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auxiliary Cauchy problems for the second-order linear ordinary differential equations: one
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1. Introduction

Exact difference schemes for linear boundary value problems have been first introduced in [1,2]. These
schemes allow for the construction of truncated difference schemes of any order of accuracy. In [3],
these results were applied to the Sturm–Liouville problem, and in [4], to the singular Sturm–Liouville
problem with coefficients of a special form.

However, the practical use of such truncated schemes in the case of variable coefficients of a differen-
tial equation requires the calculation of multiple integrals at each grid node xj, posing computational
challenges. Addressing the need for high accuracy in practical calculations for nonlinear boundary
value problems, truncated difference schemes of high order were developed in [5].

In [6, 7], building upon the ideas presented in [8, 9], a new algorithmic realization of the exact
three-point difference scheme (ETDS) via truncated three-point difference schemes (TDS) of any order
of accuracy was developed and justified for the Sturm–Liouville problem. These articles demonstrate
that the coefficients of the ETDS and the right-hand side at any grid node can be expressed through
the solutions of two auxiliary Cauchy problems, each of which can be numerically solved using any
one-step method, such as the Taylor series expansion or the Runge–Kutta methods.

In this paper, we extend these findings by demonstrating that coefficients of the ETDS for the
Sturm–Liouville problem with a singularity at the ends of the segment [−1, 1] can also be expressed
through solutions of the auxiliary Cauchy problems for second-order linear ordinary differential equa-
tions.

2. Exact three-point difference scheme for singular Sturm–Liouville problem

In the present article we consider the following singular Sturm–Liouville problem

d

dx

[

k(x)
du

dx

]

− q(x)u(x) = −λr(x)u(x), x ∈ (−1, 1), (1)

u(−1) 6= ∞, u(1) 6= ∞, (2)
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where

k(x) = (1− x2)k1(x), 0 < C1 6 k1(x) 6 C2, 0 < C3 6 q(x) 6 C4, 0 < C5 6 r(x) 6 C6, (3)

Ci, i = 1, 2, . . . , 6 are constants. We introduce the regular grid

ω̄h = {xj = −1 + (j − 0, 5)h, h = 2/N, j = 1, 2, . . . , N, x0 = −1, xN+1 = 1}
and take the pattern functions vjα(x, λ), α = 1, 2, j = 1, 2, . . . , N as the solutions of the following
Cauchy problems

d

dx

[

k(x)
dv11
dx

]

− q(x)v11(x, λ) + λr(x)v11(x, λ) = 0, x ∈ (x0, x2),

v11(x0, λ) = 1, k(x)
dv11(x, λ)

dx

∣

∣

∣

∣

x=x0

= 0,

(4)

d

dx

[

k(x)
dvjα
dx

]

− q(x)vjα(x, λ) + λr(x)vjα(x, λ) = 0, x ∈ (xj−1, xj+1),

vjα(xj+(−1)α , λ) = 0, k(x)
dvjα(x, λ)

dx

∣

∣

∣

∣

∣

x=xj+(−1)α

= (−1)α+1,

α = 1, 2, j = 3− α, 4 − α, . . . ,N + 1− α,

(5)

d

dx

[

k(x)
dvN2
dx

]

− q(x)vN2 (x, λ) + λr(x)vN2 (x, λ) = 0, x ∈ (xN−1, xN+1),

vN2 (xN+1, λ) = 1, k(x)
dvN2 (x, λ)

dx

∣

∣

∣

∣

x=xN+1

= 0.

(6)

Similarly to [4], we establish the properties of the pattern functions.

Lemma 1. The functions vjα(x, λ) > 0, α = 1, 2 have the following properties:
1) vjα(x, λ) > 0, α = 1, 2 for all x ∈ (xj−1, xj+1) j = 1, 2, . . . , N and are linearly independent at each

of these intervals;
2) these functions satisfy the next relation

vj1(xj+1, λ) = vj2(xj−1, λ), j = 2, 3, . . . , N − 1, vj2(xj , λ) = vj+1
1 (xj+1, λ), j = 1, 2, . . . , N − 1,

v11(x2, λ) = v11(x1, λ) + v12(x1, λ)

∫ x1

x0

v11(ξ, λ)[q(ξ) − λr(ξ)] dξ

+ v11(x1, λ)

∫ x2

x1

v12(ξ, λ)[q(ξ) − λr(ξ)] dξ,

vj1(xj+1, λ) = vj1(xj , λ) + vj2(xj , λ) + vj2(xj , λ)

∫ xj

xj−1

vj1(ξ, λ)[q(ξ) − λr(ξ)] dξ

+ vj1(xj , λ)

∫ xj+1

xj

vj2(ξ, λ)[q(ξ) − λr(ξ)] dξ, j = 2, . . . , N − 1,

vN2 (xN−1, λ) = vN2 (xN , λ) + vN2 (xN , λ)

∫ xN

xN−1

vN1 (ξ, λ)[q(ξ) − λr(ξ)] dξ

+ vN1 (xN , λ)

∫ xN+1

xN

vN2 (ξ, λ)[q(ξ) − λr(ξ)] dξ.

Proof.

1) We now prove that the functions vjα(x, λ), α = 1, 2, are linearly independent. As is known, for the
linear independence of solutions of problem (4), (5) it is necessary and sufficient, that the Wronskian
should be different from zero if at least in one point of the interval [xj−1, xj+1]. Let us assume the

contrary for j = 2, 3, . . . , N − 1. Then the Wronskian W [vj1(x, λ), v
j
2(x, λ)] is identically equal to

zero on the interval [xj−1, xj+1]. Calculating the Wronskian at the points xj+(−1)α , α = 1, 2, and

taking the fact that vj2(xj−1, λ) = vj1(xj+1, λ) into account, we obtain
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W [vj1(x, λ), v
j
2(x, λ)]x=xj+(−1)α

= − vj1(xj+1, λ)

k(xj+(−1)α)
.

