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In this study, we present a physicomathematical model for convective drying of a mul-
ticomponent body of the capillary-porous structure, considering moisture transfer dy-
namics at both macro and micro levels. Recognizing the impact of the material’s lo-
cal structure on drying processes, particularly in phase transformations, the model inte-
grates the continuum-thermodynamic approach pioneered by Ya. Burak, Ye. Chaplya, and
B. Gayvas. This approach addresses the interrelated mechanical, thermal, and diffusion
processes occurring in heterogeneous, nonequilibrium systems, where local thermodynamic
equilibrium assumptions allow equilibrium state descriptions by conjugate physical param-
eters. The unique dual-level approach captures moisture exchange between an individual
grain and the grain bed, enabling realistic simulations of the drying process by directly
accounting for phase transformations and material structure influences. The presented
methodology allows simultaneous solving of mass transfer equations for the grain bed and
individual grains, supported by numerical experimentation. The results reveal distinct
moisture distribution patterns across the grain bed and within individual grains, with
variations influenced by drying agent velocity. The novelty of this approach lies in its si-
multaneous treatment of grain-scale and bed-scale moisture transfer, providing a detailed
perspective on moisture dynamics. This model has potential applications in optimizing
industrial drying processes for capillary-porous materials, enhancing efficiency and cost-
effectiveness.
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1. Introduction

The dynamics of drying processes are directly or indirectly influenced by the local (microscopic) struc-
ture of the material. Such influences are particularly related to the presence of physically distinct
states of moisture particles, which differ in mobility and undergo phase transformations. The rate of
moisture movement within the material primarily depends on the types of moisture bonding with the
body, which should be considered on a microscopic level.

The continuum-thermodynamic approach to constructing physicomathematical models of solid so-
lution mechanics, describing interconnected mechanical, thermal, and diffusion processes that account
for local changes in the states of constituent components, was developed in the works of Ya. Burak
and Ye. Chaplya, and was further advanced in the heat-moisture transfer models in capillary-porous
bodies by B. Gayvas. This approach is based on the following principles: for spatially heterogeneous
and nonequilibrium systems, the hypothesis of local thermodynamic equilibrium is assumed, which
implies that the state of physically small subregions of the system is determined by conjugate physical
parameters describing the equilibrium state. For mechanical, physical, and chemical processes, the
conjugate parameters include pressure and volume, stress and strain tensors, absolute temperature
and entropy for thermal conduction, and chemical potential and particle concentration for diffusion.
Balance and kinetic relations, as well as equations of state, are used to determine changes in mass,
energy, and momentum.
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This approach is applied to the problem of convective drying of a layer of multicomponent capillary-
porous material under mixed boundary conditions, where the displacement vector and the deviation
of moisture concentration are taken as the solving functions.

2. Literature overview

The field of thermodynamics and statistical mechanics owes much of its foundation to J. Willard Gibbs,
who, in his 1902 work, “Elementary Principles in Statistical Mechanics”, laid out essential principles
that continue to guide scientific approaches to understanding equilibrium and non-equilibrium states in
complex systems. Following Gibbs, significant contributions to the thermodynamics of irreversible pro-
cesses were made by S. R. de Groot in “Thermodynamics of Irreversible Processes” and I. Gyarmati in
“Non-Equilibrium Thermodynamics: Field Theory and Variational Principles”, who developed frame-
works for describing energy dissipation in non-equilibrium systems. Similarly, the work of A. V. Luikov
on heat and mass transfer in capillary-porous bodies extended these ideas specifically into drying pro-
cesses, providing a basis for understanding diffusion and phase transitions within porous materials.

In Ukrainian science, Ya. Burak and Ye. Chaplya have made significant contributions to the develop-
ment of continuum-thermodynamic models that integrate mechanical, thermal, and diffusion processes
in capillary-porous materials [1–3]. Their collaboration with O. Chernukha advanced the principles of
local thermodynamic equilibrium, introducing mathematical models that account for local changes in
the states of the constituent components in solid solutions [1]. By the 1990s, Ye.Chaplya extended
these continuum-thermodynamic models further by incorporating diffusion and structural effects within
porous media, as detailed in his foundational works on the theory of solid solutions [2, 4].

B. Gayvas extended this approach to specific cases of convective drying, analyzing wood and other
porous materials under realistic environmental conditions in a series of studies that refined the theo-
retical framework and practical application of these models [5–7,11].

B. Gayvas et al. further contributed by developing numerical methods to simulate heat and mass
transfer in capillary-porous materials, with practical applications in optimizing industrial drying pro-
cesses for materials like wood and grains. This series of studies emphasized the structural effects of
porous media, aiming for accurate predictions of drying rates and energy optimization within these
processes [8–10].

