INFORMATION SYSTEMSAND NETWORKS

Issue 16, 2024

UDK 004.6

GNN IMPLEMENTATION APPROACHESIN AWSCLOUD
FOR RISK ASSESSMENT IN THE INSURANCE AREA

Oleksandr Lutsenko?, Serhii Shcherbak?

L2 viv Polytechnic National University,
Information Systems and Networks Department, Lviv, Ukraine
LE-mail: Oleksandr.V.Lutsenko@Ipnu.ua, ORCID: 0009-0008-7644-6056
2E-mail: serhii.s.shcherbak@Ipnu.ua, ORCID: 0000-0003-2914-2101

© Lutsenko O., Shcherbak S, 2024

This article analyzes three most common appr oaches to the GNN ar chitecture implementation on
the AWS cloud for the use case of therisk assessment in theinsurance area. The paper is split to several
chapters, with the first one being the overview of 3 approachesto the GNN architecture, the second one
describing prerequisitesfor the implementation, and finally development of the approaches on the cloud
infrastructure, testing them on graph insurance data and comparison of all the approaches to select the
most suitablefor therisk assessment task.

The initial chapter introduces the three architectural approaches to GNN implementation being
respectively Graph Convolutional Network (GCN), Graph Attention Network (GAT) and GraphSAGE
(Graph Sample And AGgregatE). To conclude the chapter, it is decided to proceed with the further
implementation of all three models on the AWS infrastructure and analyze the outputs on the same
graph datato select the best suit for therisk assessment use case.

Then the article proceeds with considering the specifics of a realization of risk assessment in
insurance on top of cloud infrastructure and preparing the data to use it for the GNN training and
testing. After the analysis of the use case, it is decided to focus on only on the individuals' insurance. The
main goal isto analyze the unique properties of every human which can affect therisk of insuring them
aswell astheir connectionswith other individuals.

Further along, the development of all three approaches for risk assessment solution is described
with first being GCN, then GAT and finally GraphSage. The models are then trained, tested and the
output analysis is performed. Considering the analysis results, GAT and GraphSage provide the most
correct results maintaining the test accuracy. However, considering modd statistics, it is found that
GraphSage has more distinct probabilities and additional insights through feature importance analysis
which makesit the best fit for therisk assessment use case.

The article concludes by stating that out of all three analyzed ar chitectures the most suitable for
therisk assessment task isthe GraphSAGE with a dlight difference between thismodel and GAT, which
will be used for further analysis and improvements. Furthermore, the article mentions a few steps for
the potential future improvements of the models, which include using class weights or oversampling
techniques to ensure the best performance, also mentioning the experiments that can be done with
deeper architectures or different GNN layers. The last but not the least would be to focus on the testing
and training on the larger dataset to make it more applicable for real-world applications.

Keywords. Graph Convolutional Networks (GCN), Graph Attention Networks (GAT),
GraphSAGE (Sample and aggreGatE), Graph, Graph Neural Network (GNN), Underwriting,
Insurance, Risk Assessment.

Introduction

Risk assessment in the insurance industry plays a pivotal role in determining premiums, managing
exposure, and ensuring the financial stability of insurance companies. Accurate risk evaluation allows

252 O. Lutsenko, S. Shcherbak

insurers to make valuable decisions about policy issuance, pricing, and claim management. As the
insurance landscape becomes increasingly complex, with interconnected risk factors and evolving societal
trends, traditional methods of risk assessment are often found unsuitable from the performance standpoint.
This has led to a growing interest in more sophisticated, data-driven approaches that can capture nuanced
relationships between various risk factors and predict potential outcomes with greater accuracy.

In recent years, the insurance industry has recognized that risk factors are rarely isolated; instead,
they form complex networks of interrelated variables. For instance, an individual’s health risk might be
influenced not only by their personal habits but also by their family history, social connections, and
environmental factors. This realization has prompted insurers to view their data not as mere collections of
individual records, but as interconnected graphs where nodes represent entities (such as policyholders), and
edges represent relationships or shared attributes between these entities.

Graph Neural Networks (GNNs) are a powerful tool for analyzing and extracting insights from such
graph-structured data. By leveraging the inherent structure of graphs, GNNs can capture complex
dependencies and propagate information across the network, enabling more accurate predictions and risk
assessments. This approach is particularly well-suited to the insurance domain, where understanding the
connections between various risk factors is crucial both for accurate underwriting and claims prediction.

In this article, three prominent GNN architectures are analyzed — Graph Convolutional Networks
(GCNSs), Graph Attention Networks (GATS), and GraphSAGE. The focus is also shifted to their application
to risk assessment in insurance. Each of these approaches offers unique strengths in processing graph-
structured data, from GCN’s efficient neighborhood aggregation to GAT’s attention mechanism and
GraphSAGE’s inductive learning capabilities. By comparing these architectures, aim is to provide insights
into their relative performance and suitability for insurance risk assessment tasks, especially in the cloud
infrastructure considering the tendency of ever-growing datasets and the ability of the cloud systems to
handle such volumes at ease.

The analysis delves into the theoretical foundations of each architecture, their implementation details
selecting the appropriate tools on the cloud, definite framework for the implementation, and analysis of the
results after training and testing the models on a representative insurance dataset. Each model capturing
and utilizing of the graph structure of insurance data, their ability to handle heterogeneous risk factors, and
their performance in predicting high-risk cases is being analyzed. Additionally, the interpretability of these
models is discussed, with it being a crucial factor in the highly regulated insurance industry where
decisions often need to be explained and justified.

Through this comprehensive examination, it is sought to shed light on the potential of GNNs to
revolutionize risk assessment in insurance. By using the power of graph-structured data, especially in the
cloud environment to handle big data volumes and advanced neural network architectures for better scaling
and infrastructural easiness, insurers can gain deeper insights into risk factors, improve the accuracy of
their assessments, and ultimately offer more personalized and fair insurance products. Navigating through
the individual characteristics of GCN, GAT, and GraphSAGE, the aim is to provide valuable insights for
both researchers and practitioners in the insurance industry, paving the way for more sophisticated and
effective risk assessment methodologies.

