
INFORMATION SYSTEMS AND NETWORKS

Issue 16, 2024

https://doi.org/10.23939/sisn2024.16.069

УДК 004.056:004.354.6:657

METHODS AND MEANS OF ANALYZING APPLICATION
SECURITY VIA DISTRIBUTED TRACING

Oleh Faizulin1, Mariia Nazarkevych2

1, 2 Lviv Polytechnic National University,

Department of Information Systems and Networks,
 1 E-mail: oleh.r.faizulin@lpnu.ua, ORCID: 0000-0001-5781-0600

2 E-mail: mariia.a.nazarkevych@lpnu.ua, ORCID: 0000-0002-6528-9867

© Faizulin O., Nazarkevych M., 2024

Summary The article describes methods and means of digital security that are utilizing
distributed tracing to detect, investigate, and prevent security incidents. The described methods and
means are applicable to solutions of any scale – from large enterprises to pet projects; of any domain –
healthcare, banking, government, retail, etc. The article takes a comprehensive approach to digital
security including identification, alerting, prevention, investigation, and audit of existing security
incidents. Described approaches to application security via tracing are focused on general purpose
applications, but they can be extended to cover a domain specific use-case. All Approaches are
production tested and utilized in existing distributed IT systems in one way or another, however certain
examples and use-cases are intentionally simplified for the demonstration purposes and ease of
understanding. Nevertheless, it must be understood that methods and means described in the article
complement existing security practices and cannot replace all of them, however they may improve
overall security of the system by decreasing incident detection time, decreasing resources and efforts
needed to investigate breaches or passing a security audit.

Keywords: Security, distributed tracing, behavior analysis, alerting, automated scaling,
distributed IT systems, metrics, logging, observability, APM, auditing.

Introduction

Modern world is full of challenges which often require non-standard, proactive approaches to
security. Recent events, such as the attack on Kyivstar (Dec 2023, Ukraine) demonstrated how crucial
cybersecurity is for stable functioning of basic activities such as communications, healthcare, payments,
etc.

IT systems of any scale, from pet projects to large enterprises must be secured by default. Ignoring
security may lead to different consequences, manageable losses, or severe financial and reputational
consequences.

Any IT system that is exposed to global network, either directly or indirectly must be protected and
follow at least very basic security best practices. Depending on the importance and adoption of application,
criticality, usage of certain data kinds – various security regulations must be followed. Modern enterprises
are investing large amounts of money to ensure security, but still, incidents happen.

Problem statement

Security investigations are always stressful and time-consuming. Unfortunately, many enterprises as
well as regular users tend to ignore security or apply minimal effort needed. Once security incidents such

70 O. Faizulin, M. Nazarkevych

as breach, leak, unauthorized data modification occur the importance of security instantly skyrockets, and
significant efforts are dedicated to the investigation. By applying the methods and means described in the
article any distributed it system can shorten investigation times, easily pass security audits, recreate event
sequences that led to a specific security event. Additionally, the article addresses the problem of loosely
coupled context, where individual log records or other security related efforts can’t be matched.

Analysis of the recent research and publications

In the book “Distributed tracing in practice: Instrumenting, analyzing, and debugging microservices”
Ошибка! Источник ссылки не найден.. The authors present an in-depth exploration of distributed
tracing, covering its implementation, data collection, and analysis. The authors focus on practical aspects
of using distributed tracing in microservices, offering best practices for instrumentation, managing
overhead, and utilizing tracing to enhance performance and troubleshoot issues. The book is aimed at
practitioners looking to gain actionable insights from their distributed systems and improve operational
visibility.

In the paper “Privacy-risk detection in microservices composition using distributed tracing” 0 the
authors discuss the use of distributed tracing to detect privacy risks in microservices compositions. They
highlight how tracing data can be used to identify and mitigate potential privacy issues in complex
microservice environments. The approach involves analyzing trace data to monitor and flag privacy-related
anomalies, ensuring compliance with privacy standards in dynamic and distributed systems.

In the research “Detecting anomalies in microservices with execution trace comparison. Future
Generation Computer Systems” Ошибка! Источник ссылки не найден. the authors focus on anomaly
detection in microservices by comparing execution traces. The authors propose a method that leverages
trace data to identify deviations from normal behavior, which can indicate potential security or operational
issues. The methodology includes collecting and analyzing trace data to detect unusual patterns that may
signify underlying problems in the microservice architecture.

In the paper “Localizing and explaining faults in microservices using distributed tracing” Ошибка!
Источник ссылки не найден. The authors explore the use of distributed tracing for fault localization
and explanation in microservices. They present techniques for using trace data to pinpoint the source of
faults and provide explanations for these faults, helping developers to quickly understand and address
issues in their distributed applications. The approach enhances the troubleshooting process by offering
detailed insights into the flow of requests across microservices.

In the study “Detecting Cyber Security Attacks against a Microservices Application using
Distributed Tracing” Ошибка! Источник ссылки не найден. the authors investigate the use of
distributed tracing for detecting cybersecurity attacks on microservice applications. They describe methods
for leveraging trace data to identify suspicious activities and potential security breaches. By analyzing the
traces, the approach aims to detect anomalies that could indicate attacks, providing a proactive measure for
enhancing the security of microservice-based systems.