The works of Y. Sokolovskyy et al. expanded these foundations by focusing on convection drying
processes in anisotropic materials, accounting for phase transition boundaries, which are critical in
modeling the complex moisture transport in anisotropic and biophysical materials. Their studies use
mathematical models to account for anisotropy in materials, enabling simulations that more accurately
reflect moisture distribution and heat transfer in heterogeneous media [17–19].

Concurrently, P. Pukach et al. contributed to modeling mass transfer through their studies on impu-
rity diffusion in layered structures under statistical conditions. By formulating mathematical models
incorporating stochastic influences from point mass sources, Pukach’s research provides additional
insights into diffusive processes [16].

Recent works by P. Kostrobiy, B. Markovych, M. Tokarchuk, and others contribute significantly to
the statistical and kinetic modeling of complex systems, including semiconductor structures, catalytic
processes, and dense fluids in non-equilibrium conditions. Notably, their studies provide insights into
diffusion processes and reaction kinetics within porous and layered materials. These theories support
the multiscale approach necessary for modeling moisture distribution in capillary-porous and granular
media, as seen in drying applications [14, 15, 20].

B. Gera et al. have contributed to understanding temperature distribution in transport facility metal
structures and the application of heat-resistant coatings, which indirectly support research on moisture
and temperature management in capillary-porous bodies. These studies emphasize the importance of
controlled drying conditions and structural adaptations for minimizing stress and deformation under
thermal effects [12].

Research by Tuller and Hansmann on adsorption and capillary condensation in porous media pro-
vided additional insights into liquid retention mechanisms and interfacial configurations in angular
pores. Their work has been instrumental in understanding moisture retention and movement, partic-
ularly relevant to drying processes in porous bodies [13, 21].
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By applying a continuum-thermodynamic approach that integrates diffusion, phase transitions,
and the effects of capillary-porous structures, our work utilizes the aforementioned thermodynamic
principles of mass transfer to model moisture distribution under realistic mixed boundary conditions.

3. Materials and methods

We distinguish between the movement of moisture within the porous bed of the multicomponent
material and the movement of moisture within individual particles. This distinction is necessary to
consider the influence of all forms of moisture on the drying regime. The influence is associated with
the presence of physically different states of moisture particles, which vary in mobility and undergo
phase transformations.

A capillary-porous body is considered a solid solution of skeletal particles, moisture, and air. We
assume that the equilibrium thermodynamic state of such a body is determined by the values of
conjugate macroscopic parameters:

T ÷ S, σαβ ÷ εαβ , µ′
k ÷mk, α, β = 1, 3, k = 0, 1,

where T is the absolute temperature, S is entropy, σαβ are the components of the Cauchy stress tensor,
εαβ are the strain tensor components, µ′

k is the chemical potential of component k, and mk is its mass.
The quantities with index k = 0 correspond to the skeleton, and k = 1 corresponds to the moisture.

We assume the body is divided into representative physically small elements whose states are
described by the same conjugate parameters as the entire body:

T ÷∆S, σαβ ÷ εαβ , µ′
k ÷∆mk, α, β = 1, 3, k = 0, 1.

When deriving the equations of state, linear approximations are used for small deviations of the
independent parameters δT = T − T0, δεαβ = εαβ , and δCk = Ck −C0

k from their values in the initial
thermodynamic state:

s = s0, T = T0, σαβ = P̃ δαβ , εαβ = 0, Ck = C0

k , µ′
k = µ0

k

′
,

where P̃ is the pore pressure, and δαβ is the Kronecker delta. Values marked with “0” denote initial
state parameters.

Next, we present balance equations based on the solid solution theory model:

σαβ =

[(

K −
2

3
G

)

ε−Kβc

]

δαβ + 2Gεαβ ,

µ = µ0 −
K

ρ0
βε+ ac,

∇ ·
⌢
σ = 0, ∇× (∇×

⌢
ε )T = 0,

∂c

∂τ
= D∆c−Dε∆ε,

where K is the bulk modulus, G is the shear modulus, β is the volumetric expansion coefficient, a is
the chemical potential concentration coefficient, ρ0 is the initial density, and ε is the first invariant of
the strain tensor

⌢
ε = [∇⊗ u+ (∇⊗ u)T ]/2.

