVRP), which takes into account a planning horizon that
extends over several days, expands the traditional VRP. This module takes into account situations
where consumers need to return, like in recurrent service or restocking cycles. The PVRP offers a
more comprehensive perspective on long-term route planning and consumer visits patterns by taking
into account the time dimension across several days [17].

The responsibility of conveying items that must be picked up from a certain area and delivered
to their destinations by the same vehicle is introduced by the VRPPD. When products need to be
gathered from diverse origins and dispatched to certain destinations, settings like courier or delivery
services sometimes use this version.

Another variation, the VRP with Simultaneous Deliveries and Pickups (VRPSPD), permits the
execution of both pickups and deliveries at client locations at the same time. The VRPSPD allows a
vehicle to do both tasks concurrently at a single site in contrast to the VRPPD, where pickups and
deliveries happen in order. This variation accounts for scenarios in which goods must be swapped or
combined at client locations before being transported elsewhere [18, 19].

The TDVRP takes into account client visit time frames or journey times that depend on the time
of day. In this variation, the amount of time it takes to get from one place to another is not constant
but instead changes depending on the time of day, the weather, and dynamic factors like traffic. The
TDVRP attempts to produce more precise and effective route plans that adjust to real-time traffic
circumstances by taking into account the temporal variations in trip times [20, 21].

There have also been many other variations and combinations of the aforementioned extensions
investigated. These include combinations that incorporate many elements to provide more com-
plex problem formulations, such as VRPTW with multi-depot (MD-VRPTW) or time-dependent
(TD-VRPTW). Additionally, less commonly encountered variations include the Open VRP, Multi-
compartment VRP, and Generalized VRP, among others, each addressing specific logistical challenges
and considerations.

The comprehensive study of these VRP variants and their respective optimization algorithms con-
tributes to a deeper understanding of the complexities involved in vehicle routing and provides insights
into tailoring solutions to address diverse real-world scenarios [22, 23].

3. Methods of resolution

Numerous exact and metaheuristic algorithms have been proposed as a result of intensive research
into the solution of the VRP and its variants. These algorithms seek to address the VRP’s innate
complexity and offer effective answers for practical applications.

3.1. Exact methods

Exact methods offer a range of approaches to solve the VRP and its variants. One widely used exact
method is Branch and Bound, which divides the search space into branches and employs a bounding
procedure to estimate the best possible solution within each branch. By using bounds, the search tree
is pruned, eliminating unpromising branches and reducing the computational effort required. Another
approach, Branch and Cut, combines Branch and Bound with cutting planes. Cutting planes are
inequalities progressively added to the problem formulation to strengthen the bounds and improve the
relaxation solution at each node of the search tree [9, 24].
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Column Generation is a powerful technique specifically designed for solving large-scale optimization
problems with a vast number of decision variables. It is particularly effective when a problem has a
large number of potential variables, but only a subset of them are likely to be part of the optimal
solution [12]. Branch and Price combines elements from Branch and Bound (bound step) and Column
Generation (price step) to efficiently explore the solution space while improving the quality of the
solutions obtained. This approach identifies and adds only the most promising columns (variables) to
the problem formulation, resulting in a more compact and efficient representation of the problem [21].

In contrast to the Branch and X methods that treat VRP as integer linear programming (ILP) or
mixed ILP (MILP), dynamic programming takes a different approach by breaking down the complex
problem into simpler sub-problems. It leverages the principle of optimality, which states that an optimal
solution to a problem incorporates optimal solutions to its subproblems. By recursively solving the
subproblems and building up the solution step by step, dynamic programming efficiently computes
the optimal solution to the VRP. This technique is particularly useful when the problem exhibits
overlapping substructures that can be exploited to avoid redundant computations.

Each exact method has its own strengths and limitations, and the choice of which approach to
use depends on factors such as problem size, complexity, and available computational resources. Re-
searchers continue to refine and develop novel exact methods to improve solution quality and compu-
tational efficiency, expanding the possibilities for solving the VRP and its variants [23, 25].

3.2. Approximate methods

Dynamical programming

Branch and Cut

Branch and Price

Branch and Bound

Column generation

Exact Methods

Fig. 1. Exact methods.

