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The objective of this study is to analyze specific genomes, namely the RNA of corona-
viruses, based on the parameters obtained from the distributions of nucleotide sequences
in their RNA. The viral RNA was subjected to distribution based on nucleotide sequences
obtained by changing one nucleotide base (adenine) into a “whitespace”, with empty se-
quences denoted as “x”. Statistical spectra were constructed in such cases. They exhibited
three distinct peaks that were consistent across the studied species. Parameters based on
the rank–frequency distributions of the obtained nucleotide sequences, sequence lengths,
and some other statistical parameters were calculated. Based on these parameters, the
principal components were built, which were the basis for the grouping of the studied
viruses. The most relevant parameters formed the model of a näıve Bayes classifier, which
analyzes the probability of the virus belonging to a certain group of viruses in the model.
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1. Introduction

Over the past decades, complex systems have been the focus of attention for scientists and engineers
in various fields of science and technology [1]. Such systems, which include biological, economic, and
technical components, have a large number of interacting elements that can affect each other. This
complicates their analysis, particularly when they are large in size and exhibit low predictability.
Various machine-learning methods constitute nowadays one group of approaches to study such sys-
tems [2, 3]. On the other hand, the use of physical models or methods grounded in complex network
theory becomes increasingly relevant in the classification of complex systems. Such approaches allow
for the prediction of a system’s behavior by reducing the amount of necessary data for analysis and
classification, which is important in the context of the growing volume of data [4, 5].

The analysis of species similarity probabilities and their subsequent classification hold pivotal im-
portance within the biological sciences, necessitating a multidisciplinary approach. By integrating
methodologies, researchers can derive more accurate, robust classifications and understand the evo-
lutionary relationships among species [6]. This interdisciplinary strategy enhances the resolution at
which species similarities are detected and interpreted, facilitating the identification of cryptic species
and refining our understanding of biodiversity [7].

This study was carried out using interdisciplinary approaches to analyze statistical data. The
approaches based on linguistics, biology, statistical physics, information theory, economics, and proba-
bility theory can be seen there. It should be mentioned that the set of methods employed in this work
can be used in the analysis of the distribution of a random variable.

For this study, RNA samples from the most prevalent coronavirus strains were selected to analyze
their similarities, which could be attributed to the distribution of nucleotides in their RNA sequences.
The data on RNA of the viruses were taken from the National Center for Biotechnology (NCBI,
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https://www.ncbi.nlm.nih.gov) [8, 9]. Despite the alleged decline in interest in COVID-19 issues,
this subject remains topical due to new strains being constantly discovered [10–12] calling in particular
for further development of epidemiological models [13, 14].

The paper is organized as follows: an overview of the data along with detailed method descriptions
is available in Section 2 “Methods”. Section 3 “Results” contains the presentation of findings, and the
paper concludes with a brief discussion provided in Section 4.

2. Methods

To analyze the RNA, we need to divide it into segments. For the segmentation process, we employ
the substitution of adenine (a) with a “whitespace” symbol, while the empty sequence between two
delimiters is denoted as x [8, 15]. Therefore, the nucleotide sequence:

attaaaggtttataccttcccaggtaacaaaccaaccaactttcgatctcttgtagatctg (1)

upon substituting adenine transforms into:

x tt x x ggttt t ccttccc ggt x c x x cc x cc x ctttcg tctcttgt g tctg. (2)

The first occurrence of x is due to the adenine a at the beginning of the chain.
Upon doing so, we convert a single RNA sequence into a set of sequences similar to words in

texts. This hints, in particular, about possibilities to utilize approaches developed in the domain of
quantitative linguistics. Below, we describe the parameters that can be derived based on a rank–
frequency distribution of such sequences, as well as those based on their lengths.

To obtain the rank–frequency distribution, items (nucleotide sequences) corresponding to the input
RNA are sorted based on their absolute frequency, with the most frequent item given rank 1, the
second most frequent given rank 2, and so on.