Formulation of the problem

In the realm of insurance, accurately assessing risk is inevitable for setting premiums and managing
claims effectively. The risk assessment is the complex process required to understand if the certain
individual or a company can be insured without losses for the insurance provider. As can be seen on Fig. 1,
the calculation of the risk may take a lot of time and depends on a huge number of factors in the data which
are intertangled among themselves.

GNN implementation approachesin aws cloud for risk assessment in the insurance area 253

Data on different storage layers

Data Layer 1 Data Layer 2 Data Layer 3

Data Preparation

Data Cleaning Data Transformation

Risk Calculation

Statistical Analysis Market Modeling

Resulting Risk

Risk Assessment Risk Mitigation

Fig. 1. The general description of the risk assessment process

One of the approaches to represent the data with a lot of the different connections such as insurer
and the insured person in our use case is a graph representation. This approach focuses not only on the
individual features of every data node such as the insured health state, bad habits etc., but even more on the
connections between different people such as co-living or family relationships providing a more detailed
look and the whole picture instead of nitpicking just one individual. These factors may impact the risk of
insuring a certain individual, for example, if they live in the very dangerous area, the risk of health
insurance will be higher.

There are various ways of calculation of the risk, with most common being complex algorithms and
neural networks. The focus of the article is to analyze the potential benefit of using neural networks for the
risk assessment. By leveraging the interconnected nature of client data, such as historical claims,
policyholder interactions, and network relationships, presented in the graph structure, one of the methods
that this article proposes to use for its analysis is GNN. GNNs can provide a more nuanced understanding
of risk factors as it can be presented on Fig. 2, which is the more detailed view on part of the whole risk
assessment process on the Fig. 1.

Data Preparation

Data Presentation in

the Graph Format Data Transformation

h J

Risk Calculation

Model usage for risk
assessment

GNN Model Creation Model training

Fig. 2. The GNN usage in the insurance risk assessment process

254 O. Lutsenko, S. Shcherbak

Analysis of recent research and publications

Common Approachesto GNN Architecturein the context of risk assessment

The insurance area handles huge volumes of interconnected data such as information about the
policyholders, potential insurers, companies and their intermediaries, etc. Especially it can be stated that in
the process of underwriting and risk assessment a lot of the data is used for the analysis to predict the risk
of the potential insurance of the new customer. The main reasons for that include the insurance company
not wanting to lose money after insuring someone who has the risk of either tricking the insurance
company for money or just happens to have factors that may impact individual’s health, for example.
Besides several individual factors that should be considered during the process of the risk assessment, the
connections between individuals, their affiliations with companies, the family relationships with potentially
dangerous individuals and even some non-obvious connections with already insured individuals [1].

Considering this intertangled structure of the data required for the risk assessment of insuring the
individual, the most optimal storage for this particular task should be the graph structure. There are several
ways to analyze the data in the graphs being respectively complex algorithms or using neural networks.
The best suit of all neural networks designed specifically for the graph structures is the Graph Neural
Networks (GNN). However, there are a few different GNN architectures, so it is necessary to choose the
best one for the risk assessment task. The choice of GNN architecture can significantly impact the model’s
ability to capture relevant patterns that are necessary to make a decision on the risk impact of insuring a
certain individual in the data, handle different types of graph structures (individual relationships,
connections between companies etc.), and generalize to unseen data. Understanding the strengths and
limitations of different GNN approaches allows to make informed decisions, balancing factors such as
computational efficiency, interpretability, considering the specific requirements of the risk assessment task
in the insurance underwriting process.

There are three main architectural designs of the GNN: Graph Convolutional Networks (GCN),
Graph Attention Networks (GAT), GraphSAGE (Sample and aggreGatE) [2].

GCNs apply convolutional operations to graph-structured data. They aggregate information from a
node’s neighbors using a spectral convolution approach. GCNs use a simple weighted sum of neighbor
features, typically with weight sharing across edges. They’re efficient and work well for many tasks but
may struggle with heterogeneous graphs or when node ordering is important.

GATSs introduce attention mechanisms to GNNs. Instead of treating all neighbors equally, GATs
learn to assign different importance to different neighbors when aggregating information. This allows the
model to focus on the most relevant neighbors for each node. GATs can handle both homogeneous and
heterogeneous graphs and are particularly effective when the importance of node relationships varies.

GraphSAGE (SAmple and aggreGatE) is an inductive framework for node embedding. It learns a
function to generate embeddings by sampling and aggregating features from a node’s local neighborhood.
GraphSAGE can use various aggregator functions (mean, max, LSTM, etc.) and is particularly useful for
large graphs as it can generalize to unseen nodes. It’s efficient and scalable, making it suitable for dynamic
or evolving graphs.

GCN approach in scope of risk assessment task

GCNs are a class of GNN designed to operate on graph-structured data. GCNs generalize the
concept of convolution from grid-like data (e.g., images) to irregular graph structures. In the context of risk
assessment in the insurance sector, irregular graph structures could arise from various complexities and
anomalies in the data. For instance, highly interconnected nodes representing clients with multiple policies
or frequent claims could form dense clusters, while isolated nodes might represent clients with minimal
interaction or claims history. Additionally, irregularities might occur due to missing data or inconsistent
reporting of client interactions and transactions, leading to incomplete edges or nodes with sparse

GNN implementation approachesin aws cloud for risk assessment in the insurance area 255

attributes. Such irregularities can challenge the model’s ability to accurately learn and generalize the
underlying patterns, potentially impacting the effectiveness of the risk assessment.

In GCN the first step of the application is the neighborhood aggregation: GCNs update node
representations by aggregating information from their immediate neighbors, for example, in our case it will
be immediate neighbors of the individuals living in the same address or first line relatives such as parents
and children. After that Layer-wise Propagation is applied: Information is propagated through the graph in
multiple layers, allowing nodes to incorporate information from higher-order neighborhoods.

It is also worth mentioning that GCNs are often motivated by spectral graph theory, although
practical implementations use spatial approaches [2].