In the article “Detection of microservice-based software anomalies based on OpenTracing in cloud”
0, Khanahmadi et al. explore methods for identifying anomalies in cloud-based microservices by
leveraging OpenTracing, a popular distributed tracing framework. The study focuses on detecting
abnormal behavior in microservices, which can help prevent issues such as performance degradation,
security threats, and system failures.

In the article “Security in Microservices Architectures” 0, Mateus-Coelho, Cruz-Cunha, and Ferreira
explore the various security challenges and solutions associated with microservices-based architectures.
The authors analyze how microservices, due to their distributed nature and independent deployment,
introduce new vulnerabilities that traditional monolithic architectures do not face. Additionally, the paper
discusses the importance of DevSecOps, which integrates security practices into the development and
operations processes, ensuring that security is considered throughout the software lifecycle. The authors

Methods and means of analyzing application security via distributed tracing 71

propose various tools and techniques to address these challenges, providing both theoretical and practical
perspectives on securing microservices architectures in modern IT environments.

In the article “Anomalous Distributed Traffic: Detecting Cyber Security Attacks Amongst
Microservices Using Graph Convolutional Networks” 0, Jacob et al. investigate a novel approach for
detecting cybersecurity attacks in microservice architectures using Graph Convolutional Networks
(GCNs). The authors propose a method that models communication patterns between microservices as a
graph and uses GCNs to detect anomalous traffic patterns that could indicate malicious activities.

In the article “Building Secure Microservices-Based Applications Using Service-Mesh Architecture”
0, Chandramouli and Butcher focus on the security challenges and solutions in microservices architecture,
particularly through the implementation of service mesh. This National Institute of Standards and
Technology (NIST) publication offers a comprehensive framework for securing microservices-based
applications by integrating security controls within the service mesh architecture.

In the article “Adaptive Observability for Forensic-Ready Microservice Systems” 0, Monteiro, Yu,
Zisman, and Nuseibeh propose a framework for enhancing the observability of microservice systems with
a focus on forensic readiness. The authors address the challenge of making distributed systems more
capable of supporting forensic investigations, particularly in cases of security breaches or operational
failures.

In the article “Scalable Compositional Static Taint Analysis for Sensitive Data Tracing on Industrial
Micro-Services” 0, Zhong et al. propose a method to trace sensitive data in industrial microservices using a
scalable static taint analysis technique. The authors focus on addressing the challenges of sensitive data
leakage in large-scale microservice architectures, particularly in industries where the security of personal
and sensitive information is paramount.

In the article “Design, Monitoring, and Testing of Microservices Systems: The Practitioners’
Perspective” 0, Waseem et al. provide insights into how industry professionals approach the development,
monitoring, and testing of microservices architectures. Based on extensive surveys and interviews with
practitioners, the authors examine the challenges and best practices encountered in real-world
microservices implementations.

In the article “Transparent Tracing System on gRPC Based Microservice Applications Running on
Kubernetes” 0, Perdanaputra and Kistijantoro present a system designed to implement transparent
distributed tracing for gRPC-based microservices operating within Kubernetes environments. The authors
focus on addressing the challenges of monitoring microservices, particularly when it comes to tracing
inter-service communications in large-scale distributed systems.

In the article “Evaluation of the Effectiveness of Different Image Skeletonization Methods in
Biometric Security Systems” 0, Nazarkevych et al. analyze various image skeletonization techniques to
determine their suitability and effectiveness in biometric security applications. Skeletonization, a key
process in biometric recognition systems, involves reducing images to their essential structures, allowing
for efficient pattern recognition while preserving important features.

In the article “Methods of Protection Document Formed from Latent Element Located by Fractals”
0, Medykovskyy, Lipinski, Troyan, and Nazarkevych explore innovative methods for enhancing document
security using fractal-based techniques. The authors propose a novel approach to embedding latent
elements within documents to protect them from forgery and unauthorized duplication. These latent
elements, when designed using fractal patterns, offer a highly secure and difficult-to-replicate method for
verifying the authenticity of documents.

In the paper “Unsupervised Detection of Microservice Trace Anomalies through Service-Level Deep
Bayesian Networks” 0, Liu, Xu, Ouyang, Jiao, Chen, Zhang, and Pei propose an advanced approach to
identifying anomalies in microservice architectures using deep Bayesian networks. The authors introduce a
novel unsupervised method that leverages probabilistic modeling to detect anomalies without relying on
labeled training data.

72 O. Faizulin, M. Nazarkevych

In the paper “Microservice Security: A Systematic Literature Review” 0, Berardi, Giallorenzo,
Mauro, Melis, Montesi, and Prandini provide a comprehensive review of the current state of research on
microservice security. Published in PeerJ Computer Science, this study aims to consolidate existing
knowledge and identify gaps in the field of securing microservice architectures.

In the paper “Visualizing Microservice Architecture in the Dynamic Perspective: A Systematic
Mapping Study” 0, Gortney, Harris, Cerny, Al Maruf, Bures, Taibi, and Tisnovsky explore methods for
visualizing microservice architectures with a focus on their dynamic aspects. Published in IEEE Access,
this study systematically maps out the various approaches to visualizing the evolving nature of
microservice-based systems.