Most work on VRP is related to approximate
methods, often called heuristics, which are de-
signed to solve specific problems. They are sat-
isfied with obtaining solutions as good as pos-
sible in reasonable time but do not guaran-
tee their optimality. For instance, the savings
method of Clarke and Wright (1964) [2] is one
of the earliest examples of constructive heuris-
tic used to solve the VRP. The methods of this
type progressively build vehicle routes by insert-
ing them at each stage of a customer according to several criteria of gain measures. We also find
Improvement methods,which were initially implemented by Croes (1958) [26] and Lin 1965 [27] for the
travelling salesman problem. They are based on the concept of k-exchanges.

A meta-heuristic may be referred to as “an intelligent strategy combining the subordinate heuristics
for diversification and intensification”. Metaheuristics are broadly categorized into two main groups:
local and population-based. Local metaheuristics focus on refining a single solution by exploring its
neighborhood. These methods are efficient in finding good solutions, but they may get trapped in local
optima, leading to suboptimal solutions [16, 28, 29].

In other hand, population-based metaheuristics refer to a group of optimization algorithms that
utilize a population of candidate solutions to explore the search space and find the optimal solution.
There are two main classes of metaheuristics: Swarm intelligence and Evolutionary computation.
Swarm intelligence takes cues from the collective behavior of social organisms like bees, birds, and
ants, and involves inter-actions between the population and the environment to achieve the optimal
solution. Evolutionary computation, on the other hand, draws inspiration from natural evolution and
applies genetic operators like selection, mutation, and crossover to allow the population to evolve
over time [15]. Swarm intelligence algorithms are generally quicker and more efficient at exploring
the search space, but they may face challenges in converging to a solution or getting stuck in a local
optimum. In contrast, Evolutionary computation algorithms may require more time to converge,
but they possess greater robustness and can tackle complex optimization problems that involve a large
number of variables. Figure 1 presents the various approximatives methods to solving the VRP [30,31].
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Approximates Methods

MetaheuristicsHeuristics

Constructive

Improvement

Two phase

Local Search Population Search

Swarm intelligenceEvolutionary
computation

Genetic algorithm

Memetic algorithm

Scatter algorithm

Particle Swarm Optimization

Ant Colony Optimization

Firefly algorithm

Tabu Search
Simulated
annealing

Large
Neighborhood Search

Greedy randomized

adaptive search procedure

Iterated Local Search

Fig. 2. Approximatives methods for VRPs.

4. Review results

4.1. Research methodology

In this paper, we will focus in most important papers published in the last twenty years related with
the VRP area. Although recent surveys and reviews of available literature have primarily concentrated
on specific variants of VRP and/or particular solution techniques, the aim of this current survey is to
compile a list of various well-known VRP variants and the techniques used to solve them. In order to
address this objective, the following research questions were devised:
RQ1: Which variants of the VRP have been explored in various papers to establish connections
between logistics community goals and the field of VRP?
RQ2: How to choose the appropriate formulation far a VRP?
RQ3: What are the different approaches used to solve the VRP?

To answer these questions the search procedure has been conducted in well-known academic
databases, such as Elsevier, Springer and IEEE transaction, etc. After reviewing all articles,we have
identified thousands of papers including journal papers, conference proceedings, and theses. However,
we have narrowed our search to focus only on papers published in high-impact journals categorized as
Q1 or Q2.

Table 1 and the diagram in Figure 3 summarize the sample of articles selected according to the
journal of publication as well as the quartile and class of citation numbers respectively.

0

2

4

6

8
Q1 Q2

<=100 Between 10 & 2000 Between 10 & 3500 >350

Heuristics

8.8%

Exacts

29.4%

Metaheuristics

61.8%

Fig. 3. Distribution of papers according to the journals quartile
and citations.

Fig. 4. Overall percentage of solutions
attributes in the reviewed articles.
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Table 1. List of journals associated from selected articles.