GCN can be described mathematically in the following way

Let G = (V, E) be a graph with nodes v in V and edges (v, w) in E. Each node has a feature vector x.
The GCN layer can be described as follows:

Graph Convolution Operation:

(+1) _ 1 DD
hy " =0 (ZuEN(V)U{V}mW()hu) (1)

where:

J hf,”l)is the feature vector of node v at layer |

e N (v) is the set of neighbors of node v

e WO s the learnable weight matrix at layer |

e o isanon-linear activation function (e.g., ReLU)
Matrix Form:

HHD =6 (D_%AD_%H(”W(’)), (2)
where:
- A = A + I is the adjacency matrix with self-loops
- D is the degree matrix of A
— H® js the matrix of node features at layer |
To address numerical instabilities and exploding/vanishing gradients, Kipf and Welling proposed a
renormalization trick to replace the normalized adjacency matrix with the augmented normalized adjacency
matrix [4]:
HWY = 6(AHVW W), (3)

R 1.1
where A = D 24D 2

GCNs have proven to be highly effective in diverse applications such as node classification, link
prediction, and graph classification within various domains, showcasing their adaptability and efficiency in
handling graph-structured data. In the context of risk assessment in the insurance sector, the advantages of
GCNs include their ability to efficiently propagate information across the graph, capture local graph
structures, and implement parameter sharing across the graph, which enhances model generalization. These
features are particularly beneficial for understanding and predicting risk based on the complex
interrelations of policyholder data.

However, there are certain limitations associated with GCNs that can impact their performance in
risk assessment tasks. These include challenges in capturing long-range dependencies within large and
complex insurance networks, difficulties in dealing with heterogeneous graphs that contain diverse types of
nodes and edges, and a fixed aggregation scheme that may not be ideally suited for all types of risk
assessment scenarios. These limitations necessitate careful consideration and potential adaptations of the
GCN approach to ensure optimal performance in specific risk assessment applications within the insurance
industry.

256 O. Lutsenko, S. Shcherbak

GAT approach in scope of risk assessment task

On the other hand, one of the most used GNN architectures is GAT. It is a sophisticated class of
Graph Neural Networks that introduce attention mechanisms to graph-structured data processing. GATs
address some limitations of GCNs by allowing nodes to attend differently to their neighbors, enabling
more flexible and adaptive feature aggregation. For the risk assessment it may mean that for risk of
insuring a certain individual some of the relatives have more impact on the final risk then others. Another
example of the attention to certain neighbors may be in analysis of the area where the person lives with
specific attention to certain factors such as crime rate in the zone or connected individuals with crime
records paying less attention to others that may have less impact as number of homeless cats in the region.

It is done by using attention mechanism: GATs compute attention coefficients for each neighbor,
allowing the model to focus on the most relevant nodes [5]. Multiple independent attention mechanisms
are employed to stabilize the learning process and enrich the model’s expressive power. It is also important
that nodes can attend to themselves, incorporating self-information in the update process, this possibility is
called self-attention.

Considering previously described setup and prerequisites, attention mechanism can be described in
the following way:

The attention coefficient e,,, between nodes v and w is computed as:

eyw = a(Wh,,Wh,,) , 4)
where:
e W is a learnable weight matrix
e ais asingle-layer feedforward neural network
e h, and h,, are the feature vectors of nodes v and w
The attention coefficients are normalized using softmax [6]:
exp(eyw) (5)

Cow = SOftmaXW (evw) - ZuEN(v) exp(ep)’

where IV (v) is the neighborhood of node v.
On the step of feature aggregation, the updated feature vector for node v is computed as:

h1,7 = G(ZWEN(U) avwth)a (6)

where o is a non-linear activation function (e.g., ELU).

In the realm of risk assessment, Graph Attention Networks (GATS) offer significant advantages due
to their adaptive feature aggregation, which prioritizes the influence of neighboring nodes based on their
relevance. This capability is particularly useful in insurance where nodes (e.g., policyholders) have varying
degrees of connectivity reflecting their different risk profiles. Additionally, GATs enhance model
interpretability through attention weights, providing insights into the decision-making process by
highlighting influential relationships. Their effectiveness in both transductive (learning from the entire
graph) and inductive (generalizing to unseen parts of the graph) learning tasks makes them versatile tools
for assessing risks in dynamic insurance environments.

However, GATSs also present certain challenges in the context of risk assessment. Their increased
computational complexity can be a drawback compared to simpler models like GCNs, particularly when
rapid processing of data is required. There is also a heightened risk of overfitting when training on smaller
graphs, which can lead to less reliable risk predictions. Moreover, handling very large graphs can be
problematic due to memory constraints, potentially limiting their applicability in scenarios with extensive
data networks.

GNN implementation approachesin aws cloud for risk assessment in the insurance area 257

GraphSAGE approach in scope of risk assessment task

GraphSAGE (Graph SAmple and aggreGatE) is an inductive framework for computing node
embeddings that learns to generate embeddings by sampling and aggregating features from a node’s local
neighborhood. It’s designed to be highly scalable and can generalize to unseen nodes, making it
particularly suitable for large or dynamic graphs. For example, it could include temporal changes in the
insured individual’s connections or the individuals in highly populated areas to be able to analyze not all of
the nodes, but finding the most important ones. Instead of using the entire neighborhood, GraphSAGE
samples a fixed-size set of neighbors for each node. This process is called neighborhood sampling. After
that the algorithm learns a set of aggregator functions that collect information from a node’s local
neighborhood. On the latest step GraphSAGE can generate embeddings for nodes that were not present
during training [7].

Considering the graph representation, introduced in a previous paragraph, we can describe the SAGE
in the following way.

For each node v, sample a set of neighbors V' (v) up to a maximum size S.

The general form of the GraphSAGE layer is:

Rk = (Wk - CONCAT (Rl AGGy ({h ™", vu € N(v)}))) , @)

e h¥ is the hidden state of node v at layer k

e WK is the weight matrix for layer k

e AGG;, is the aggregator function for layer k

e o isanon-linear activation function

GraphSAGE proposes several aggregator functions, among which the commonly used are:
Mean Aggregator:

1 —
AGGmean = |N(1])| ZuEN(U) h‘l’i ! ' (8)
And Max-pooling Aggregator:

AGGy,x = max({o(Wpoohl™ + b),Yu € N (v)}) (9)

The final representation for node v is:

zy = hif /1M 2 (10)

where K is the number of layers in the GraphSAGE model.
GraphSAGE can be trained using various loss functions depending on the task. For unsupervised
learning, it often uses a graph-based loss:

£ =—log(0(z52.)) = Q - Evy~py) [l0g (0(~28 2,))] (11)

where u is a neighbor of v, v, is a negative sample, and Q is the number of negative samples.