This distribution can be characterized by Shannon’s information entropy [16]:

S = −

rmax
∑

r

pr ln pr, (3)

where pr =
fr
N

, N =
∑

r fr, and fr is the number of sequences (absolute frequency) for the r-th rank.
Statistical entropy is one of the parameters for classifying the distribution of nucleotide sequences

in viral RNA. Along with it, the mean value of the sequence can be highlighted as the first central
moment [17]:

m1 =
1

N

∑

i

Li, (4)

where N is the number of nucleotide sequences, and Li is the number of nucleotides for the i-th
sequence. Clearly, x, being an empty sequence, has the length of L = 0. The next parameter for
this distribution is the variance of the statistical distribution which measures the dispersion of the
statistical variable relative to the mean value of the distribution. It can also be referred to as the
second central moment:

m2 =
1

N

∑

i

(Li −m1)
2 . (5)

The coefficient of variation is defined as:

d =
m2

m1 − 1
. (6)

The above parameters were used in our previous studies on coronaviruses [8,9]. In the present paper,
we extend them with a few more parameters that can be derived from rank–frequency distributions,
cf. [18–20]:

— type-token ration TTR = rmax/N , where the number of types (different sequences) coincides with
the maximum rank rmax while the number of tokens in the total number of sequences N ;

— fraction of hapax legomena (sequences occurring only once) p1 = f1/N ;
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— fraction of dis legomena (sequences occurring exactly twice) p2 = f2/N ;
— relation of the numbers of hapax and dis legomena f1/f2 = p1/p2;
— repeat rate

R =

rmax
∑

r=1

p2r . (7)

3. Results

3.1. Statistical spectra

The statistical spectrum refers to the distribution of a discrete variable that exhibits a spectrum-like
pattern. It is considered as such because the variable takes on distinct values or levels forming a discrete
set resembling a spectrum. The term “statistical spectrum” is employed to describe the probabilistic
distribution of these discrete values within a given system [21].

Let us reflect upon ∆Li as the deviation from the first central moment for the sequence length Li

described by the equation ∆Li = |Li −m1|. The quantity Qi will indicate the number of elements
with a deviation of ∆Li. By representing their dependency, one can obtain the statistical spectrum
proper.
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Fig. 1. Statistical spectra representing the relation between deviation from the first
central moment and the number of elements having the same deviation length.

By plotting the relationship between Qi and ∆Li for different values of Li, one can construct the
statistical spectrum. The spectrum provides a visual representation of the distribution of elements
with specific length deviations within the sequence. It illustrates the frequencies or probabilities of
occurrence associated with different deviation values. The peaks being typical for every spectrum
from the sample can be seen at P1 (∆L = 0.65694), P2 (∆L = 1.65694) and P3 (∆L = 2.65694). The
equality of decimal places can be explained by subtracting integer values for sequence lengths from a
common value of m1.

The standard deviation is a statistical measure that quantifies the dispersion or spread of a dataset.
It explains how individual data points deviate from the mean or average value. A higher standard
deviation indicates greater variability, while a lower standard deviation indicates less variability and a
more tightly clustered dataset. For this study, this is one of the distribution parameters [22]. It can
be calculated using the equation:

σ =

√

√

√

√

1

N

imax
∑

i

(Qi − 〈Q〉)2, (8)

where N is the sample size.
The values of the spectral dispersion σ2 for these spectra together with other parameters defined

above are presented in Table 1.
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Table 1. Statistical parameters of the studied genomes.

ID Name S m1 m2 d σ2 p1/p2
NCBI
identifier∗

1 CCoV-HuPn 4.182 2.546 5.390 3.486 0.388 7.281 MW591993.2
2 Feline a-CoV 4.250 2.609 5.719 3.554 0.487 7.818 315192962
3 HCoV-229E 4.380 2.903 7.176 3.772 0.730 9.594 12175745
4 HCoV-HKU1 4.286 2.798 6.700 3.726 0.360 7.520 85667876
5 HCoV-NL63 4.432 3.012 7.792 3.873 0.475 7.569 49169782
6 HCoV-OC43 4.388 2.799 6.721 3.736 0.369 7.374 1578871709
7 MERS-CoV 4.585 2.990 7.781 3.911 0.487 9.605 667489388
8 SARS-CoV 4.322 2.696 6.199 3.655 0.495 8.345 30271926

SARS-CoV-2 variants:

9 Reference 4.171 2.542 5.386 3.493 0.495 9.019 NC_045512
10 Alpha 4.177 2.546 5.413 3.500 0.497 8.691 OL546784.1
11 Beta 4.179 2.548 5.422 3.502 0.496 8.826 MZ314998.1
12 Gamma 4.176 2.545 5.406 3.499 0.496 8.807 2056248244
13 Delta (AY) 4.176 2.547 5.415 3.500 0.497 8.917 OM269121.1
14 Delta (B.1) 4.181 2.554 5.445 3.505 0.593 9.000 OK091006.1
15 Eta 4.175 2.548 5.417 3.500 0.498 8.631 MZ362439.1
16 Iota 4.176 2.552 5.438 3.505 0.659 8.789 MZ702250.1
17 Omicron (BA) 4.177 2.545 5.405 3.500 0.497 8.907 OM283600.1
18 Omicron-1 4.178 2.546 5.409 3.500 0.497 9.114 OM095411.1

∗Append this identifier to https://www.ncbi.nlm.nih.gov/nuccore/ in order to access the data. To
directly access the FASTA sequence, use links in the format similar to https://www.ncbi.nlm.nih.

gov/nuccore/NC_045512?report=fasta.