For a wet capillary-porous body, the vapor pressure in the pores P̃ generally does not depend on
moisture content and equals the saturation pressure Pzn, corresponding to the current temperature.
During evaporation, the pore or capillary vapor pressure exceeds the saturated vapor pressure outside
the body at the same temperature. This results in an excess pressure, driving vapor movement,
primarily through molecular diffusion and convective transport.

4. Formulation of the problem and key equations

In the Cartesian coordinate system, we consider a porous bed of thickness L, composed of identical,
moist dispersed particles of radius R, with the Oz-axis perpendicular to the layer surfaces. The flow
velocity of the drying agent (air-vapor mixture) is assumed to be constant and equal to v. The particles
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in this bed remain stationary, with increasing distances between them as air flows through, expanding
the volume of the intergrain environment. The porous bed is defined with boundaries at z = 0 and
z = L.

At the macro level, the moisture concentration in the porous bed, cz(z, τ), is governed by a
convective-diffusion equation:

∂cz
∂τ

+ υ
∂cz
∂z

= Dz

∂2cz
∂z2

+ J,

where υ is the drying agent’s velocity, Dz is the diffusion coefficient, and J represents the local moisture
source intensity.

To represent the local moisture source term, J , we introduce it in the form:

J = αJR,

where α depends on the packing and size of the grains. The term JR represents the moisture flux from
the surface of a single grain, defined by:

JR = −D̃
∂c

∂r

∣

∣

∣

∣

r=R

.

Now, we express JR as:

JR = −
2D̃δc

R

∞
∑

n=1

An(τ)

µn

(sinµn − µn cosµn) .

Substituting back, the local moisture source term J(τ) becomes:

J(τ) = αJR = −α
2D̃δc

R

∞
∑

n=1

An(τ)

µn

(sinµn − µn cosµn) .

The time change of the moisture flux at the interface of the particle can be found as follows:

J(τ) = czJ0(τ)− c0J0(τ),

where

J0(τ) = −α
2D̃

R

∞
∑

n=1

An(τ)

µn

(sinµn − µn cosµn) .

This substitution allows us to rewrite the governing equation as follows:
∂cz
∂τ

+ υ
∂cz
∂z

= Dz

∂2cz
∂z2

+ czJ0(τ)− c0J0(τ).

5. Quasi-stationary approximation

In the quasi-stationary approximation, we neglect the time derivative, which yields:

Dz

d2cz
∂z2

− υ
dcz
∂z

+ czJ0(τ) = c0J0(τ).

This equation is a second-order linear differential equation with constant coefficients. Solving it
requires first finding the homogeneous part:

Dzλ
2 − υλ+ J0(τ) = 0,

with solutions for λ:

λ1,2 =
υ ±

√

υ2 − 4DzJ0(τ)

2Dz

.

The general solution of the homogeneous equation is as follows:

czh(z) = K1e
λ1z +K2e

λ2z,

and we add a particular solution czp(z, τ) = c0 to form the complete solution:

cz(z, τ) = K1e
λ1z +K2e

λ2z + c0.
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6. Application of mixed boundary conditions

Using the mixed boundary conditions at z = 0 and z = L:
1. At z = 0:

−D
∂cz
∂z

= H(cz − camb),

Substituting cz(0, τ) = K1 +K2 + c0:

−Dλ1K1 −Dλ2K2 = H (K1 +K2 + c0 − camb) .

2. At z = L:

−D
∂cz
∂z

= H(cz − c∞z ),

Substituting cz(L, τ) = K1e
λ1L +K2e

λ2L + c0:

−Dλ1K1e
λ1L −Dλ2K2e

λ2L = H
(

K1e
λ1L +K2e

λ2L + c0 − c∞z

)

.

Solving these simultaneous equations, we find:

K1 =
(camb − c0)e

λ2L + (c∞z − c0)

∆
,

K2 =
(camb − c0)e

λ1L + (c∞z − c0)

∆
,

where

∆ = eλ2L − eλ1L.

The final expression for the moisture concentration cz(z, τ) with the boundary conditions applied
is:

cz(z, τ) =
[

(camb − c0)e
λ2L + (c∞z − c0)

]

∆−1eλ1z +
[

(camb − c0)e
λ1L + (c∞z − c0)

]

∆−1eλ2z + c0.

7. Numerical experiment

On the basis of the obtained formulae to determine the changes of moisture concentration in time, the
numerical experiments were carried out both at the macroscopic (grain bed) and microscopic levels
(individual grain).

For the numerical experiment, we investigate the convective drying process of wheat grain (“Tr.
durum Desf.” cultivar) under controlled ambient conditions to reduce the grain’s moisture content from
14% to 10%. The drying occurs at an ambient temperature of 20◦C, with a relative humidity of 60%,
simulating moderate drying conditions.