In the insurance risk assessment context, GraphSAGE offers notable advantages that make it well-
suited for analyzing large and complex datasets typical in this industry. Its high scalability is achieved
through neighborhood sampling, allowing it to efficiently handle large graphs that represent extensive
policyholder networks. Additionally, GraphSAGE’s ability to generate embeddings for unseen nodes
through its inductive capabilities is particularly valuable for assessing risks associated with new clients or
emerging risk factors. The flexibility in choosing aggregator functions, such as sum or average, further
enhances its adaptability to various data structures, making it effective for both transductive and inductive
tasks.

However, there are inherent challenges with the GraphSAGE approach when applied to insurance
risk assessment. The method’s reliance on fixed-size neighborhood sampling can result in the loss of

258 O. Lutsenko, S. Shcherbak

critical information, especially in densely connected regions of the graph where nuanced relationships
might indicate elevated risks. The performance of GraphSAGE is also sensitive to the choice of aggregator
function, which can significantly influence the accuracy of risk predictions. Moreover, its focus on local
sampling may hinder the model’s ability to capture global graph structures, potentially overlooking broader
risk patterns that emerge across the entire network.

Despite these limitations, GraphSAGE has demonstrated robust performance in various graph-based
tasks such as node classification, link prediction, and graph classification. It excels particularly in scenarios
that involve large-scale or dynamically changing graphs, where the ability to generalize from known to
unknown data is crucial. This makes GraphSAGE a promising tool for evolving risk assessment models in
the insurance sector, where the landscape of risk factors continuously shifts and expands.

Conclusion on the approachesto the GNN implementation

To compare the suitability of different architectural approaches to the specific risk assessment use
case in the insurance, the GNN can be implemented using several methods, each varying in complexity and
optimization within the cloud infrastructure. By comparing the results through testing and analyzing model
output statistics, the performance, accuracy, and efficiency of each approach can be evaluated. This
comparative analysis involves assessing the speed of convergence, the robustness of the model under
different data conditions, and the scalability handling large datasets. Additionally, the impact of different
hyperparameters, activation functions, and layer structures can be explored to fine-tune the models for
optimal performance. Ultimately, this systematic evaluation helps in identifying the most effective GNN
architecture for risk assessment in the insurance, ensuring that the chosen model not only predicts
accurately but also integrates seamlessly with existing systems and scales effectively as data volume
grows.

Goal formulation and task setting

The primary goal of this article is to conduct a comparative analysis of different GNN
implementations for the risk assessment task in the insurance area deployed on the cloud environment.
Being more specific, the objective is to evaluate and compare the performance of three distinct GNN
architectures: Graph Convolutional Network (GCN), Graph Attention Network (GAT), and GraphSAGE.
The comparison will focus on key metrics such as model output statistics, precision, and test accuracy to
determine which implementation offers the most effective solution for enhancing risk assessment processes
in the insurance sector. Considering the huge volumes of the data in the insurance sector and the
complexity of the analysis in order to calculate the proper risks for certain individuals, the data should be
deployed to a cloud infrastructure which can easily handle such tasks. The simplified architecture of the
risk assessment task on a cloud infrastructure may look as following (Fig. 3).

As we can see from the diagram above, to achieve the formulated goal, the project can be divided
into several structured tasks: firstly, collection and preprocessing the necessary data that will be used to
train and test the GNN models should happen. This will allow to use the generalized data for every GNN,
reducing the risk of bias in favor of one of the architectures. The next step is decision on the appropriate
tools on the cloud for the graph data storage considering the specifics of the individual’s data required for
the risk assessment task, GNN development, training and finally processing of the data. The next step is
the development of different GNN approaches which can solve the risk assessment problem and give the
result as either the risk number or binary classification problem (e.g. risky/not risky). Each of the three
models is then deployed, trained and tested on the cloud, utilizing appropriate computational resources and
monitoring for performance and efficiency. Having done this, each model can be evaluated based on model
output statistics, precision, and test accuracy. This involves running the models on a test dataset and
capturing relevant metrics to assess performance for the risk assessment on the prepared graph where we
definitely know which of the individuals are risky to insure.

GNN implementation approachesin aws cloud for risk assessment in the insurance area 259

|
Individuals data
in the lake

l

Aggregate and Transform

|
Graph Data Storage

Assessed risk of the
individual

Machine Learning on top of graph

Fig. 3. Therisk assessment task on a cloud infrastructure

Finally, comparative analysis should be conducted to confront the results obtained from each GNN
architecture implementation to find the strengths and weaknesses of each model for risk assessment of the
individual during underwriting process in the insurance area and then document them.

Presenting main material

Theinsurance data prepar ation and presentation for the risk assessment

In the realm of machine learning, particularly when dealing with GNNs, the quality and structure of
the data used for training and testing are pivotal to the success of the model. For our project, which
involves comparing different GNN implementations for risk assessment in the insurance sector using AWS
cloud, we will utilize a specifically structured graph. This graph will encapsulate relevant features and
relationships pertinent to insurance data, such as policyholder details, claim histories, and network
interactions among clients.

The preparation of the correct data is crucial because GNNs leverage the relational information
between nodes (data points) to generate predictions or classifications. A well-prepared graph ensures that
the model can effectively learn and generalize from the interconnected nature of the data, rather than just
individual data points in isolation [8]. This is particularly important in risk assessment, where the
relationships and interactions between different entities can significantly influence risk profiles. By
meticulously structuring and curating the graph, we aim to provide a resilient dataset that will allow the
GNN models — GCN, GAT, and GraphSAGE - to accurately learn and predict risk, thereby enhancing the
precision and reliability of the risk assessment process. This structured approach to data preparation not
only aids in achieving high accuracy and performance but also ensures that the models are trained on data
that closely mimics real-world scenarios, thus enhancing their applicability and effectiveness in practical
settings.