It follows that vj1(xj+1, λ) = 0, i.e., vj1(x, λ) is the solution of boundary-value problem

d

dx

[

k(x)
dvj1
dx

]

− q(x)vj1(x, λ) + λr(x)vj1(x, λ) = 0, x ∈ (xj−1, xj+1),

vj1(xj−1, λ) = vj1(xj+1, λ) = 0, j = 2, 3, . . . , N − 1.

(7)

We now show that for sufficiently small h < h0 and for λ = λm, 1 6 m 6 k, k ≪ N , problem (7)
has only the trivial solution. For this purpose, it is sufficient to show that for h < h0 the following
inequality is satisfied:

−[q(x)− λr(x)] 6 λr(x) < µ
1

∀x ∈ [xj−1, xj+1],

where µ
1

is the lower estimate of the smallest eigenvalue of the problem

d

dx

[

k(x)
dv

dx

]

+ µv(x) = 0, x ∈ (xj−1, xj+1), v(xj−1) = v(xj+1) = 0.

This problem is known to be equivalent to the variational problem of finding the minimum of the
functional

min

∫ xj+1

xj−1

k(ξ)[v′(ξ)]2 dξ

under condition

‖v‖2 =

∫ xj+1

xj−1

v2(x) dx = 1.

Considering that h < 1, xj−1 6 ξ 6 xj+1 for j = 2, 3, . . . , N − 1,

k(ξ) > C1(1− ξ2) > C1[1− (−1 + 0, 5h)2] = C1

[

h− h2

4

]

>
3

4
hC1

and min
∫ xj+1

xj−1
[v′(ξ)]2 dξ = π2

4h2 , we obtain µ1 >
3C1π2

16h = µ
1
. Hence, there exists h0 such that for all

h < h0 the inequality

hλr(x) <
3C1π

2

16
∀x ∈ [xj−1, xj+1], j = 2, 3, . . . , N − 1

is satisfied. Consequently, it follows that vj1(x, λ) ≡ 0, x ∈ [xj−1, xj+1] for h < h0 = 3C1π2

16λC6
, which

contradicts the condition k(x)
dvj1(x,λ)

dx

∣

∣

∣

x=xj−1

= 1.

Similar considerations show that vj1(x, λ) 6= 0 holds in any point of the interval (xj−1, xj+1], i.e.,

our function is of constant-sign on this interval. Thus, vj1(x, λ), v
j
2(x, λ), j = 2, 3, . . . , N − 1 are

linearly independent on the interval [xj−1, xj+1].
For j = 1 at λ = λm, m = 1, 2, . . . , k, k ≪ N , we have v11(x, λ) = cmum(x), where um(x) is the
eigenfunction of the problem (1), (2) which corresponds to the eigenvalue λm. We denote by xmmin

the minimum, and by xmmax the maximum zero of the function um(x) on the interval (−1, 1). If we
choose h < h1 = 2

3 (1 + xmmin), then x2 = −1 + 1.5h < −1 + (1 + xmmin) = xmmin is obtained. Hence,
v11(x, λ) 6= 0, x ∈ [−1, x2]. From the fact that v11(x2, λ) 6= 0, follows the linear independence of
the functions v11(x, λ), v

1
2(x, λ). Similarly, for j = N we get that for h < h2 = 2

3(1 − xmmax) the
inequality vN2 (x, λ) 6= 0, x ∈ [xN−1, 1] is satisfied (then xN−1 = −1 + (N − 1.5)h = 1 − 1.5h >
1− (1− xmmax) = xmmax) and therefore vN1 (x, λ) and vN2 (x, λ) are linearly independent.
Since from (4), (5)

v11(x, λ) = 1 +

∫ x

x0

1

k(t)

∫ t

x0

(q(ξ)− λr(ξ))v11(ξ, λ) dξ dt,

vj1(x, λ) =

∫ x

xj−1

1

k(t)

(

1 +

∫ t

xj−1

(q(ξ)− λr(ξ))vj1(ξ, λ) dξ

)

dt, j = 2, . . . , N, (8)
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then according to (3) and to the mean value theorem, there exists a point x̄ ∈ (xj−1, x) such that

v11(x, λ) > 1−
∫ x

x0

1

k(t)

∫ t

x0

|q(ξ)− λr(ξ)|
∣

∣v11(ξ, λ)
∣

∣ dξ dt > 1− C4 + λC6

C1(1− x̄2)
(x− x0)

∫ x̄

x0

∣

∣v11(ξ, λ)
∣

∣ dξ,

vj1(x, λ) >

∫ x

xj−1

1

k(t)

(

1−
∫ t

xj−1

|q(ξ)− λr(ξ)|
∣

∣

∣
vj1(ξ, λ)

∣

∣

∣
dξ

)

dt

>

∫ x

xj−1

dt

k(t)

(

1− (C4 + λC6)

∫ x

xj−1

∣

∣

∣
vj1(ξ, λ)

∣

∣

∣
dξ

)

=

∫ x

xj−1

dt

k(t)

(

1− (C4 + λC6)(x− xj−1)
∣

∣

∣
vj1(x̄, λ)

∣

∣

∣

)

.

From these inequalities, it follows that vj1(x, λ) > 0, j = 1, 2, . . . , N on the interval (xj−1, xj−1+ δ)

for any small δ > 0. Since the functions vj1(x, λ), j = 1, 2, . . . , N are of constant-sign, they are
positive on the entire interval (xj−1, xj+1).

2) Proof is carried out by analogy with the proof of the corresponding properties from [10, p. 141]. �

The following assertion is valid.

Lemma 2. Suppose that the assumptions (3) is satisfied. Then, for

h 6 h0 =
1

2

√

C1(1− x2j+1)

C4 + λC6
(9)

the following assertions are valid:
(i) The pattern functions have the properties: vj1(x, λ), j = 2, 3, . . . , N increase monotonically on

(xj−1, xj+1], and the functions vj2(x, λ), j = 1, 2, . . . , N − 1 decrease monotonically on [xj−1, xj+1);
(ii) For all j = 3− α, 4 − α, . . . ,N + 1− α, α = 1, 2, it holds that

2

3C2(1 + x)(1− xj+(−1)α)
6

vjα(x, λ)
∣

∣x− xj+(−1)α
∣

∣

6
2

C1(1− x)(1 + xj+(−1)α)
. (10)

Proof. We only prove the assertions for the pattern function vj1(x, λ) since those for the vj2(x, λ) follow
analogously.