In the paper “Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis”
0, Luo, Xu, Lu, Ye, Xu, Zhang, and Xu investigate the dependencies and performance characteristics of
microservices using trace data from Alibaba. Presented at the ACM Symposium on Cloud Computing, this
study provides insights into the behavior and performance of microservice architectures based on empirical
data from a major technology company.

In the paper “Trace-Based Microservice Anomaly Detection through Deep Learning” 0, Bai and
Zhang explore an advanced approach for detecting anomalies in microservice architectures using deep
learning techniques. Presented at the Second International Conference on Electronic Information
Engineering, Big Data, and Computer Technology (EIBDCT 2023), this study focuses on leveraging deep
learning models to analyze microservice traces and identify potential anomalies.

These, and other articles collectively illustrate the versatile applications of distributed tracing in
improving the reliability, security, and performance of microservice architectures. They highlight its
critical role in modern distributed systems, from troubleshooting and performance optimization to privacy
risk detection and cybersecurity.

Article goals

1. Describe methods and means of digital security that utilize distributed tracing to detect,
investigate, and prevent security incidents.

2. Demonstrate the applicability of these methods and means to solutions of any scale, from large
enterprises to small projects, and across various domains, including healthcare, banking, government, and
retail.

3. Provide a comprehensive approach to digital security that includes identification, alerting,
prevention, investigation, and auditing of security incidents.

4. Focus on application security through tracing, with an emphasis on general-purpose applications,
while also highlighting the potential for extending these approaches to domain-specific use cases.

5. Present production-tested approaches that are utilized in existing distributed IT systems, with
simplified examples and use-cases for clarity and ease of understanding.

Emphasize that these methods and means complement existing security practices, aiming to improve
overall system security by reducing incident detection time and decreasing the resources and efforts
required for investigating breaches or passing a security audit.

Methods and Means of Analyzing Application Security via Distributed Tracing

Distributed Tracing Overview

Distributed tracing and traces describe a process, typically and end-to-end transaction workflow
made in a web service or other IT system. It provides visibility into services and components of the IT
system, focusing on complete transparency and visibility. By recording and visualizing transactions, it
allows operations team to analyze and compare user workflows, detect abnormal behavior, etc. As a
requests travels through the network, from frontend to back–end to database or to other services – it’s
being linked on each level, recorded, and stored for future analysis.

Methods and means of analyzing application security via distributed tracing 73

Fig. 1. Example of component view in tracing

Tracing Vocabulary

In order proceed, it’s needed to be familiar with tracing vocabulary below:
 TraceId – This is an id that’s assigned to a single request, job, or action. Something like each

unique user-initiated web request will have its own traceId.
 SpanId – Tracks a unit of work. Think of a request that consists of multiple steps. Each step could

have its own spanId and be tracked individually. By default, any application flow will start with
the same TraceId and SpanId.

 Tag – a key value pair that can be added to a particular unit of work.
 Trace Context – a collection of standardized headers that allow distributed tracers to

communicate without dropping context information.

Tracing History

Dapper, a large-scale distributed tracing system was by Google, 2010. Two years later, Twitter
open-sourced Zipkin, their tool for distributed application performance tuning. Zipkin was the first fully
open-sourced tracing solution for the distributed IT systems. In 2015, Uber introduced Jaeger, their
alternative to Zipkin.

In 2016 Ben Sigelman, founder of Lightstep, wrote a blog post called Toward Turnkey Distributed
Tracing, which described Open Tracing as a standard. It’s also often referenced as Open Tracing
Manifesto. Open Tracing allowed developers of applications, libraries and components and frameworks to
instrument their code in a unified manner without binding themselves to a specific solution. The goal was
to solve the standardization problem.

Later in 2016, The Cloud Native Computing Foundation (CNCF) accepted Open Tracing as one of
their projects and Open Tracing 1.0 was released. Later in the same year Jaeger joined the Open Tracing
project.

In 2019, World Wide Web Consortium (W3C) was proposed to standardize tracing context
specification. Same year, Open Tracing and Open Telemetry projects merged into a single project under
the umbrella of CNCF.

10 years later, tracing grew from a single paper to a rich ecosystem of components available for any
layer and technology. At the same time, tracing moved from just tracing to observability, which includes
logging and metrics as well.

Tracing in 2024

Over the years a rich ecosystem of commercial and open-source software was built to cover
practically all the possible needs of distributed applications, observability and beyond. So far, there are two
kinds of solutions: “all in one” and “do one thing and do it well.”

The table below demonstrates a subset of widely adopted commercial and open-source solutions
available on the market.

74 O. Faizulin, M. Nazarkevych

Table 1

Observability solutions

Name Commercial/Open Source Capabilities
Instana Commercial Tracing, metrics, logs, alerts
Datadog Commercial Tracing, metrics, logs, alerts
Jaeger Open Source Tracing
Prometheus Open Source Metrics, alerts
ELK Stack Open Source Logs, alerts

As it’s visible from the table, commercial solutions mostly try to cover all observability components

and be all-in-one solutions. In contrast, open-source solutions typically target one thing and can be
extended via a set of plugins. For example, it’s possible to integrate logging and tracing into Prometheus,
but the usability of such integration is at least questionable.