The drying process of the wheat grain was simulated using the following key physico-chemical
characteristics of the material, the environment, and the drying agent:

The thickness of the bed L = 1m, the average radius of the grain R = 2.00086×10−3 m, the initial
moisture concentration in the grain c0 = 5.5 × 10−5 kg H2O/kg dry matter, the packing coefficient
αT = 2.5, the effective moisture diffusion coefficient D̃ = 1.34×10−9 m2/s, the mass transfer coefficient
H = 1.0× 10−7, the Fourier number for mass transfer FO = 2.00086× 10−7, the volumetric expansion
concentration coefficient β = 2.71389 × 10−4 m3/kg, the saturated vapor concentration czn = 1.73 ×
10−2 kg/m3, the shear modulus G = 6.833 × 105 kg/m2, the mechanical constant ξ = 0.5, the bulk
modulus K = 9.1111× 10−6 kg/m2, Poisson’s ratio ν = 0.2, and the drying agent velocity through the
grain bed υ = 1.0×10−1 m/s. The time step is 3600 s. The radius step for the grain is 0.002m, and the
step in the bulk of the bed is 0.1m. The convective air drying was conducted at two airflow velocities
(v = 0.5m/s and v = 2.5m/s) to evaluate the impact of flow rate on the drying rate and moisture
distribution. Initial moisture concentration in the intergrain air-vapor space was set according to the
ambient relative humidity, while the top layer of the grain bed was considered to be in contact with
air at a saturated vapor concentration corresponding to the drying temperature of 20◦C.

There are considered two cases of velocity of the drying agent: v = 0.5m/s, v = 2.5m/s.
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The value of camb, the initial moisture concentration in the intergrain air-vapor space, was chosen
based on the ambient relative humidity and the saturation vapor concentration at the drying tempera-
ture of 20◦C. This choice reflects the equilibrium moisture content that drying agent would have at 60%
relative humidity, which is a standard reference condition for ambient air in many drying processes.
At 20◦C, the saturated vapor concentration of water vapor (100% relative humidity) is approximately
0.0173 kg/m3 . Since the relative humidity in the drying environment was set to 60%, the moisture
concentration in the intergrain space is ≈ 0.0104 kg/m3. This value of camb = 0.0104 kg/m3 ensures
that the drying conditions reflect ambient moisture content, allowing the grains to dry gradually in
response to the lower moisture concentration of the intergrain air-vapor mixture. The choice of 60%
relative humidity provides a moderate drying environment without extreme desiccation, helping to
simulate a common air drying process.

The results of the numerical experiment demonstrate the dependencies of moisture concentration
distribution within an individual grain and across the grain bed on the macroscopic and microscopic
levels.

In Figures 1 and 2, it is shown the time variations of the moisture concentration c(r, z, τ) in the
grain bed. These figures demonstrate the distribution of moisture concentration across the grain bed for
different velocities of the drying agent. Figure 1 corresponds to the drying agent velocity v = 0.5 m/s,
and Figure 2 corresponds to the velocity v = 2.5 m/s.
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Fig. 1. Moisture concentration distribution c(r, z, τ) in the grain bed at different depths over time with the
drying agent velocity v = 0.5.
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Fig. 2. Moisture concentration distribution c(r, z, τ) in the grain bed at different depths over time with the
drying agent velocity v = 2.5.

In Figures 3 and 4, the time variations of the moisture concentration c(r, z, τ) along the radius of an
individual grain are presented for different time moments. Specifically, Figure 3 shows the distribution
at τ = 3600 seconds, illustrating the moisture profile after one hour of drying. Figure 4 displays the
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distribution at τ = 18000 seconds, corresponding to five hours of drying. These figures highlight
how the moisture concentration decreases from the center to the outer surface of the grain over time,
reflecting the drying process as influenced by the diffusion of moisture and mass transfer at the grain
boundary.
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Fig. 3. Moisture concentration distribution c(r, z, τ)
along the radius of an individual grain at depths z =

0.1 and z = 0.9 for τ = 3600 s.

Fig. 4. Moisture concentration distribution c(r, z, τ)
along the radius of an individual grain at depths z =

0.1 and z = 0.9 for τ = 18000 s.