Note that equation (8) in connection with assumptions (3) leads, for any bounded λ, to the in-
equality

vj1(x, λ) 6

∫ x

xj−1

dt

1− t2

[

1

C1
+
C4 + λC6

C1

∫ x

xj−1

vj1(t, λ) dt

]

=
1

2
ln

(

1 +
2(x− xj−1)

(1− x)(1 + xj−1)

)

[

1

C1
+
C4 + λC6

C1

∫ x

xj−1

vj1(t, λ) dt

]

.

Using the well-known inequality
r

r + 1
6 ln(1 + r) 6 r, (11)

which is true for r > 0, we thus obtain

vj1(x, λ) 6
x− xj−1

(1− x)(1 + xj−1)

[

1

C1
+
C4 + λC6

C1

∫ x

xj−1

vj1(t, λ) dt

]

.

We now make the substitution

v̄j1(x, λ) =
vj1(t, λ)(1 − x)(1 + xj−1)

x− xj−1

in order to obtain

v̄j1(x, λ) 6
1

C1
+

C4 + λC6

C1(1 + xj−1)

∫ x

xj−1

t− xj−1

1− t
v̄j1(t, λ) dt.
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Applying the Gronwall inequality (see, e.g., [11, p. 37]), we obtain

v̄j1(x, λ) 6
1

C1
exp

{

C4 + λC6

C1(1 + xj−1)

∫ x

xj−1

t− xj−1

1− t
dt

}

or, equivalently,

vj1(t, λ) 6
1

C1

x− xj−1

(1− x)(1 + xj−1)
exp

{

C4 + λC6

C1(1 + xj−1)

∫ x

xj−1

t− xj−1

1− t
dt

}

∀x ∈ [xj−1, xj+1].

From the last estimate and the equality

k(x)
dvj1(x, λ)

dx
= 1 +

∫ x

xj−1

(q(ξ)− λr(ξ))vj1(ξ, λ) dξ,

follows the inequality

k(x)
dvj1(x, λ)

dx
> 1−

∫ x

xj−1

|q(ξ)− λr(ξ)| vj1(ξ, λ) dξ

> 1− C4 + λC6

C1(1 + xj−1)

∫ x

xj−1

t− xj−1

1− t
exp

{

C4 + λC6

C1(1 + xj−1)

∫ t

xj−1

ξ − xj−1

1− ξ
dξ

}

dt

> 2− exp

{

(C4 + λC6)

C1(1 + xj−1)

∫ x

xj−1

t− xj−1

1− t
dt

}

.

Since
∫ x

xj−1

t− xj−1

1− t
dt = −(x− xj−1) + (1− xj−1) ln

(

1 +
x− xj−1

1− x

)

,

and due to inequality (11), we get
∫ x

xj−1

t− xj−1

1− t
dt 6 −(x− xj−1) +

(x− xj−1)(1− xj−1)

1− x
=

(x− xj−1)
2

1− x
.

Hence,

k(x)
dvj1(x, λ)

dx
> 2− e

(C4+λC6)(x−xj−1)
2

C1(1+xj−1)(1−x) > 2− e

4(C4+λC6)h
2

C1(1−x2
j+1

)

holds which proves that vj1(x, λ) grows monotonically on (xj−1, xj+1] given that the function g(t) =
2− et decreases monotonically, g(1/2) > 0 and the validity of condition (9).

Returning to equality (8), we obtain with the help of the proved assertion (i) that

vj1(x, λ) 6
1

C1

∫ x

xj−1

dt

1− t2
+
C4 + λC6

2C1
vj1(x, λ)

∫ x

xj−1

t− xj−1

1− t2
dt

=
1

2C1
ln

(

1 +
2(x− xj−1)

(1− x)(1 + xj−1)

)

+
C4 + λC6

4C1
vj1(x, λ)

× (x− xj−1)

[

ln

(

1 +
x− xj−1

1− x

)

− ln

(

1 +
x− xj−1

1− xj−1

)]

.

Using the inequality (11), we get

vj1(x, λ) 6
x− xj−1

C1(1− x)(1 + xj−1)
+
C4 + λC6

2C1
vj1(x, λ)

(x− xj−1)
2

1− x2
,

and

vj1(x, λ) >
1

2C2
ln

(

1 +
2(x− xj−1)

(1− x)(1 + xj−1)

)

− C4 + λC6

2C1
vj1(x, λ)

(x − xj−1)
2

1− x2

>
x− xj−1

C2(1 + x)(1 − xj−1)
− C4 + λC6

2C1
vj1(x, λ)

(x − xj−1)
2

1− x2
.

Hence,

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 344–357 (2024)



Algorithmic implementation of an exact three-point difference scheme for a certain class . . . 349

vj1(x, λ)

x− xj−1

(

1− 2(C4 + λC6)h
2

C1(1− x2j+1)

)

6
1

C1(1− x)(1 + xj−1)
,

vj1(x, λ)

x− xj−1

(

1 +
2(C4 + λC6)h

2

C1(1− x2j+1)

)

>
1

C2(1 + x)(1− xj−1)
,

which, taking the condition (9) into account, proves the estimate (10). �

Lemma 3. Suppose that the assumptions of Lemma 2 are satisfied. Then, for the problem (1)–(3)
there exists ETDS of the form

Λyj + λρjyj ≡ (ayx̄)x,j − djyj + λρjyj = 0, j = 1, 2, . . . , N, y0 6= ∞, yN+1 6= ∞, (12)

where

yx̄,j =
yj − yj−1

h
, yx,j =

yj+1 − yj
h

, aj =

[

1

h
vj1(xj , λ)

]−1

, j = 2, 3, . . . , N,

a1 = aN+1 = 0, dj = T xj(q, λ), ρj = T xj(r, λ), j = 1, 2, . . . , N,

T xj(w(ξ), λ) =
1

hvj1(xj , λ)

∫ xj

xj−1

vj1(ξ, λ)w(ξ) dξ +
1

hvj2(xj , λ)

∫ xj+1

xj

vj2(ξ, λ)w(ξ) dξ,

(13)

and

0 <
(

1− x2j−1/2

)

C ′
1 6 aj 6

(

1− x2j−1/2

)

C ′
2, C ′

1 =
C1

2
, C ′

2 =
3C2

2
, xj−1/2 = xj −

h

2
, (14)

0 < C ′
3 6 dj 6 C ′

4, C ′
4 = 2C4, 0 < C ′

5 6 ρj 6 C ′
6, C ′

6 = 2C6. (15)

The solution y(x) of problem (12) coincides with the solution u(x) of the original problem (1), (2) at
nodes of the grid ωh up to a constant multiplier.