260 O. Lutsenko, S. Shcherbak

To have appropriate use of the graph representation, individuals or companies can be used for the
nodes of the graph. The nodes are then connected based on relationships (e.g., family members, business
partnerships, shared demographics). To solve the binary classification task, which will be used as a
simplification of the risk assessment, we have to rely on the node features, which include relevant
attributes such as: age, health condition, income, social security, occupation, lifestyle habits for individuals
and industry, size, revenue, number of employees, financial health indicators for companies.

For the specific use case, it has been decided to use the graph, which represents the individual
wanting to insure his health, with the following setup: each node in our graph represents an individual.
These nodes contain various attributes such as age, health status, lifestyle habits (e.g., smoking), and
regular medical check-up information. The edges in the graph represent relationships between individuals.
These could include family ties, shared living spaces (same zipcode), or other relevant connections that
might influence health risks.

The simplified graph for the training of the model can be presented as such [Fig.4].

farnily zipcode zipcode

Zipcode

zipcode zipcode

family

Fig. 4. The graph representation of the underwriting process

This graph represents a network of individuals and their relationships, focusing on health-related
attributes and connections.

The graph consists of six nodes, each representing a person (pl to p6). Each node has the following
attributes:

e Unique identifier (id)

e Zipcode

e Regular checkups (boolean)

e Smoking status (boolean)

o Health status (categorical: good or poor)

e Node characteristics include:

e Four people (p1, p2, p3, p5) have good health, regular checkups, and don’t smoke.

e One person (p4) has poor health, doesn’t have regular checkups, and smokes.

o Five people (pl, p2, p3, p4) share the zipcode ‘12345’.

e Two people (p5, p6) share a different zipcode ‘67890°.

The graph has nine edges representing two types of relationships: same zipcode and family
relationship with 7 and 2 edges of two types respectively.

GNN implementation approachesin aws cloud for risk assessment in the insurance area 261

The important features that should be considered during the training process of the model: the graph
shows two distinct communities based on zipcodes (12345 and 67890). There are family connections
between the two zipcode communities. The person with poor health (p4) is connected to three people with
good health in the same zipcode. All individuals except one have good health practices (regular checkups,
non-smoking).

This graph structure allows for analyzing how health attributes and behaviors might be influenced by
geographical proximity (same zipcode) and family relationships, which could be valuable for health risk
assessment and understanding the spread of health-related behaviors within communities.

To prepare our data for use in a Graph Neural Network model, we need to transform it into an
appropriate graph structure. This process involves several key steps:

e Node Feature Extraction: Convert individual attributes into a consistent feature vector for each

node.

e Edge List Creation: Define the connections between individuals based on available relationship

data.

e Adjacency Matrix Construction; Generate an adjacency matrix representing the graph structure.

e Feature Normalization: Normalize node features to ensure consistent scale across different

attributes.

e Encoding Categorical Variables: Convert categorical data (like health status) into numerical

representations.

e Handling Missing Data: Implement strategies to deal with any missing information in node

features or relationships.

By carefully preprocessing our data into this graph structure, a rich representation can be created that
captures both individual characteristics and network effects. This approach allows the GNN model to
leverage both personal attributes and relational information in assessing health risks, potentially leading to
more nuanced and accurate predictions.

Specifics of realization of risk assessment in insurance on top of cloud infrastructure

Having defined and preprocessed the graph, which can be used for the GNN development, the next
step is to describe the specifics of the solution of the problem on the cloud infrastructure for proper
processing of huge volumes of the interconnected insurance data. In our case the models will be deployed
to AWS cloud, so the focus is shifted to the tools available there. However, it is worth noting that similar
tools can be found on all major cloud providers such as Microsoft Azure and Google Cloud, the AWS was
chosen only due to pricing and the prior knowledge. It is crucial to analyze the data properly and have the
scalable and optimizable solution which can be used for the more complex risk assessment tasks on the
real-world insurance data not only for the individuals but for the whole neighborhoods or even companies.

Amazon Neptune is the AWS service for graph storage and querying [9]. Employing Amazon
Neptune for graph management and storage is particularly relevant for several reasons in the scenario of
the risk assessment analytics in the insurance:

o Purpose-Built for Graphs: The service is specifically engineered as a high-performance graph
database, ideal for efficiently managing and querying interconnected data, which is essential for
the graph-structured data used in GNN application.

o Scalability: Neptune can manage billions of relationships and supports scaling to accommodate
graph applications that require high query volumes. This feature is vital for handling large graphs
or multiple graph instances.

o Gremlin Compatibility: The platform supports the Gremlin graph traversal language, which can
be utilized in the code for the easy and reliable interaction with the graphs. This compatibility
facilitates complex graph queries and traversals that might be too complex or less efficient in
non-graph databases.

262 O. Lutsenko, S. Shcherbak

e AWS Ecosystem Integration: As part of the AWS suite, Neptune seamlessly integrates with other
AWS services, enhancing the deployment of GNN models in the cloud, streamlining security
measures, and managing data workflows.

e ACID Compliance: Neptune maintains data integrity through ACID compliance, ensuring the
precision and reliability of the graph data.

e Optimized Performance: The database is optimized for graph-related operations, offering rapid
query responses, even for complex queries on several connections typical in graph analysis.

e Managed Service: As a fully managed service, Neptune handles the burden of database
management, allowing to concentrate on developing the GNN application.

In the specific context, most important features of Neptune for the underwriting include facilitating
efficient storage and querying of graph structures (vertices and edges) along with their attributes. This
capability is crucial for constructing node features, edge indices, and edge attributes necessary for creating
PyTorch Geometric Data object.

Utilizing Neptune allows to decouple graph storage and querying from GNN processing, enabling
independent scalability of each component. It also lays a solid foundation for application growth, such as
managing larger graphs or integrating more complex graph operations in data preprocessing or feature
engineering.

The next crucial tool to select is the framework which can be used for the GNN implementation and
training. There are two main options: PyTorch PyG and Deep Graph Library (DGL).