To analyze and compare the results obtained from the simulations with different velocities of the
drying agent (0.5m/s and 2.5m/s) in the grain bed, we can focus on several aspects: moisture con-
centration distribution in time. At each depth level z in the grain bed, the concentration profiles in
the two simulations reveal different rates of moisture reduction over time. A higher velocity of 2.5m/s
results in faster moisture reduction across the grain bed compared to the 0.5m/s case. This effect is
due to the enhanced air flow, which removes moisture more effectively. The following aspect is the
spatial gradient in concentration. At higher depths (near z = 0.9), the concentration in the 2.5m/s
case is lower compared to the 0.5m/s simulation at equivalent time steps. This suggests that the
drying process reaches deeper layers more effectively with increased drying agent velocity, which could
improve the uniformity of moisture removal.

With the comparison of radial moisture concentration distribution in a grain at different time
moments (3600 s and 18000 s) across two different depths, z = 0.1 and z = 0.9, we observe the
following: moisture gradient across radius. At 3600 seconds, the moisture concentration at z = 0.1
attains its maximum at the center (r = 0) and decreases slightly toward the outer shell. For z = 0.9,
the moisture levels are slightly higher, but also the maximum is at the center. This indicates a slight
moisture gradient, where moisture near the outer surface is slightly lower, especially at the deeper
grain bed level. Moisture decrease over time 18000 seconds is notable. For z = 0.1, moisture levels
reduce significantly to around 2.807 · 10−5 kg H2O/kg dry matter at the center. At z = 0.9, moisture
values remain somewhat higher, showing that deeper layers retain more moisture, slowing the drying
process in the bed’s interior regions.

The concentration difference between z = 0.1 and z = 0.9 becomes more prominent over time.
At 3600 seconds, the moisture concentrations are close across z values, indicating uniform drying. By
18000 seconds, deeper layers at z = 0.9 maintain higher moisture levels than shallower ones, suggesting
that drying is more effective near the outer grain bed layers due to higher exposure to the drying agent.

8. Conclusion

In the paper, a model for convective drying of a multicomponent system, considering the process at
both micro and macro levels, is presented. The model accounts for phase transitions during drying, as
well as the effects of the material structure on moisture transfer. The mass transfer problems under
mixed boundary conditions are formulated for both the grain bed and an individual grain. A method-

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 978–986 (2024)



Modeling mass transfer processes in multicomponent capillary–porous bodies under . . . 985

ology for the simultaneous solving of these problems is developed. Using the obtained solutions, a
numerical experiment is performed. The results provide clear regularities in the moisture concentra-
tion distribution at both levels. The novelty of this approach lies in the simultaneous consideration
of the grain bed and individual grains and explicitly modeling the moisture exchange between them.
This dual-level approach allows for a more accurate simulation of real-world drying processes, making
it potentially novel in comparison to the majority of existing models.
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Моделювання процесiв масопереносу у багатокомпонентних тiлах
капiлярно-пористої структури за змiшаних граничних умов

Дмитрук А.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

У роботi представлено фiзико-математичну модель конвективного сушiння багато-
компонентного тiла капiлярно-пористої структури з урахуванням динамiки волого-
перенесення як на макро-, так i на мiкрорiвнях. Визнаючи вплив локальної струк-
тури матерiалу на процеси сушiння, зокрема у фазових перетвореннях, модель iнте-
грує континуально-термодинамiчний пiдхiд, започаткований Я. Бураком, Є. Чаплею
та Б. Гайвась. Цей пiдхiд стосується взаємопов’язаних механiчних, теплових i ди-
фузiйних процесiв, що вiдбуваються в гетерогенних, нерiвноважних системах, де при-
пущення про локальну термодинамiчну рiвновагу дозволяють описувати стан рiвно-
ваги за допомогою спряжених фiзичних параметрiв. Унiкальний дворiвневий пiдхiд,
застосовий при моделюваннi, описує обмiн вологи мiж окремим зерном i шаром зерна
за граничних умов третього роду, що дозволяє реалiстично моделювати процес сушiн-
ня шляхом прямого врахування фазових перетворень i впливу капiлярної структури
матерiалу. Представлена методологiя дозволяє одночасно розв’язувати рiвняння ма-
сопереносу для шару зерна та окремих зерен за змiшаних граничних умов, що пiд-
тверджується чисельним експериментом. Результати показують чiткi закономiрностi
розподiлу вологи в зерновому шарi та всерединi окремих зерен iз змiнами, залежни-
ми вiд швидкостi сушильного агента. Новизна цього пiдходу полягає в одночасному
розглядi перенесення вологи в областi зернини та в шарi шару, що забезпечує де-
тальну перспективу динамiки вологи. Ця модель має потенцiйне застосування для
оптимiзацiї промислових процесiв сушiння капiлярно-пористих матерiалiв, пiдвищен-
ня ефективностi та економiчностi.
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