How Tracing Works

The key concept of distributed tracing is the ability to transfer tracing metadata across all the layers
within the system, including backend services, proxies, databases, etc.

The whole request (business transaction) is covered by a single trace id. Subsequent calls or sub-
transactions are covered by span ids. Spans can be nested inside another span.

Fig. 2: TraceId and SpanId propagation

Each component reports spans to the collector, which records in in the storage. Later, a UI system

can be used to analyze traces. For the sake of simplicity, for the paper Jaeger is used both as visualization
tool, trace collector and storage. In the real-world enterprise systems collectors are standalone, UI
components are standalone, and traces are stored in some trace storage, for instance Elasticsearch.
Additionally, each trace can record tags – a key/value pairs of information that allow to store custom
information within the trace.

Fig. 3: Adding custom tags to the trace record

Methods and means of analyzing application security via distributed tracing 75

Tracing and logging integration

There is a reason why tracing and logging are often referenced together under umbrella of
observability. Typically, in a distributed system logs are written by each application standalone. Ideally,
they are collected to a certain centralized log storage. For example, Elasticsearch. However, there are
several critical issues that logging on its own can’t address:

 It’s not possible to understand what caused certain errors or events.
 It’s not possible to link request/business transaction to the log record.

At first look, these issues can be considered as minor, but taking a broader view – it’s often not

possible to understand what chain of events led to a specific scenario. The logging solution that is designed
to solve the issues above is Message Diagnostic Context (MDC). The idea behind MDC is simple – allow
adding additional metadata to every single log record. Thanks to MDC, the typical log record integrated
with tracing includes both TraceId and SpanId, so it’s making it clear to understand what transaction
caused specific log record.

Fig. 4: Log Record Structure

Tracing implementation variations

Despite being standardized by W3C, the in-practice tracing standards differ. W3C suggests using
traceparent and tracestate headers, where Zipking and compatible implementations suggest using B3
headers. In a nutshell, there is minor to none difference on what header set to use. Trace components
typically can handle both formats.

Collecting data via tracing

A typical, out of the box tracing solution collects certain data. Referring HTTP as an example, a bare
minimum of data that is collected contains request URI, request method, response status code.
Additionally, if an exception occurs the system will mark a trace as failed, so it’s possible to see what
component misbehave.

At the same time, traces can be enriched both automatically and/or manually with extra data.
Thanks to its tagging functionality, it’s possible to add as much data as is needed for a particular business
case. Most enterprise frameworks provide required functionality out of the box, but at the same time it’s
always possible to implement a custom solution. For future references Java, Spring Boot, and Lombok will
be used to showcase examples.

Collecting HTTP Request Data

By accessing request context (HttpServletRequest) and Tracer context implementations, it’s possible
to enrich current span with custom request information, for instance the image below demonstrates code
sample that implement logging of user agent and remote address into trace context:

76 O. Faizulin, M. Nazarkevych

Fig. 5: Adding HTTP request context as a trace information

Moreover, it’s besides tacking request metadata it’s even possible to store request/response payload

itself, for instance on S3 bucket. After storing the payload, it’s possible to link request and/or response
payload to the trace context.

Fig. 6: Implementation of payload storage for HTTP Request

Methods and means of analyzing application security via distributed tracing 77

Code-level tag recording

Besides HTTP data, it’s possible to record method data either manually or automatically. Manual
recording allows more flexibility, however, requires more effort from the engineering team. Automated
recording, in contrast, can be added via aspect-oriented programming (AOP), but it may lack some details.
The best approach is to mix both, for instance in the following way:

Fig. 7: Creating new span, adding parameters as tags well as method result

Tracing of non-http communication

Besides HTTP there are plenty of tools and protocols that require tracing. Certain of them, such as
gRPC and Kafka are very widely used in the distributed systems. Fortunately, all major protocols and
platforms support metadata, where header information is stored. In result, there is flawless integration
between HTTP and all other major protocols: gRPC, AMQP (message brokers), MQTT (message broker
for IOT) and others. Moreover, there is no restriction that child span must be executed during the parent
execution. This makes tracing applicable in scenarios where scheduled jobs are created and executed later,
or simply messages are being processed asynchronously.

Fig. 8: Adding custom headers in Kafka/Spring Boot

78 O. Faizulin, M. Nazarkevych

Fig. 9: Processing custom Kafka headers in Spring Boot

Applying tracing to execution flow.

Let’s create a simple geo-weather application that will be audited for security. The components used
are:

 Application gateway
 Weather service
 Location service
Additionally, two clients for the weather service are in place – mobile device and web site. For

simplicity, we assumed that application is already secured by OAuth2, so the part related to authentication
and authorization is excluded.

Application can be presented in the following way as a component diagram:

Fig. 10: Application Architecture

The use-cases that are going to be analyzed by using the sample architecture:
 Authentication and Authorization Tracking
 Anomaly detection and Incident Response
 Forensics and investigation
 Microservices security monitoring
 Data integrity verification
 Compliance monitoring
 Attacks protection and prevention
 Security context tracking

Authentication and Authorization tracking

Let’s start with something simple, but important. Assuming JWT authentication is in place a client
must send token via “Authorization: Bearer …” header. Application should respond 401 Unauthorized for
such requests.