Proof. First of all, we note that the problem (1), (2) is equivalent to the sequence of problems

d

dx

[

k(x)
du

dx

]

− q(x)u(x) = −λr(x)u(x), x ∈ (x0, x2),

k(x)
du

dx

∣

∣

∣

∣

x=x0

= 0, u(x2) = u2,

(16)

d

dx

[

k(x)
du

dx

]

− q(x)u(x) = −λr(x)u(x), x ∈ (xj−1, xj+1),

u(xj−1) = uj−1, u(xj+1) = uj+1, j = 2, 3, . . . , N − 1,

(17)

d

dx

[

k(x)
du

dx

]

− q(x)u(x) = −λr(x)u(x), x ∈ (xN−1, xN+1),

u(xN−1) = uN−1, k(x)
du

dx

∣

∣

∣

∣

x=xN+1

= 0,

(18)

whose Green’s functions have the form

Gj(x, ξ) =
1

vj1(xj+1, λ)

{

vj1(x, λ) v
j
2(ξ, λ), xj−1 6 x 6 ξ,

vj1(ξ, λ) v
j
2(x, λ), ξ 6 x 6 xj+1,

j = 1, 2, . . . , N.

We construct an exact three-point difference scheme. For this purpose, we write the obvious integral
representation of (16)–(18). Then, we have
∫ xj+1

xj−1

Gj(x, ξ)
d

dξ

[

k(ξ)
du

dξ

]

dξ −
∫ xj+1

xj−1

Gj(x, ξ)[q(ξ) − λr(ξ)]u(ξ) dξ = 0, j = 1, 2, . . . , N. (19)

Calculating the integral in the left-hand side of (19) by integration by parts and using (4)–(6), we
get

− vj1(x, λ)

vj1(xj+1, λ)
k(ξ)

dvj2(ξ, λ)

dξ
u(ξ)

∣

∣

∣

∣

∣

xj+1

x

− vj2(x, λ)

vj1(xj+1, λ)
k(ξ)

dvj1(ξ, λ)

dξ
u(ξ)

∣

∣

∣

∣

∣

x

xj−1

= 0. (20)
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For j = 1, we have
v11(x, λ)

v11(x2, λ)

[

u2 + k(x)
dv12(x, λ)

dx
u(x)

]

− v12(x, λ)

v11(x2, λ)
k(x)

dv11(x, λ)

dx
u(x) = 0.

From (4) and (5), it follows that

k(x)
dv11(x, λ)

dx
=

∫ x

x0

[q(ξ)− λr(ξ)] v11(ξ, λ) dξ,

k(x)
dv12(x, λ)

dx
= −1−

∫ x2

x
[q(ξ)− λr(ξ)] v12(ξ, λ) dξ.

(21)

Thus,

v11(x, λ)

v11(x2, λ)

[

u2 − u(x)

(

1 +

∫ x2

x
[q(ξ)− λr(ξ)]v12(ξ, λ) dξ

)]

− v12(x, λ)

v11(x2, λ)
u(x)

∫ x

x0

[q(ξ)− λr(ξ)]v11(ξ, λ) dξ = 0. (22)

For x = x1, let us multiply equality (22) by
v11(x2,λ)

hv11(x1,λ)v12(x1,λ)
. Note that due to v12(x1, λ) = v21(x2, λ),

we have
u2 − u1
hv21(x2, λ)

− u1

[

1

hv12(x1, λ)

∫ x2

x1

[q(ξ)− λr(ξ)] v12(ξ, λ) dξ

+
1

hv11(x1, λ)

∫ x1

x0

[q(ξ)− λr(ξ)] v11(ξ, λ)dξ

]

= 0,

or, equivalently, in view of a1 = 0,
1

h
(a2ux,1 − a1ux̄,1)− d1u1 + λρ1u1 = 0.

For j = 2, 3, . . . , N − 1, equality (20) has the form

vj1(x, λ)

vj1(xj+1, λ)

[

uj+1 + k(x)
dvj2(x, λ)

dx
u(x)

]

+
vj2(x, λ)

vj1(xj+1, λ)

[

uj−1 − k(x)
dvj1(x, λ)

dx
u(x)

]

= 0.

Since it follows from (5) that

k(x)
dvjα(x, λ)

dx
= (−1)α+1 +

∫ x

xj+(−1)α

[q(ξ)− λr(ξ)] vjα(ξ, λ) dξ, α = 1, 2, (23)

we have

vj1(x, λ)

vj1(xj+1, λ)

[

uj+1 −
(

1 +

∫ xj+1

x
[q(ξ)− λr(ξ)] vj2(ξ, λ) dξ

)

u(x)

]

+
vj2(x, λ)

vj1(xj+1, λ)

[

uj−1 −
(

1 +

∫ x

xj−1

[q(ξ)− λr(ξ)] vj1(ξ, λ) dξ

)

u(x)

]

= 0. (24)

Taking in (24) x = xj , multiplying the obtained equality by
vj1(xj+1,λ)

hvj1(xj ,λ)v
j
2(xj ,λ)

, and using the properties

of the pattern functions vj1(xj+1, λ) = vj2(xj−1, λ), v
j
2(xj , λ) = vj+1

1 (xj+1, λ), we arrive at the exact
three-point difference scheme (12) for j = 2, 3, . . . , N − 1.