3.2. Principal component analysis

Previous studies on viral RNAs revealed a set of parameters to distinguish the viruses, including
entropy S and the second central moment m2. Here, we apply a more rigorous approach by performing
the Principal Component Analysis (PCA) [23, 24] implemented within the scikit-learn library in
Python [25,26].

Initially, a smaller set of variables {S,m1,m2, d, σ
2} was used yielding the following principal com-

ponents (PC):
PC1 = 0.128S + 0.186m1 + 0.961m2 + 0.160 d − 0.00345σ2 , (9a)

PC2 = −0.0451S + 0.0241m1 + 0.0141m2 − 0.0554 d + 0.997σ2. (9b)

These results suggest that m2 and σ2 constitute the best pair of variables describing our data, see
Figure 2a. Note, however, that two points [they are Delta (B.1) and Iota strains] are not properly
grouped with the remaining six SARS-CoV-2 variants.

By using a complemented set of {S,m1,m2, d, σ
2,TTR, p1, p2, p1/p2, R} we obtain the following

principal components:

PC1 = 0.123S + 0.181m1 + 0.934m2 + 0.155 d − 0.0164σ2

+ 0.0145TTR + 0.0120 p1 + 0.00187 p2 − 0.225
p1
p2

+ 0.00566R, (10a)

PC2 = −0.0413S + 0.0420m1 + 0.225m2 − 0.0362 d + 0.0850σ2

+ 0.00806TTR + 0.00830 p1 − 0.00082 p2 + 0.968
p1
p2

− 0.00086R, (10b)

suggesting another pair of variables, m2 and p1/p2, see Figure 2b. In this case, the cluster of SARS-
CoV-2 strains is clearly distinguished.
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Fig. 2. Grouping of coronaviruses based on PCA using variables {S,m1,m2, d, σ
2} (a) and variables

{S,m1,m2, d, σ
2,TTR, p1, p2, p1/p2, R} (b).

3.3. Bayesian analysis

To address the problem of genome classification based on their parameters, the optimal solution is to
apply a näıve Bayes classifier, which uses Bayes’ theorem with the assumption of independence among
variables. This approach is also suitable for classification tasks involving small data samples. The
analysis was conducted based on the variables that contribute the most to the principal components,
specifically m2 and p1/p2.

For our variables being continuous in nature, the most appropriate choice is the so-called Gaus-
sian Näıve Bayes. In Gaussian Näıve Bayes, the probability density function (PDF) of the Gaussian
distribution for a feature xi given a class y is:

PGNB(xi|y) =
1

√

2πσ2
yi

exp

(

−
(x− µyi)

2

2σ2
yi

)

, (11)

where µyi is the mean of feature xi for class y and σyi stands for the variance of feature xi for class y.

5.5 6�0 6�5 7�0 7�5

m2

7�0

7�5

8�0

8�5

9.0

9.5

p
1
/p
2

ACoV-Ma5

PorCoV-HKU15

Hedgehog-CoV

1

2
3

4
5

6

Fig. 3. Grouping of coronaviruses based on variables
m2 and p1/p2. The new data in the SARS-CoV-2 do-
main are labelled by numbers according to Table 2.

To perform the analysis of our data, we
made use of the GaussianNB class from Python’s
module sklearn.naive_bayes [25]. The model
was trained on the data from Table 1, with
the first 8 genomes belonging to class “0” (not
SARS-CoV-2 variants) and the remaining 10 be-
longing to class “1” (SARS-CoV-2 variants). As
features, the two variables with the major con-
tributions to PC1 and PC2 given by (10) were
used, namely, m2 and p1/p2. The model ap-
peared quite stable yielding correct attributions
for the var_smoothing parameter [the variance
σ2
yi in Eq. (11)] ranging from the default value

of 10−9 to 0.3.
The new data include three non-human

coronaviruses (avian strain Ma5, porcine
HKU15, and hedgehog coronavirus 1) and six
strains of SARS-CoV-2 coronaviruses (one of
them also identified in domestic cats), see Table 2. As one can see, the model correctly predicts
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the class in all new cases. The class probabilities in the Table correspond to σ2
yi = 0.3. The new data

are visualized in Figure 3 together with those used to construct the model.