Methods and means of analyzing application security via distributed tracing 79

Fig. 11: Web filter to forbid requests without bearer token

Now, it is possible to find such requests via Jaeger UI (or any other analytics tool) by applying filter

expressions. Let’s apply “status=401” expression:

Fig. 12: Applying filter to see all unauthorized requests

A similar approach can be used to track insufficient access permissions. For example, let’s assume

that user was authorized, but doesn’t have corresponding permissions to invoke location-aware services. In
such cases, a natural response would be 403 Forbidden.

Fig. 13: Using JWT Token parser to validate permissions

The token itself and explanation of 403 are being added to the current trace, so it’s possible to see
and understand the reason of error directly via analytics toolset.

80 O. Faizulin, M. Nazarkevych

Anomaly detection and Incident Response

Let’s assume that somebody wants to use weather website to get the data in automated fashion and
it’s not intended to be used in the following way. Certain indirect signs of such behavior could be:

 Way too big amount of request for a certain user/token instance
 Way too big number of requests from a certain remote address.
 Non-standard user agent sent by a client.
 Usage of non-supported or non-typical parameters, for instance checking some US city if the site

is targeted only for EU market.

Fig. 14: Tracking remote address, user agent and HTTP parameters

By analyzing traces, security teams can react and add certain security rules, like deny access from
the certain IP ranges. It must be noted that scenarios like this must be analyzed with advanced tooling like
Elasticsearch/Kibana or all-in-one tooling like Instana. Jaeger uses logfmt format which is limited to
key/value pairs. In contrast, all the tools mentioned above allow to do and/or, in/not in, contains and other
types of queries. Moreover, visualization of results is also possible.

Forensics and Investigations

Let’s consider a use-case, where user database was compromised, and certain sensitive data leaked.
In such case in such case tracing allows to re-construct full end-2-end flow of the attacker. Let’s imagine,
that leak become publicly available, and the security team must take actions to understand the following:

 What data has been leaked?
 Reconstruction and timeline of the attack?
 What actions mut be taken to prevent such incidents in future?

It’s possible to answer the first and second bullet by simply analyzing traces. Let’s refer to Fig. 6.
By storing responses at the certain storage, it’s possible to exactly see what data has been collected by the
attacker. At the same time, trace id will point to the full request/response sequence that allowed the attacker
to download the sensitive data. By analyzing the request structure, it’s possible to understand how the
attacker behaved, when the breach was first used and if there are any other leaks besides the reported one.

Speaking of reconstruction of an event sequence, integration of tracing and logging opens extra
possibilities what are not possible without tracing. For instance, all log records are enriched with trace id
and span id attributes, what allows them to be linked to the spans. At the same time, each log record
contains a timestamp attribute, so it’s possible to understand in a multi-node distributed system in what
order events took place.

Fig. 15: Log record from Weather Service enriched with traceId and spanId attributes

Methods and means of analyzing application security via distributed tracing 81

Microservices security monitoring

By observing the structure of the traces, it’s possible to detect anomalies that may indicate service
misuse or breach. Referring Fig. 10, application architecture, it’s clearly visible that location service is not
linked to API Gateway and should be invoked only via Weather service.

Therefore, the following abnormal cases can be detected via tracing:
 Location service is invoked via API Gateway
 Location service is invoked without any parent trace context.
 Weather service is invoked without any trace context.
The first use-case indicates a security flaw, where location service is exposed via API Gateway and

used by some consumers.
The second and third use-cases are more complex. They indicate that there are network requests that

invoke some services in a manner that system should not. It is a subject for investigation, case it may be
possible that attacker gained access to internal application network.

Fig. 16: Expected components invoked when location service is invoked

Fig. 17: Expected execution path outlook when location service is invoked

Fig. 18: Location service is invoked without parent context (API Gateway and Weather Service)

Compliance monitoring and auditing

Let’s imagine a use-case, where a distributed application must match regulated environments, for
instance it should flow GDPR (General Data Protection Regulation) and CCPA (California Consumer

82 O. Faizulin, M. Nazarkevych

Privacy Act). Additionally, some other requirements, for instance HIPPA (Health Insurance Portability and
Accountability Act) can apply.

In such a case, application is subject to strict guidelines for the protection of confidentiality,
integrity, and availability of information. In such cases, the compliance team initiates set up a continuous
monitoring process, which is focused on monitoring and tracking activities related to personal (patient in
case of HIPPA) data, access controls, and communication within any 3rd party services. Such monitoring is
employed to trace the flow of user data. It answers the questions on who and which services access the
data, how they transformed that data, did they pass the data to another system, etc.

The same approach applies to compliance auditing. Traces are being leveraged to generate reports
and conduct audits.

Attack protection and prevention

Let’s consider a typical example of a DDoS (Distributed Denial of Service) attack. Real-time
monitoring of traces allows to implement mechanisms that will throttle or block malicious traffic based on
trace patterns ensuring the availability of services. Additionally, distributed tracing integrates with Circuit
Breaker pattern, what allows to see which services were affected by DDoS and how the system reacted to a
given attack pattern.