Let us rewrite (20) for j = N by

vN1 (x, λ)

vN1 (xN+1, λ)
k(x)

dvN2 (x, λ)

dx
u(x) +

vN2 (x, λ)

vN1 (xN+1, λ)

[

uN−1 − k(x)
dvN1 (x, λ)

dx
u(x)

]

= 0.

Then, considering the equalities

k(x)
dvN1 (x, λ)

dx
= 1 +

∫ x

xN−1

[q(ξ)− λr(ξ)] vN1 (ξ, λ) dξ,

k(x)
dvN2 (x, λ)

dx
= −

∫ xN+1

x
[q(ξ)− λr(ξ)] vN2 (ξ, λ) dξ,

(25)
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which follow from (5) and (6), we obtain

− vN1 (x, λ)

vN1 (xN+1, λ)

∫ xN+1

x
[q(ξ)− λr(ξ)] vN2 (ξ, λ) dξ · u(x)

+
vN2 (x, λ)

vN1 (xN+1, λ)

[

uN−1 −
(

1 +

∫ x

xN−1

[q(ξ)− λr(ξ)] vN1 (ξ, λ) dξ

)

u(x)

]

= 0. (26)

Taking x = xN and multiplying the obtained equality by
vN1 (xN+1,λ)

hvN1 (xN ,λ)vj2(xN ,λ)
, we obtain

− uN − uN−1

hvN1 (xN , λ)
− uN

[

1

hvN2 (xN , λ)

∫ xN+1

xN

[q(ξ)− λr(ξ)] vN2 (ξ, λ) dξ

+
1

hvN1 (xN , λ)

∫ xN

xN−1

[q(ξ)− λr(ξ)] vN1 (ξ, λ) dξ

]

= 0,

which due to aN+1 = 0, can be written as
1

h
(aN+1ux,N − aNux̄,N )− dNuN + λρNuN = 0.

Inequality (14) follows from (10). Indeed,

aj =
h

vj1(xj , λ)
6

3

2
C2(1 + xj)(1− xj−1) 6

3

2
C2(1− x2j−1/2),

aj >
1

2
C2(1− xj)(1 + xj−1) >

1

2
C2(1− x2j−1/2), j = 2, 3, . . . , N.

We now prove estimate (15). Since

dj =
1

hvj1(xj , λ)

∫ xj

xj−1

vj1(ξ, λ) q(ξ) dξ +
1

hvj2(xj, λ)

∫ xj+1

xj

vj2(ξ, λ)q(ξ) dξ,

in view of the positivity and monotonicity of functions vj1(x, λ), v
j
2(x, λ) we have

dj 6
C4

h

[

∫ xj

xj−1

vj1(ξ, λ)

vj1(xj , λ)
dξ +

∫ xj+1

xj

vj2(ξ, λ)

vj2(xj , λ)
dξ

]

6 2C4.

In addition, using estimates (10), we obtain

dj >
C3

h

[

1

vj1(xj , λ)

∫ xj

xj−1

vj1(ξ, λ) dξ +
1

vj2(xj, λ)

∫ xj+1

xj

vj2(ξ, λ) dξ

]

> C ′
3.

Analogously, the inequality 0 < C ′
5 6 ρj 6 2C6 can be proven. �

Note that if the solution of problem (1) is normalized by the condition
∫ 1

0
r(x)u2(x) dx = 1,

then, for the exact normalization on the grid, we have

N
∑

j=2

∫ xj

xj−1

r(x)

[

vj1(x, λ)

vj1(xj , λ)
yj +

vj−1
2 (x, λ)

vj−1
2 (xj−1, λ)

yj−1

]2

dx

+

∫ x1

−1
r(x)

[

v11(x, λ)

v11(xj , λ)
y1

]2

dx+

∫ 1

xN

r(x)

[

vN2 (x, λ)

vN2 (xN , λ)
yN

]2

dx = 1.

3. Coefficient stability of ETDS

When calculating the coefficients of difference schemes, errors are inevitable. Therefore, it is natural
to require coefficient stability of difference schemes, i.e., stability to perturbations of the coefficients
(see [1]). In the following, we prove the coefficient stability of the constructed difference schemes. The
property of coefficient stability of a difference scheme allows us to prove the convergence of truncated
three-point difference schemes.
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We consider the difference problem (12) in the space Hh of grid functions y with the following
scalar product and norms:

(y, v) =
∑

ξ∈ωh

h y(ξ) v(ξ), ‖y‖ = (y, y)1/2, ‖y‖C = max
ξ∈ωh

|y(ξ)|.

Suppose that λh = λhn is the nth eigenvalue of this problem, and that y = yn is the normalized
eigenfunction. There exist N real eigenvalues λh1 , λ

h
2 , . . . , λ

h
N , to which the appropriate eigenfunctions

y1, y2, . . . , yN correspond. The eigenfunctions are orthonormalized with weight ρ, such that (ρyn, ym) =
0 holds for n 6= m and (ρyn, yn) = 1.

Multiplying (12) scalarwise by y and taking the difference Green formula (see [10, p. 47]) and the
equalities a1 = aN+1 = 0 into account, we find

λh = RN (y) =
(a, y2x̄) + (d, y2)

(ρ, y2)
.

It is easy to see that the difference problem (12) is equivalent to the variational problem

λh1 = min
y
RN (y), λhn = max

ym
min

(ρy,ym)=0
RN (y), m = 1, 2, . . . , n− 1, n = 2, 3, . . . , N.

The following assertion is valid (see [4]):

Lemma 4. For the eigenvalues and the eigenfunctions of problem (12)–(15) the following estimates
are satisfied:

M1n
2 6 λhn 6M2n

2, (27)
∥

∥

√
ayn
∥

∥

C
6M3

√
n, ‖a(yn)x̄‖C 6M4n

3/2, (28)

where the constants M1, M2, M3, M4 do not depend on h and n, n = 1, 2, . . . , N .

Together with the ETDS (12)–(15), we consider the perturbed three-point difference scheme

Λ̃ỹ + λ̃hρ̃ỹ = 0, x ∈ ωh, ỹ0 6= ∞, ỹN+1 6= ∞, (29)

where

Λ̃ỹ = (ãỹx̄)x − d̃ỹ, x ∈ ωh, ã1 = ãN+1 = 0.