Table 2. Class probabilities and predicted classes for new data at σ2

yi = 0.3.

Name
Class “0” Class “1” Predicted NCBI

probability probability class identifier∗

ACoV-Ma5 0.761 0.239 0 KY626045.1
PorCoV-HKU15 0.986 0.014 0 KJ569769
Hedgehog-CoV 0.999 0.001 0 MK679660.1

SARS-CoV-2 variants:

1. Omicron JN.1 0.054 0.946 1 PP357646.1
2. Lambda (Felis catus) 0.051 0.949 1 MZ496616.1
3. Kappa 0.052 0.948 1 OM366054.1
4. Omicron XBB.1.16 0.056 0.944 1 OR125680.1
5. Omicron XBB.1.5_nLuc 0.054 0.946 1 OR887438.1
6. Zeta 0.066 0.934 1 OR578389.1

∗Append this identifier to https://www.ncbi.nlm.nih.gov/nuccore/ in order to access the data. To
directly access the FASTA sequence, use links in the format similar to https://www.ncbi.nlm.nih.

gov/nuccore/KJ569769?report=fasta.

4. Discussion

This paper presents an approach to determine the probability of a virus belonging to a group of
other viruses based on the parameterization of nucleotide distribution in viral RNA. From the analysis
of nucleotide sequence distribution in viral RNAs, ten distribution parameters were obtained. All
distribution parameters were orthogonally transformed into principal components to conduct a simpler
and more transparent analysis procedure, which forms the basis for virus classification analysis. To
calculate probabilities, a näıve Bayes classifier was used, and the analysis was conducted based on two
parameters that contribute the most to the principal components.

The results demonstrate both the clustering of similar viruses according to their principal compo-
nents (see Figure 3) and the calculated probabilities based on the Bayesian classification (see Table 2).
Figure 2b illustrates that similar viruses are closer to each other, particularly noticeable for SARS-CoV-
2 strains. Specifically, among the principal components (9), corresponding to dispersion projections
(statistical m2 and spectral σ2), a certain correlation can be inferred. Additionally, considering prin-
cipal components (10), a correlation between statistical dispersion and the relation of the numbers
of hapax and dis legomena can be inferred. Indeed, the Pearson correlation coefficient indicates a
moderate correlation r(m2, p1/p2) ≈ 0.7.

However, it is important to note that the methods presented serve as auxiliary tools for the complex
task of species similarity analysis. The authors hope that their methodological developments will be
beneficial for broader bioinformatics research endeavors.

Data availability. The complete set of parameters for the analyzed viruses is available at https:
//doi.org/10.5281/zenodo.11282386.
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Статистичний пiдхiд до класифiкацiї коронавiрусiв
на основi розподiлу нуклеотидiв

Гусєв М.1, Ровенчак А.1,2
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вул. Драгоманова, 12, 79005, Львiв, Україна
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Метою цього дослiдження є аналiз конкретних геномiв, а саме РНК коронавiрусiв,
на основi параметрiв, отриманих iз розподiлу нуклеотидних послiдовностей у їхнiх
РНК. Вiрусна РНК була роздiлена на нуклеотиднi послiдовностi, отриманi шляхом
змiни однiєї нуклеотидної основи (аденiн) на «пробiл», причому порожнi послiдовно-
стi позначено як «x». Для послiдовностей побудовано статистичнi спектри. Вони по-
казали три чiткi пiки, якi були послiдовними для дослiджуваних видiв. Розраховано
параметри на основi ранґово-частотного розподiлу отриманих нуклеотидних послi-
довностей, довжини послiдовностей та деякi iншi статистичнi параметри. На пiдставi
цих параметрiв було визначено головнi компоненти, якi лягли в основу групування
дослiджуваних вiрусiв. Найбiльш релевантнi параметри сформували модель наївно-
го класифiкатора Баєса, що аналiзує ймовiрнiсть належностi вiрусу до певної групи
вiрусiв у моделi.

Ключовi слова: ранґово-частотний розподiл; параметризацiя; коронавiрус; ста-

тистичнi спектри; головнi компоненти; наївний класифiкатор Баєса.
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