Journals References

Computers & Operations Research [12, 17–20,30, 32]
European Journal of Operational Research [11, 16, 28, 33]
Expert Systems with Applications [14, 29, 34]
Mathematical Programming [24, 25, 35]
Transportation Science [21, 36]
Operations Research [9]
Transportation Research Part C: Emerging Technologies [23]
Journal of King Saud University-Engineering Sciences [22]
Robotics and Computer-Integrated Manufacturing [10]
Computers & Industrial Engineering [37]
Applied Soft Computing [38]
Journal of Heuristics [39–42]
Applied Intelligence [15]
Discrete Optimization [13]
ScienceAsia [43]
Journal of Zhejiang University: Science [31]
Operations Research Letters [44]

The overall percentages of solutions attributes in the study period are illustrated in Figure 4, we
notice that the majority of articles (61.8%) use the metaheuristics. About 29.4% of the articles use
the exact methods. The heuristics are used in 8.8% of the articles. We also notice that most of the
authors hybridize the methods between them which is an effective way to improve the search efficiency,
solution quality, robustness, and flexibility of the optimization process.

4.2. Summary of literature review

Table 2 illustrates the distribution of solution strategies, used in the articles examined by this study,
according to the class of problems studied and the formulation used.

4.3. Analysis of literature

Throughout its history, the VRP has been a fundamental combinatorial issue, inspiring in-depth re-
search into numerous problem variants. The limitations imposed and the cost functions applied de-
termine how these versions differ. The VRPTW stands out as the most common form among the
complicated real-world settings that are frequently reflected by VRP cases in current research. To en-
sure prompt customer service and satisfaction, the VRPTW incorporates time windows, which mirrors
real-world limits and presents extra optimization issues.

A thorough analysis of the most popular VRP formulations is provided in this research. Each
formulation offers a distinct view of the issue and has its own advantages and disadvantages in terms
of the degree of computing complexity and the caliber of the solutions. The choice of formulation
depends on the specific characteristics and requirements of the VRP instance under consideration.

While exact, heuristic, and metaheuristic approaches have been employed to solve the VRP, meta-
heuristics have become the preferred choice. The lack of exact solution methods that are effective for
reasonably sized problems necessitates the utilization of metaheuristics. Although they cannot guar-
antee optimal solutions, metaheuristics have the potential to discover satisfactory solutions. Among
the metaheuristic approaches, local search methods, particularly tabu search, have gained widespread
acceptance as the most popular and efficient techniques. Additionally, hybrid methods that combine
different algorithms have shown promise in finding excellent solutions that cannot be achieved by any
single method within a reasonable timeframe.

However, despite the growing inclusion of real-life constraints in recent literature, a majority of
authors still primarily propose problem-specific methods that lack applicability to other variants of
the problem. These methods often involve manipulating parameters to achieve favorable performance
for specific instances or benchmark scenarios. Consequently, many of the proposed solution methods
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Table 2. Comparison of the model and solution between the different papers chosen.

Problem Studied Formulation Solution Authors

CVRP

Index vehicle flow

Branch-and-Cut Lysgaard et al. (2004)

Branch-and-Cut Achuthan et al. (2003)

Firefly algorithm Altabeeb et al. (2019)

Hybrid Simulated Annealing Lin et al. (2009)

with Tabu Search

Particle swarm optimization Chen et al. (2006)

Clarke and Wright savings Pichpibul et al. (2012)

Set partitioning
Branch-cut-and-price Pecin et al. (2017)

An exact algorithm Baldacci et al. (2008)

Commodity flow Branch-and-Cut Baldacci et al. (2004)

MDVRP

Index vehicle flow
Three hybrid heuristics Mirabi et al. (2010)

Cooperative coevolutionary De Oliveira et al.

algorithm (2016)

Commodity flow Variable Neighborhood Reyes-Rubiano et al.