Introducing a function z = y − ỹ, we obtain the boundary value problem

Λz + λhρz = −Ψ(x), x ∈ ωh, z0 6= ∞, zN+1 6= ∞, (30)

where

Ψ(x) = Λỹ + λhρỹ.

Using the equation (29), we can rewrite the function Ψ(x) into

Ψ(x) = Λỹ + λhρỹ − Λ̃ỹ − λ̃hρ̃ỹ

=
(

(a− ã)ỹx̄
)

x
− (d− d̃)ỹ + λ̃h(ρ− ρ̃)ỹ +

(

λh − λ̃h
)

ρỹ

= ψ(x) + (λh − λ̃h)ρỹ,

where

ψ(x) = ηx + ψ∗(x), η = (a− ã)ỹx̄, ψ∗ = −(d− d̃)ỹ + λ̃h(ρ− ρ̃)ỹ. (31)

The parameter λh is an eigenvalue for the difference operator of problem (30). Thus, the inhomo-
geneous equation (30) is solvable only if the eigenfunction y(x) is orthogonal to the right-hand side of
equation (30), or, more precisely, if the equality

(Ψ, y) = (ψ, y) + (λh − λ̃h)(ρỹ, y) = 0 (32)

is satisfied.
Only a single eigenfunction, determined accurately up to an arbitrary multiplier C0, corresponds

to the eigenvalue λh. We choose this multiplier in a way such that the function ȳ = C0y is orthogonal
to the difference z̄ = ȳ − ỹ:

(ρȳ, z̄) = 0. (33)
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Due to the normalization condition (ρy, y) = 1, we thus obtain

(ρỹ, y) = (ρy, ȳ − z̄) = (ρy, ȳ)− (ρy, z̄) = C0(ρy, y) = C0.

If ỹ → y as h→ 0, we can assume that C0 > 0.
Further,
(

ρ, ỹ2
)

=
(

ρ, (ȳ − z̄)2
)

=
(

ρ, ȳ2
)

− 2(ρ, z̄ȳ) +
(

ρ, z̄2
)

= C2
0(ρy, y) +

(

ρ, z̄2
)

= C2
0 − (ρ, z̄ỹ),

is valid and, hence,

1− C2
0 = −(ρ, z̄ỹ)−

[(

ρ, ỹ2
)

−
(

ρ̃, ỹ2
)]

. (34)

We use equality (32) for determining λh − λ̃h:

λh − λ̃h = − (ψ, y)

(ρỹ, y)
= −(ψ, ȳ)

C2
0

. (35)

We transform the right-hand side of equation (35) by taking (31), the summation by parts formula
(see, e.g., [10, p. 47]), and the equalities a1 = aN+1 = 0 into account

(ψ, ȳ) = −(η, ȳx̄) + (ψ∗, ȳ).

From this and the estimates (28) for ȳ, ȳx̄, we find
∣

∣λh − λ̃h
∣

∣ 6
|(ψ, ȳ)|
C2
0

6
|(η, ȳx̄)|+ |(ψ∗, ȳ)|

C2
0

6
‖ȳx̄‖C(1, |η|) + ‖ȳ‖C(1, |ψ∗|)

C2
0

6Mn3/2[(1, |η|) + (1, |ψ∗|)].

We arrive at the following assertion.

Lemma 5. Suppose that the conditions (14), (15) for the difference Sturm–Liouville problem (12)
are satisfied. Then, the estimate

∣

∣λhn − λ̃hn
∣

∣ 6Mn3/2[(1, |η|) + (1, |ψ∗|)] (36)

is valid, where the constant M > 0 depends on C ′
i, i = 1, 2, . . . , 6, and C0.

We now find an estimate for z̄. Since ȳ = C0y, we see that ȳ satisfies equation (12) and
(

ρ, ȳ2
)

= C2
0 ,

and for z̄ = ȳ − ỹ we arrive at problem (30).
This problem is reduced to a discrete analogue of the integral equation

z̄(x) = λh(G(x, ξ), ρ(ξ)z̄(ξ)) + (G(x, ξ),Ψ(ξ)), (37)

where G(x, ξ) = Gh(x, ξ) is the difference Green function of the operator Λy = (ayx̄)x − dy with
boundary conditions y0 6= ∞, yN+1 6= ∞ (see [4]).

The eigenfunction ȳ of problem (12) satisfies the equation

ȳ(x) = λh
(

G(x, ξ), ρ(ξ)ȳ(ξ)
)

. (38)

We transform equations (37) and (38) into such a form such that the corresponding kernels become
symmetric. For this purpose, we use the substitutions

v(x) =
√

ρ(x)z̄(x), ϕ(x) =
√

ρ(x)ȳ(x), K(x, ξ) =
√

ρ(x)ρ(ξ)G(x, ξ).

Then equations (37) and (38) take the form

vn(x) = λhn(K(x, ξ), vn(ξ)) + f(x), f(x) = (K(x, ξ), Ψ̄(ξ)), Ψ̄(ξ) =
Ψ(ξ)
√

ρ(ξ)
, (39)

ϕn(x) = λhn(K(x, ξ), ϕn(ξ)). (40)

The condition of orthogonality of the function f(x) to functions ϕn(x) is satisfied in view of con-
dition (32):

(ϕn(x), f(x)) =
(

ϕn(x), (K(x, ξ), Ψ̄(ξ))
)

=
(

Ψ̄(ξ), (K(x, ξ), ϕn(x))
)

=
1

λhn

(

Ψ̄(ξ), ϕn(ξ)
)

=
1

λhn

(

Ψ√
ρ
,
√
ρȳ

)

=
1

λhn
(Ψ, ȳ) = 0.