At the same time, it’s not limited to DDoS only. Other use cases would be bruteforce attacks, XSS
(Cross-Site scripting) and CSRF (Cross-Site Request Forgery) detection and prevention.

Security context tracking

In distributed applications, each microservice or software component may have its own security
measures. Distributed tracing allows security teams to ensure that security controls are being applied to all
services what helps to main system security overall. Additionally, it allows to detect security flaws or
incidents including layers on what they occurred. Let’s assume that user is allowed to query weather by
city but is not allowed to query weather by location. Thanks to tracing, it’s possible to understand what
exactly request failed, which user was authenticated, which roles user had at the given moment of time.

Fig. 19: Location service exposing user roles and username as tags

Methods and means of analyzing application security via distributed tracing 83

Fig. 20: Location service is attaching log record to the given span including the error details

Tooling overview

Tracing information, as well as any other information needs to be carefully analyzed and processed
both in real time and during the audit sessions. Strictly speaking, tracing information without powerful
tools and query mechanisms top of tracing and logging data is not very useful. The same applies to real
time alert mechanisms. When working with traces, typically there are the following components in place:

 Collector, which accepts traces from the systems and stores them.
 Trace storage.
 User UI or any other analysis tool that is applied to top of stored data.
While collectors are mostly the same, the only difference between them that they are using different

formats and protocols, the storage system and UI are essential for receiving value from collected traces.
Let’s take an overview of how different tool categories can be used in a security context.

Standalone tracing systems

The first category, standalone tracing systems, is the
simplest and the least powerful in traces analysis. Such systems
excel in finding application bottlenecks, but that’s it. Search
capabilities are very limited and advanced query options are
missing. In a security context they are barely useful and are
applicable only for the simplest use cases. An example of such
systems would be Jaeger and Zipkin.

Commercial APM Tools

Despite the name, APM (Application Performance
Monitoring) tools are often used to analyze application behavior
and raise alerts. An example of such tools is Instana, Datadog,
New Relic, etc. All such tools allow to configure alerting and
get tracing insights. At the same time there are couple of severe
drawbacks. First one – it’s not necessary that all custom tracing
information be available out of the box. In practice, extra
configuration is required to support highly customizable tracing
and often it’s not an easy task to perform without vendor.
Typically, this leads to extra cost and vendor lock-in.

Prometheus (Open-source tooling)

A great example of open-source software developed to
provide APM functionality are Prometheus and Grafana. Fig. 21: Jaeger search capabilities

84 O. Faizulin, M. Nazarkevych

Prometheus is an open-source monitoring and alerting toolkit designed for reliability and scalability.
Developed by CNCF, Prometheus became the de-facto standard for monitoring containerized applications
and distributed application.

One of the key features of Prometheus is a full, multi-dimensional data model with key-value pairs
where its time series are uniquely identified. This data model allows efficient querying and analysis of the
data via PromQL (Prometheus Query Language). PromQL enables users to perform complex queries,
aggregations and transformations on the collected data facilitating real-time monitoring and alerting.
Prometheus is often used with Grafana, a popular open-source dashboarding and visualization platform.
Grafana allows users to create custom dashboards using Prometheus data, providing a rich and interactive
visualization experience. In addition to PromQL, Grafana introduces Tempo (yet another distributed
tracing backend) and TraceQL (a query language specifically designed for distributed tracing in Grafana
Tempo 2.0), what further facilitates distributed tracing analysis.

Fig. 22: Grafana, Tempo and TraceQL

Alertmanager, an alerting component of Prometheus is responsible for alerting functionality. It

allows flexible alerting rules configuration including deduplication, grouping, and routing alerts to external
channels (e-mail, Slack, SMS, etc.).

Elasticsearch/OpenSearch (Open-source tooling)

Despite being a full-text search engine, Elasticsearch/OpenSearch are a popular choice for saving
tracing information. A set of characteristics makes the mentioned search engines an excellent choice for
trace storage.

First one, near real-time indexing allows new traces to be indexed and processed almost immediately
after they become available.

The second characteristic is schema-free json document structure, what allows to pre-configure
individual indexes with specific patterns for trace storage.

Finally, a very powerful Query DSL that allows users to perform queries virtually of any
complexity. It includes support for full-text search, filtering, aggregations providing rich capabilities on
querying the data.

Methods and means of analyzing application security via distributed tracing 85

Kibana (OpenSearch Dashboards in case of OpenSearch) are typically used in conjunction with
Elasticsearch. It is an open-source data visualization platform, which allows interactive search and
analytics, including interactive exploration of the data. Like Prometheus, Kibana has built-in alerting
functionality.

Production usage

Traces are one of the key observability features that must be applied to production applications
either in form of commercial APM or Open-Source one. This means that typically, in enterprise grade
systems data is already available. This means that applying trace-based security comes with low extra cost
and usually is a matter of investment of development effort and with reasonable extra cause. Of course,
applicability heavily depends on application domain and profile. Data collected by tracing can vary from
megabytes to terabytes, depending on system load. Usually, some sort of sampling is done to reduce the
amount of data stored.