By comparing the two tools for the specific use case and scenario of the risk assessment, the PyG
has been chosen as the main tool to implement the GNN due to several reasons:

e PyTorch Integration: PyG is built specifically for PyTorch, ensuring seamless integration with
PyTorch’s ecosystem. This allows for easy use of PyTorch’s optimization, loss functions, and
other utilities.

o Simplicity and Intuitiveness: PyG offers a more straightforward and intuitive API for defining
GNN models, especially for those already familiar with PyTorch. This can lead to cleaner, more
readable code.

o Performance: PyG is known for its efficient implementation of graph operations, often providing
better performance than DGL, especially for smaller to medium-sized graphs.

e Sparse Tensor Support: PyG has better support for sparse tensor operations, which are crucial for
efficient processing of large, sparse graphs.

e Message Passing APl: PyG’s message passing API is more flexible and easier to customize,
allowing for more control over the specifics of how information is propagated through the graph.

e Community and Ecosystem: PyG has a large and active community, resulting in extensive
documentation, tutorials, and a wide range of pre-implemented GNN models and layers.

o Scalability: While DGL might have an edge for extremely large graphs, PyG’s performance is
more than sufficient for most practical applications, including our use case.

While DGL is also a powerful library with its own strengths, particularly in handling very large
graphs and supporting multiple deep learning frameworks, PyG’s tight integration with PyTorch, intuitive
API, and efficiency for the scale of a problem made it the preferred choice for this implementation.

The next step in selecting the appropriate tool for the deployment part of the trained model to test
and use for the risk assessment of graphs of different sizes.

This tool on the AWS cloud is Amazon SageMaker as it offers several advantages, among which the
main ones are the following: managed infrastructure: SageMaker handles the complexities of provisioning
and managing the infrastructure for model deployment. The important feature is automatic scalability of
the number of instances based on traffic, ensuring good performance under varying loads. Furthermore, the
Sagemaker is easily integrated into AWS Ecosystem: for services like Neptune, Lambda, and CloudWatch to
implement a complete solution with the API, logging and monitoring system. Another important feature is
built-in security like encryption at rest and in transit, IAM roles for access control, and VPC support [10].

GNN implementation approachesin aws cloud for risk assessment in the insurance area 263

Last but not the least feature is support for custom containers by allowing deployment of models
with custom dependencies like PyTorch Geometric in the case of an application with GNN usage.

By using SageMaker for deployment, the focus can be shifted from management of the
infrastructure to improving the GNN model and application logic, while leveraging AWS’s expertise in
scalable, secure, and efficient model serving. This approach aligns well with the use of Amazon Neptune
for graph storage, creating a cohesive, fully managed graph-based machine learning solution within the
AWS ecosystem.

Development of GCN model designed for risk assessment task

Having designed the graph for training and testing of the model and selected the tools for the
implementation, the next logical step is the development of the model itself. There are several GNN
architectures, which can be used for the solution of the task. To select the best option for the specific risk
assessment use case, it has been decided to solve the binary classification task (risky/non-risky) and the
prediction task (number from 0 to 1, which predicts the risk of insuring the individual with 1 being very
risky and 0 being not risky at all) by three most common approaches of the GNN architectures and then
compare the results of the execution with one another to find out the most suitable option.

The core idea of GNNs is to update node representations by aggregating information from their
neighbors. To implement the GCN, GCNConv layers can be used in the Pytorch, simplifying the
aggregation step to:

H*1 = o(AH'WY), (12)
where:

e H'is the node feature matrix at layer |

e A =D (A+1) D is the normalized adjacency matrix with self-loops

e Ais the adjacency matrix

e D is the degree matrix

o | is the identity matrix

o WO is the learnable weight matrix at layer |

e o is the activation function (ReLU in our case)

The model consists of two GCN layers:

H® = ReLU(A X W®)
H@ = A HO W@
where:

e X s the input feature matrix

e H® js the hidden representation

e H® is the output before softmax.

To optimize the model and adapt the learning rate for every parameter, the optimization function has
to be used. Mainly used with GNN is Adam optimizer [11]:

gt — g(t-1) _ % (13)
where:
e Ot isthe parameter at time t
e 7 isthe learning rate
e ! is the first moment estimate
e Dt is the second moment estimate

e ¢ is asmall constant for numerical stability

264 O. Lutsenko, S. Shcherbak

Evaluation Metric: For binary classification (risky to insure the individual or non-risky), we can use

accuracy:
__ TP+TN

Acc = — (14)

where:
e Acc — Accuracy
e TP - True Positives
e TN - True Negatives
e T - Total Samples
The definition of the GCN model designed for risk assessment and its forward function in PyTorch
will look like this:
class RiskAssessmentGNN(torch.nn.Module):
def __init__ (self, num_node_features, hidden_channels):
super(RiskAssessmentGNN, self). _init_ ()
self.convl = GCNConv(num_node_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, 2) # 2 classes: low risk and high risk
def forward(self, x, edge_index, edge_attr):
x = self.convl(x, edge_index)
x = F.relu(x)
X = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)

Development of GAT model designed for risk assessment task

The next GNN architecture considered for the development and further comparison is Graph
Attention Network (GAT). The approach is described using the previously defined formulas without
repeating the same information, introducing only the changes that are different for the two approaches.

The key difference between GAT and GCN lies in how they aggregate information from
neighboring nodes. While GCN uses a fixed weighting scheme based on the graph structure, GAT
introduces an attention mechanism that allows for dynamic, adaptive weighting of neighbor information.

In contrast with GCN we can define the GAT update rule as following:

7 1 3
[hl =0 (W ZjENi \/d—l—d] hj)], (15)
where d; and d; are the degrees of nodes i and j.
Key Differences between the two include adaptive weighting and multi-head attention. The first one

can be explained as such:

GAT: a;; is learned and can be different for each edge.

GCN: Uses fixed weighting =

The second one is often employed by the GAT.
GAT often employs multi-head attention [12]:
7] = o (2 2Kt Zjew, als WER))], (16)
where K is the number of attention heads.
It is also important to note that GAT includes self-loops implicitly in the attention mechanism while
GCN needs to explicitly add self-loops to the graph.
In summary, GAT’s key innovation is the introduction of the attention mechanism «;;, which allows

the model to assign different importance to different neighbors, potentially capturing more complex
patterns.