We rewrite condition (33) as
(ϕn, vn) = 0. (41)
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Searching for the solution v(x) = vn(x) of equation (39) of the form

vn(x) = f(x) +

N−1
∑

k=1,
k 6=n

ckϕk(x) (42)

under the additional condition (41), we substitute this expression to the right-hand side of equation (39)
to obtain

vn(x) = f(x) + λhn

N−1
∑

k=1,
k 6=n

ck(K(x, ξ), ϕk(ξ)) + λhn(K(x, ξ), f(ξ)). (43)

Expanding f(x) by the eigenfunctions {ϕk(x)}

f(x) =

N−1
∑

k=1,
k 6=n

fkϕk(x), fk = (f, ϕk),

it follows that

(K(x, ξ), f(ξ)) =
N−1
∑

k=1,
k 6=n

fk

λhk
ϕk(x).

Thus, in view of (40), we can rewrite equality (43) into

vn(x) = f(x) + λhn

N−1
∑

k=1,
k 6=n

[

ck

λhk
+
fk

λhk

]

ϕk(x). (44)

Due to equality (44), we have

ck = (vn − f, ϕk) =
λhn
λhk
ck +

λhn
λhk

(f, ϕk),

and substituting ck = λhn(f, ϕk)/(λ
h
k − λhn) into (42), we obtain

vn(x) = f(x) +
N−1
∑

k=1,
k 6=n

λhn(f, ϕk)

λhk − λhn
ϕk(x). (45)

Multiplying the equation (45) by aµ(x), 0 < µ 6 1, we can estimate the second term on the
right-hand side of this equation by

∣

∣

∣

∣

N−1
∑

k=1,
k 6=n

λhn(f, ϕk)

λhk − λhn
aµ(x)ϕk(x)

∣

∣

∣

∣

6 ‖f‖ ‖aµϕk‖λhn
N−1
∑

k=1,
k 6=n

|ϕk|
|λhk − λhn|

6M‖f‖λhn
N−1
∑

k=1,
k 6=n

(λhk)
1/4

|λhk − λhn|
.

Let ε > 0 be an arbitrary number independent of h. We choose the number n0 in a way such that
λhn0

> (1 + ε)λhn. Then,
N−1
∑

k=n0

(λhk)
1/4

|λhk − λhn|
6

1 + ε

ε

N−1
∑

k=n0

(λhk)
1/4

λhk
6
M ′

ε

N−1
∑

k=n0

1

(λhk)
3/4

6M,

where the constant M > 0 is independent of h.
Since λhk → λk for k 6 n0 as h → 0 (see [4], Theorem 1), we have for a sufficiently small h 6 h0,

that
n0−1
∑

k=1

(λhk)
1/4

|λhk − λhn|
6M,

where M does not depend on h.
Hence, the estimate

‖aµvn‖C 6M ‖aµf‖C (46)

is satisfied.
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We transform the expression for f(x) into

f(x) = (K(x, ξ), Ψ̄(ξ)) =

(

√

ρ(x)
√

ρ(ξ)G(x, ξ),
Ψ(ξ)
√

ρ(ξ)

)

=
√

ρ(x)(G(x, ξ),Ψ(ξ))

= (λh − λ̃h)
√

ρ(x)(G(x, ξ), ρ(ξ)ỹ(ξ)) +
√

ρ(x)(G(x, ξ), ηξ(ξ) + ψ∗(ξ))

= (λh − λ̃h)
√

ρ(x)(G(x, ξ), ρ(ξ)ỹ(ξ)) +
√

ρ(x){−(ã(ξ)Gξ̄(x, ξ), η(ξ)) + (G(x, ξ), ψ∗(ξ))}.
Hence, taking the estimates (see [4])

‖aµ(ξ)G(x, ξ)‖C 6 C7,
∥

∥ã(ξ)Gξ̄(x, ξ)
∥

∥

C
6 C8,

into account where the constants C7, C8 do not depend on h and n, we obtain

‖aµf‖C 6

∥

∥

∥

∥

(

aµ(x)ã(ξ)Gξ̄(x, ξ),
η(ξ)

ã(ξ)

)∥

∥

∥

∥

C

+
∥

∥

√

ρ(x) (aµ(x)G(x, ξ), ψ∗(ξ))
∥

∥

C

+
∥

∥

√

ρ(x) (aµG(x, ξ), ρ(ξ)ỹ(ξ))
∥

∥

C
|λh − λ̃h| 6M1

{(

1,
∣

∣

∣

η

ã

∣

∣

∣

)

+ (1, |ψ∗|)
}

+M2

∣

∣λh − λ̃h
∣

∣.

Substituting this estimate into (46), returning back to the function z̄(x) = v(x)/
√

ρ(x) and taking
the inequality (28) as well as Lemma 4 into account, yields

‖aµz̄‖C 6M
{(

1,
∣

∣

∣

η

ã

∣

∣

∣

)

+ (1, |ψ∗|)
}

.

We are interested in the difference z = y − ỹ which is expressed by

z =
z̄

C0
+

1− C0

C0
ỹ =

z̄

C0
+

1− C2
0

C0(1 + C0)
ỹ.

Since ‖aµỹ‖C is bounded, it follows that for a sufficiently small h, we have

‖aµz‖C 6
‖aµz̄‖C
C0

+

∣

∣

∣

∣

1− C2
0

C0(1 + C0)

∣

∣

∣

∣

‖aµỹ‖C 6M(C0)
(

‖aµz̄‖C +
∣

∣1− C2
0

∣

∣

)

.

As it is apparent from formula (34),
∣

∣1− C2
0

∣

∣ 6
(

ρ, z̄2
)1/2(

ρ, ỹ2
)1/2

+
∣

∣

(

ρ, ỹ2
)

−
(

ρ̃, ỹ2
)∣

∣ 6M1 ‖aµz̄‖C +
∣

∣

(

ρ, ỹ2
)

−
(

ρ̃, ỹ2
)∣

∣ .

If µ is chosen as µ = 0.5 + ε, where 0 < ε 6 0.5, we get
∥

∥a0.5+εz
∥

∥

C
6M

(∥

∥a0.5+εz̄
∥

∥

C
+
∣

∣

(

ρ, ỹ2
)

−
(

ρ̃, ỹ2
)∣

∣

)

.