Unfortunately, it’s hard to measure a direct value of distributed tracing versus simple logging or
metrics, instead tracing, metrics and logging is used in conjunction under umbrella of application
observability. Moreover, as with any security tool it requires a tight integration with infrastructure
components at all layers – in other cases it’s not possible to apply any real-time security.

The approach for tracing-based security is not new, but, unfortunately, is rather rare. The main
obstacle here is the time and effort needed to be invested in applying security queries and rules, inter-
system communication, events processing. Due to the required efforts, it’s often being skipped for non-
mission critical systems but applied in healthcare and other security-critical domains.

In practice, if distributed tracing is implemented and properly enriched with additional metadata, it’s
a solution that is being used in incident investigations such as security breaches, exception analysis,
application performance issues investigations. While it doesn’t replace specialized tools like security
scanners or application profiling tools it is very good in narrowing down the scope of the given
investigation.

Conclusions

A tracing-based security approach is a very powerful tool, but it comes with a cost. Most likely, for
non-mission critical application applying such approach would be overkill due to the amount of effort
needed to build the infrastructure. At the same time, in a modern enterprise applications described
approach is efficient and powerful tool that comes virtually at no cost. The difference between use-cases
lies in an area of existing infrastructure – some form of tracing is standard to enterprises and distributed
architectures because it’s the only way how multi-team multi-project solutions can analyze their
performance in an efficient manner. Depending on the domain, such an approach may be the only
applicable one, because it allows literally to replay the sequences of events, what is not possible with other
tools.

Rich ecosystem of free and commercial tools allows to setup monitoring for every scale and quality,
from small websites to global enterprises. Tools like Zipkin and Jaeger can be configured in minutes to
provide minimal tracing information thanks to built-in collectors, storage, and instrumentation libraries. In
contrast, Enterprise APMs are costly, but they provide big amounts of application insights without any
serious development effort and are mostly a drop-in to existing applications. Their integration with tools
like Kubernetes makes things easier and even more transparent for developers.

Security events coverable by trace analysis are virtually unlimited and depend on effort applied in
identifying and/or automating the data processing pipelines, application domain and security regulations.
The article did a review of the most typical use-cases applicable to applications of small and large scale,
but at the same time there are way more use-cases not described.

86 O. Faizulin, M. Nazarkevych

Applications of mission-critical domains such as healthcare, banking, government are subject to
increased security and risks, so they are major candidates for applying described approaches. A non-
obvious benefit of replaying event sequence is beneficial for such applications even beyond the security –
for instance it can be used to investigate user interactions with their bank accounts, so support team can
decide in a support request or contradicting support cases.

Tracing based security approach doesn’t compete with other approaches, methods and means of
security but rather complements them. Yes, it can replace certain defaults like access logs, but it doesn’t
replace any of the security practices that have to be applied to applications. Developer teams are still
responsible for keeping applications with up-to-date components to prevent vulnerabilities, implementing
best practices of OWASP to prevent security breaches, use best practices to avoid vulnerabilities such as
SQL injection, XSS, CSRF, container vulnerability scanning, etc. It does not replace infrastructure capable
of protecting from DDoS attacks but can be a data source/signal for such infrastructure.

References

1. Parker, A., Spoonhower, D., Mace, J., Sigelman, B., & Isaacs, R. (2020). Distributed tracing in practice:
Instrumenting, analyzing, and debugging microservices. O’Reilly Media.

2. Gorige, D., Al-Masri, E., Kanzhelev, S., & Fattah, H. (2020, October). Privacy-risk detection in
microservices composition using distributed tracing. In 2020 IEEE Eurasia Conference on IOT, Communication and
Engineering (ECICE) (pp. 250–253). Ieee.

3. Meng, L., Ji, F., Sun, Y., & Wang, T. (2021). Detecting anomalies in microservices with execution trace
comparison. Future Generation Computer Systems, 116, 291–301.

4. Rios, J., Jha, S., & Shwartz, L. (2022, July). Localizing and explaining faults in microservices using
distributed tracing. In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD) (pp. 489–499).
IEEE.

5. Jacob, S., Qiao, Y., & Lee, B. (2021). Detecting Cyber Security Attacks against a Microservices Application
using Distributed Tracing. In ICISSP (pp. 588–595).

6. Khanahmadi, M., Shameli�Sendi, A., Jabbarifar, M., Fournier, Q., & Dagenais, M. (2023). Detection of
microservice�based software anomalies based on OpenTracing in cloud. Software: Practice and Experience, 53(8),
1681–1699.

7. Mateus-Coelho, N., Cruz-Cunha, M., & Ferreira, L. G. (2021). Security in microservices
architectures. Procedia Computer Science, 181, 1225–1236.

8. Jacob, S., Qiao, Y., Ye, Y., & Lee, B. (2022). Anomalous distributed traffic: Detecting cyber security
attacks amongst microservices using graph convolutional networks. Computers & Security, 118, 102728.

9. Chandramouli, R., & Butcher, Z. (2020). Building secure microservices-based applications using service-
mesh architecture. NIST Special Publication, 800, 204A.

10. Monteiro, D., Yu, Y., Zisman, A., & Nuseibeh, B. (2023). Adaptive observability for forensic-ready
microservice systems. IEEE Transactions on Services Computing.