Search (2020)

Set partitioning

Combining statistical learning Calvet et al. (2016)

with metaheuristics

Ant Colony Optimization Yu et al. (2009)

Granular Tabu Search Escobar et al. (2014)

Combining Index vehicle Cutting Planes and Contardo et al. (2014)

flow and set partitioning Column Generation

HFVRP Set partitioning

Iterated Local Search Subramanian et al. (2012)

Column Generation CHOI et al. (2007)

Iterated Local Search Penna et al. (2013)

VRPTW Index vehicle flow

Multiple Temperature Pareto Baños et al. (2013)

Simulated Annealing

Genetic algorithm Ombuki et al. (2006)

Tabu search Lau et al. (2003)

VRPSPD Commodity flow

Tabu Search Montané et al. (2006)

Particle Swarm Optimization TJ Ai et al. (2009)

Large neighborhood search Hornstra et al. (2020)

TD-VRPTW

Commodity flow A Multiple Ant Colony Balseiro el al. (2011)

System algorithm hybridized

with Insertion Heuristic

Set partitioning Branch and Price Dabia et al. (2013)

Set covering Tabu Search Gmira et al. (2021)

MD-VRPTW Index vehicle flow Variable Neighborhood Search Polacek et al. (2004)

MD-HFVRPTW Set partitioning Branch-and-Cut-and-Price Bettinelli et al. (2011)

MD-TD- Index vehicle flow Constructive heuristic Afshar-Nadjafi et al.

HFVRPTW (2017)

HFPVRP Three formulations Kernel Search Huerta-Munoz et al. (2022)

A class of VRP Set partitioning
Iterated Local Search Subramanian et al. (2013)

Branch-Cut-and-Price Pessoa et al. (2020)

are not easily adaptable for real-life applications. In our classification, there is a scarcity of articles
that propose broad algorithms capable of solving multiple variants. Finally, it has been noted that
there is a lack of benchmarks for the more realistic versions of VRP. This presents an opportunity for
further research in this area, motivating researchers to create publicly available data sets to compare
and assess the effectiveness of different VRP algorithms.
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5. Conclusion

In conclusion, this paper provides an overview of recent research on the VRP and its common variants,
with a particular focus on mathematical formulation and solution strategies. Our analysis reveals that
the primary objective in these studies is to minimize the total cost associated with routing operations.
The classification tables generated from the results highlight the diverse formulations and algorithms
employed, tailored to address specific problem characteristics.

Looking ahead, with advancements in technology such as GPS and mobile communication, we
anticipate a growing interest in dynamic VRP, allowing for real-time adjustments to routing decisions
as drivers are on the move. This dynamic approach holds promise for enhancing the efficiency and
responsiveness of routing operations in the future.

It is important to recognize that the publications reviewed in this work presume that all problem
data will be available in advance. However, in real-world situations, there can be ambiguity over trip
timings or precise consumer requirements. Therefore, it is crucial to create models and approaches
that can handle unknown variations of the situation, taking into account variables like trip time
unpredictability and shifting client expectations.

Overall, this survey offers a comprehensive overview of the present state of research on the VRP
and its variations, illuminating the prevalent goals, hypotheses, and approaches to solving problems.
The knowledge gathered from this work can serve as a roadmap for future research, highlighting the
necessity of addressing dynamic factors and uncertainties to improve the applicability and efficacy of
VRP models in real-world scenarios.
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Огляд задачi маршрутизацiї транспортного засобу та її варiантiв:
постановки та розв’язування

Хайя Е.1, Медархрi I.1, Зiне Р.2

1Команда MMCS, Лабораторiя LMAID, ENSMR-Рабат, Марокко
2Школа науки та iнженерiї, Унiверситет Аль-Ахавейн в Iфранi, Марокко

У сферi промислових пiдприємств пiдвищення ефективностi логiстики є першоряд-
ним завданням. Мета полягає в органiзацiї оптимiзованого обслуговування з безпе-
ребiйним потоком товарiв за умови мiнiмiзацiї витрат. Ключовим компонентом будь-
якої системи логiстики є адмiнiстрування та розроблення стратегiї розподiльних ме-
реж для паркiв транспортних засобiв, що зазвичай називають проблемою маршру-
тизацiї транспортних засобiв (VRP). Ця композицiя присвячена дослiдженню VRP
та його рiзноманiтних iтерацiй, пропонуючи класифiкацiю та зображення прийнятих
формулювань i алгоритмiв, поширених у наукових роботах за останнi два десятилiт-
тя.

Ключовi слова: VRP; опитування; точнi методи; математичне формулювання;

мета-евристики.
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