Inserting the estimate for
∥

∥a0.5+εz̄
∥

∥

C
, we make sure that by ε→ 0 the following proposition is true:

Theorem 1. Suppose that the assumptions of Lemma 4 are satisfied. Then, for sufficiently small
h 6 h0, we have the following estimates:

∥

∥

√
a(yn − ỹn)

∥

∥

C
6M1

{(

1,
∣

∣

∣

η

ã

∣

∣

∣

)

+ (1, |ψ∗|)
}

+M2

∣

∣

(

ρ, ỹ2
)

−
(

ρ̃, ỹ2
)∣

∣ ,
∣

∣λhn − λ̃hn
∣

∣ 6M3 {(1, |η|) + (1, |ψ∗|)} ,
where the constants Mi, i = 1, 2, 3 depend only on C ′

i, i = 1, 2, . . . , 6, and C0.

This theorem proves the continuous dependence of the solution of problem (12) on the coefficients,
that is, the coefficient stability.

4. Algorithmic realization of ETDS

We pass to the algorithmic realization of ETDS (12). First of all, note that this scheme can be written
in the form

(ayx̄)x,j − (dj − λρj)yj = 0, j = 1, 2, . . . , N, y0 6= ∞, yN+1 6= ∞, (47)

where

a1 = aN+1 = 0, aj =

[

1

h
vj1(xj , λ)

]−1

, j = 2, 3, . . . , N, (48)
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dj − λρj =
1

hvj1(xj , λ)

∫ xj

xj−1

vj1(ξ, λ)[q(ξ) − λr(ξ)] dξ

+
1

hvj2(xj, λ)

∫ xj+1

xj

vj2(ξ, λ)[q(ξ) − λr(ξ)] dξ, j = 1, 2, . . . , N. (49)

We express the coefficients aj, dj − λρj of the difference scheme via the solutions of the Cauchy
problems (4)–(6). Due to (48), we already have the necessary representation for aj .

In view of (21), (23) and (25), we rewrite equalities (49) as

dj − λρj =
1

hvj1(xj , λ)

[

k(xj)
dvj1(xj , λ)

dx
− 1

]

+
1

hvj2(xj , λ)

[

−k(xj)
dvj2(xj , λ)

dx
− 1

]

= h−1
2
∑

α=1

(−1)α+1
[

vjα(xj , λ)
]−1 [

mj
α(xj , λ) + (−1)α

]

, j = 2, 3, . . . , N − 1,

d1 − λρ1 =
1

hv11(x1, λ)
k(x1)

dv11(x1, λ)

dx
+

1

hv12(x1, λ)

[

−k(x1)
dv12(x1, λ)

dx
− 1

]

= h−1
2
∑

α=1

(−1)α+1
[

v1α(x1, λ)
]−1 [

m1
α(x1, λ) + α− 1

]

,

dN − λρN =
1

hvN1 (xN , λ)

[

k(xN )
dvN1 (xN , λ)

dx
− 1

]

+
1

hvN2 (xN , λ)

[

−k(xN )
dvN2 (xN , λ)

dx

]

= h−1
2
∑

α=1

(−1)α+1
[

vNα (xN , λ)
]−1 [

mN
α (xN , λ) + α− 2

]

,

where

mj
α(x, λ) = k(x)

dvjα(x, λ)

dx
.

Thus, the ETDS (47)–(49) can be written in the form

(ayx̄)x,j − (dj − λρj)yj = 0, j = 2, 3, . . . , N − 1,

1

h
a2yx,1 − (d1 − λρ1)y1 = 0, −1

h
aNyx̄,N − (dN − λρN )yN = 0,

where

aj =

[

1

h
vj1(xj , λ)

]−1

, j = 2, 3, . . . , N,

dj − λρj = h−1
2
∑

α=1

(−1)α+1
[

vjα(xj , λ)
]−1 [

mj
α(xj , λ) + (−1)α

]

, j = 2, 3, . . . , N − 1,

d1 − λρ1 = h−1
2
∑

α=1

(−1)α+1
[

v1α(x1, λ)
]−1 [

m1
α(x1, λ) + α− 1

]

,

dN − λρN = h−1
2
∑

α=1

(−1)α+1
[

vNα (xN , λ)
]−1 [

mN
α (xN , λ) + α− 2

]

.

Thus, for calculating the coefficients aj , dj − λρj of ETDS for any node xj of the grid ωh, it is
necessary to solve two Cauchy problems (4)–(6) with smooth coefficients: at α = 1 on the interval
[xj−1, xj ] (forward) and at α = 2 on the interval [xj , xj+1] (backward). If each of the specified Cauchy
problems is solved numerically by any one-step method (Taylor series expansion or Runge–Kutta
method), we will obtain a truncated difference scheme. The investigation of accuracy and development
of the algorithm of finding the solution of such scheme will be performed in further work.
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Алгоритмiчна реалiзацiя точної триточкової рiзницевої схеми для
деякого класу сингулярних задач Штурма–Лiувiлля

Хоменко Н. В.1,2, Кутнiв М. В.1,3

1Iнститут прикладних проблем механiки i математики iм. Я. С. Пiдстригача НАН України,

вул. Наукова 3-б, 79060, Львiв, Україна
2Трiрський унiверситет, Унiверситетське кiльце, 15, 54296, Трiр, Нiмеччина

3Жешувський технологiчний унiверситет,

вул. Повстанцiв Варшави, 8, 35959, Жешув, Польща

У цiй статтi розроблено нову алгоритмiчну реалiзацiю точних триточкових рiзни-
цевих схем на нерiвномiрнiй сiтцi для деякого класу сингулярних задач Штурма–
Лiувiлля. Показано, що для обчислення коефiцiєнтiв точної схеми в довiльному вузлi
сiтки xj потрiбно розв’язати двi допомiжнi задачi Кошi для лiнiйних звичайних ди-
ференцiальних рiвнянь другого порядку: одну на вiдрiзку [xj−1, xj ] (вперед) i одну
на вiдрiзку [xj , xj+1] (назад). Доведено теорему про коефiцiєнтну стiйкiсть точної
триточкової рiзницевої схеми.

Ключовi слова: сингулярна задача Штурма–Лiувiлля; точна триточкова рiзни-

цева схема; коефiцiєнтна стiйкiсть.
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