GNN implementation approachesin aws cloud for risk assessment in the insurance area 265

Considering the information above, we can define the model and its forward function in Pytorch:
class SimpleGATModel(torch.nn.Module):
def __init__ (self, num_features, num_classes):
super(SimpleGATModel, self).__init_ ()
self.convl = GATConv(num_features, 16, heads=8, dropout=0.6)
self.conv2 = GATConv(16*8, num_classes, heads=1, concat=False, dropout=0.6)
def forward(self, x, edge_index):
x = F.dropout(x, p=0.6, training=self.training)
x = F.elu(self.convl(x, edge_index))
x = F.dropout(x, p=0.6, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)

Development of GraphSAGE model designed for risk assessment task

GraphSAGE has sampling-based approach to the message passing whereas GCN and GAT
use all neighbors for each node:
[V (v) = sample(neighbors(v), S)], @an
where S is a fixed sample size.
Besides that, SAGE also has flexible aggregation functions in comparison to the fixed
weighted sum of GCN and attention-weighted sum of GAT:

o (Wk - CONCAT (h,’g-l,AGGk({h{j-l, Yu € N(v)})))], (18)

where AGG,, can be mean, max-pooling, LSTM, or other appropriate functions.

Furthermore, GraphSAGE explicitly concatenates the node’s own features with aggregated
neighbor features and it is designed for inductive learning on unseen nodes. On the other hand,
GCN and GAT are primarily transductive, though it’s worth mentioning that GAT can be adapted
for inductive tasks [13].

One more important characteristic to consider is feature normalization as GCN and GAT
typically don’t include this step:

[z, = hi /1Ay 2], (19)
GraphSAGE often uses a graph-based loss for unsupervised learning:
[L = - 108(0(25211)) - Q ' Evn~Pn(v) [lOg (0-(_21’521),1))]]' (20)

In summary, GraphSAGE’s key innovations are its sampling-based approach, flexible
aggregation functions, and explicit design for inductive learning, distinguishing it from both GCN
and GAT in terms of scalability and generalization to unseen nodes.

Considering the prior description of GraphSAGE, it can be implemented in the PyTorch
library as following:

class GraphSAGEModel(torch.nn.Module):

def __init__(self, num_features, hidden_dim, num_classes):
super(GraphSAGEModel, self). _init_ ()
self.convl = SAGEConv(num_features, hidden_dim)
self.conv2 = SAGEConv(hidden_dim, num_classes)
def forward(self, x, edge_index):
x = F.relu(self.convl(x, edge_index))
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)

266 O. Lutsenko, S. Shcherbak

The practical significance and ways of applying the results

In order to get the value from the implemented GNN architectures, we have to train it on our data
defined above and deploy it on the AWS infrastructure. The first step here would be to create a graph
described above using Gremlin framework to interact with the Neptune Database using a Python
programming language on the Jupyter notebook. After that the created graph can be used for training and
testing of all three of the models. The final architecture can be found on the Fig. 5.

Individuals data
in the original
format on S3

O
PyTorch
for data transformation to the graph

1
S

AWS NeptuneDB
for graph storage

Assessed risk of the
individual
(0-1)

AWS Sagemaker GNN model

Fig. 5. Final architecture of the risk assessment on AWSinfrastructure

The actual real-life company may train the GNN using historical insurance data. However, for our
purposes, we will utilize generated and obfuscated data. This approach is necessary because using real
insurance data for a model prototype is legally inappropriate. Securing the required approvals and
navigating legal protocols to access real data would be time-consuming. To expedite the process, we will
use synthetic data, which is based on the real data but obfuscated of any personally identifiable information
(PII). The target variable for the specific use case of the trained model applied to the new graph could be a
risk score from 0 to 1 or a binary classification (high risk vs. low risk).

It is important to mention that techniques such as dropout, cross-validation and regularization should
be employed to prevent overfitting. Preventing overfitting is crucial in machine learning to ensure that
models generalize well to unseen data. In this example dropout technique is applied for every GNN.
Dropout is a regularization technique used to prevent overfitting in neural networks. For each forward pass
during training, dropout randomly sets a fraction of input units to 0.

Typically, the keep probability (1 — dropout probability) for input layers is close to 1, with 0.8 often
recommended. In hidden layers, a higher dropout probability leads to a sparser model, with 0.5 being an
optimal keep probability, indicating a 50 % node dropout. This basically means that half of the nodes on

GNN implementation approachesin aws cloud for risk assessment in the insurance area 267

the hidden layers will be dropped (or in other words nullified) and only 20% of the nodes on the input layer
will be dropped.

A standard PyTorch training loop is being used for the GNN, with forward passes through the
model, loss computation, and backpropagation for node feature updates. As the next step the model’s
performance is assessed using a separate test function, which computes predictions on a test set and
calculates accuracy. Furthermore, some model statistics are collected during its training and testing
processes and shown in the output.

Having run all three models on the same graph dataset, the results can be compared [Fig. 6].

*
e
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
Ej
P
P
P
P
P
P

Fig. 6. The results of the execution of 3 GNN models on the same dataset. 1% is GAT, 2™ — GCN, 3¢ — SAGE

The following can be said about the input data distribution for all three models: there are 6 nodes, 9
edges, and 3 node features in the graph that describes the individuals willing to insure themselves. There
are 2 classes with an imbalanced distribution: 5 cases with low risk of insuring those individuals and only 1
case with high risk who has the bad preconditions for being insured. Finally, the original risk assessment
graph is split into smaller datasets with 4 nodes being used for training and 2 of them being used for testing
respectively.

To visualize the results of the training and testing of three different GNN model types for the risk
assessment task in the insurance area, the comparison table can be built. The table should include the
following output parameters of the models: test accuracy, training progression, training accuracy, final
predictions and output model statistics (Table 1).

268

O. Lutsenko, S. Shcherbak

Table 1.

Comparison table of the GNN approachesto therisk assessment task

rapidly, starting at
0.5063 and ending at
0.0015. Training
Accuracy improved
from 0.7500 to
1.0000 by the 30th
epoch and
maintained it.

maintained 1.0000
throughout all
epochs.

probabilities, with p3
having an extremely
high probability of
high risk (0.9981) and
others having very low
probabilities (close to
0).