11. Zhong, Z., Liu, J., Wu, D., Di, P., Sui, Y., Liu, A. X., & Lui, J. C. (2023, May). Scalable compositional
static taint analysis for sensitive data tracing on industrial micro-services. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (pp. 110–121). IEEE.

12. Waseem, M., Liang, P., Shahin, M., Di Salle, A., & Márquez, G. (2021). Design, monitoring, and testing
of microservices systems: The practitioners’ perspective. Journal of Systems and Software, 182, 111061.

13. Perdanaputra, A., & Kistijantoro, A. I. (2020, September). Transparent tracing system on grpc based
microservice applications running on kubernetes. In 2020 7th International Conference on Advance Informatics:
Concepts, Theory and Applications (ICAICTA) (pp. 1–5). IEEE.

14. Nazarkevych, M., Dmytruk, S., Hrytsyk, V., Vozna, O., Kuza, A., Shevchuk, O., ... & Sheketa, V. (2021).
Evaluation of the effectiveness of different image skeletonization methods in biometric security
systems. International Journal of Sensors Wireless Communications and Control, 11(5), 542–552.

15. Medykovskyy, M., Lipinski, P., Troyan, O., & Nazarkevych, M. (2015, September). Methods of protection
document formed from latent element located by fractals. In 2015 Xth International Scientific and Technical
Conference" Computer Sciences and Information Technologies"(CSIT) (pp. 70–72). IEEE.

Methods and means of analyzing application security via distributed tracing 87

16. Liu, P., Xu, H., Ouyang, Q., Jiao, R., Chen, Z., Zhang, S., ... & Pei, D. (2020, October). Unsupervised
detection of microservice trace anomalies through service-level deep bayesian networks. In 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE) (pp. 48–58). IEEE.

17. Berardi, D., Giallorenzo, S., Mauro, J., Melis, A., Montesi, F., & Prandini, M. (2022). Microservice
security: a systematic literature review. PeerJ Computer Science, 8, e779.

18. Gortney, M. E., Harris, P. E., Cerny, T., Al Maruf, A., Bures, M., Taibi, D., & Tisnovsky, P. (2022).
Visualizing microservice architecture in the dynamic perspective: A systematic mapping study. IEEE Access, 10,
119999-120012.

19. Luo, S., Xu, H., Lu, C., Ye, K., Xu, G., Zhang, L., ... & Xu, C. (2021, November). Characterizing
microservice dependency and performance: Alibaba trace analysis. In Proceedings of the ACM Symposium on Cloud
Computing (pp. 412–426).

20. Bai, L., & Zhang, C. (2023, May). Trace-based microservice anomaly detection through deep learning.
In Second International Conference on Electronic Information Engineering, Big Data, and Computer Technology
(EIBDCT 2023) (Vol. 12642, pp. 697–701). SPIE.

МЕТОДИ ТА ЗАСОБИ АНАЛІЗУ БЕЗПЕКИ ІНФОРМАЦІЙНИХ СИСТЕМ

ІЗ ВИКОРИСТАННЯМ РОЗПОДІЛЕНОГО ТРАСУВАННЯ

Олег Файзулін1, Марія Назаркевич2,

1, 2 Національний університет “Львівська політехніка”,
кафедра інформаційних систем та мереж, Львів, Україна,

 1 E-mail: oleh.r.faizulin@lpnu.ua, ORCID: 0000-0001-5781-0600
2 E-mail: mariia.a.nazarkevych@lpnu.ua, ORCID: 0000-0002-6528-9867

© Файзулін О, Назаркевич М., 2024

Стаття описує методи та засоби цифрової безпеки, що використовують розподілене
трасування для виявлення, розслідування та запобігання інцидентам. Описані методи та
засоби застосовуються до рішень будь-якого масштабу – від великих підприємств до
невеликих проектів; будь-якої галузі – охорона здоров’я, банківська справа, урядові
установи, роздрібна торгівля тощо. У статті застосовується комплексний підхід до вирі-
шення питань цифрової безпеки, охоплюються процеси ідентифікації, оповіщення,
запобігання, розслідування та аудиту наявних інцидентів. Описані підходи до безпеки
програмного забезпечення через трасування фокусуються на інформаційних систем
загального призначення, проте їх можна адаптувати для специфічних галузевих випадків.
Усі підходи випробувані у виробництві в умовах і використовуються в існуючих розпо-
ділених ІТ-системах тим чи іншим чином, однак деякі приклади та випадки викорис-
тання навмисно спрощені для демонстраційних цілей та простоти розуміння. Однак слід
зауважити, що методи та засоби, описані в статті, доповнюють існуючі практики безпеки і
не можуть повністю їх замінити, проте можуть покращити загальну безпеку системи,
скорочуючи час виявлення інцидентів, зменшуючи ресурси та зусилля, необхідні для
розслідування порушень або проходження аудиту безпеки.

Ключові слова: Безпека, розподілене трасування, аналіз поведінки, оповіщення,
автоматичне масштабування, розподілені ІТ-системи, метрики, логування, спостережу-
ваність, управління продуктивністю програм, аудит.