GNN model Training progression Test Accuracy Final Predictions Model statistics
GCN Loss generally Fluctuated between Classified 3 Negative mean
decreased over 0.5000 and 1.0000, individuals as low risk | outputs (-0.056)
epochs, starting at settling at 0.5000 for | (p2, p1, p5, p6) and 2 | with low standard
0.6315 and ending at | the last 100 epochs. as high risk (p3, p4). deviation
0.0782. (0.2345).
GAT Loss fluctuated but Consistently Provided probabilities Negative mean
generally decreased, maintained 1.0000 of high risk for outputs (-0.7098)
starting at 1.9445 throughout all everyone, with p3 with relatively
and ending at epochs. having the highest low standard
0.7663. Train probability (0.5200) deviation
accuracy improved and p4 and p6 having (0.1923).
from 0.7500 to the lowest (0.2553).
1.0000 by the final
epoch.
GraphSage Loss decreased Consistently Provided very distinct | Highly negative

mean outputs (-
4.6980) with
large standard
deviation
(5.2730).

Considering the table above, it can be seen that the GCN model seems to have struggled with
consistency, as evidenced by the fluctuating test accuracy. For GAT weight statistics indicate larger
variance in the second layer compared to the first. GraphSAGE has some statistics not available for other
tables due to specifics of this model such as weight statistics which indicate relatively balanced means and
standard deviations across layers and feature importance analysis, which suggests that Feature 1
(individual health status) is the most important (0.5723), followed by Feature 2 (smoking habit) (0.4836)
and Feature 3 (regular checkups) (0.4776) has the least importance according to the results.

In the conclusion, it can be stated based on the provided outputs that GraphSAGE appears to have
provided the best results for the following reasons:

e Consistency: GraphSAGE achieved and maintained perfect train and test accuracy from early

epochs, indicating stable learning.

e Loss Convergence: The loss decreased more consistently and to a lower final value (0.0015)

compared to GCN and GAT.

e Clear Distinction in Predictions: GraphSAGE provided very distinct probabilities for high risk,

clearly separating p3 as high risk from the others, which aligns with the original data distribution
(5 low risk, 1 high risk).

e Feature Importance: GraphSAGE provided additional insight through feature importance

analysis, which can be valuable for interpretation.

e Generalization: Both GraphSAGE and GAT maintained perfect test accuracy, but GraphSAGE’s

more distinct probabilities suggest better generalization.

GAT at the same time performed well, maintaining perfect test accuracy throughout, but its final
predictions were less distinct than GraphSAGE’s. GCN struggled with consistency in test accuracy,
making it less reliable for this particular dataset.

GNN implementation approachesin aws cloud for risk assessment in the insurance area 269

The superior performance of GraphSAGE might be attributed to its flexible aggregation mechanism
and its ability to sample and aggregate neighborhood information effectively, which seems particularly
well-suited to this specific graph structure describing the individuals in the insurance area and task of the
risk assessment during the underwriting process.

Further steps and improvements may start from handling the class imbalance. Currently, the model
seems to handle the class imbalance well. However, it is still considered to use class weights or
oversampling techniques to ensure robust performance for much more individuals with more features. The
next step can be improving of the model architecture. To capture more complex patterns, experiments can
be done with deeper architectures or different GNN layers. Finally, the model must be generalized: with
such a small dataset, it’s crucial to ensure the model generalizes well. Cross-validation or creating
synthetic data to can be done to achieve further validation of the model’s performance.

Overall, the models seem to be performing well on this small dataset. The next steps would be to
create a larger, more diverse dataset and to validate the model on it, having implemented some of the
additional analyses and improvements mentioned above.

Conclusions

In conclusion, the comparison analysis of 3 GNN architectures being Graph Convolutional
Networks (GCNs), Graph Attention Networks (GATS), and GraphSAGE for insurance risk assessment has
yielded valuable insights into the application of Graph Neural Networks in the insurance domain. Three
models have been described in detail and developed using the available technologies. The models have all
been trained and tested on the same dataset, being a graph representing individuals with a task of assessing
the risk of insuring them. The goal of analysis was for the models to focus not only on the individual’s
features, but also consider the connections between them to have unbiased risk assessment.

It is worth noting that considering the intertangled and very dependent on connections nature of the
insurance data as well as the huge volumes of the real-world data of insurance companies it has been
decided to build a scalable solution on top of the cloud infrastructure, which can handle such task. For this
specific purpose, the AWS cloud can be chosen.

Based on the results of implementing three models and assessing the risk with them, the comparison
table was built, which has revealed significant differences in the performance of the three models. While
all showed promise in tackling the complex task of risk assessment, GraphSAGE emerged as the standout
performer. Its superior ability to sample and aggregate neighborhood information proved particularly
effective in capturing the nuanced relationships within the insurance dataset. This strength was evident in
GraphSAGE’s more distinct and confident risk predictions compared to the other models.

The Graph Attention Network (GAT) also demonstrated strong performance, maintaining perfect
test accuracy throughout the evaluation. However, its final predictions lacked the clear differentiation seen
in GraphSAGE’s outputs. This suggests that while GAT’s attention mechanism is powerful, it may not
have fully captured the specific nuances of our insurance risk assessment task as effectively as
GraphSAGE’s flexible aggregation approach.

In contrast, the Graph Convolutional Network (GCN) struggled with consistency in test accuracy.
This inconsistency makes GCN less reliable for the particular dataset and task at hand, highlighting the
importance of choosing the right architecture for specific problem domains.

The superior performance of GraphSAGE can be attributed to its flexible aggregation mechanism
and effective sampling of neighborhood information. These characteristics appear to be particularly well-
suited to the graph structure representing individuals in the insurance domain and the specific task of risk
assessment during the underwriting process. GraphSAGE’s ability to capture and leverage the complex
interrelationships between policyholders and their attributes has demonstrated its potential to significantly
enhance the accuracy and reliability of risk predictions in insurance underwriting.

270 O. Lutsenko, S. Shcherbak

These findings underscore the importance of carefully selecting and tuning GNN architectures for
specific applications in the insurance industry. As the sector continues to embrace data-driven decision-
making, the integration of advanced graph-based machine learning models like GraphSAGE which shows
the best performance for the risk assessment of the individuals could mark a significant leap forward in
insurance capabilities. Future work should focus on further optimizing these models for other specific
insurance use cases and improving the models for the current use case, exploring their interpretability to
meet regulatory requirements. Investigating their performance on larger and more diverse datasets is
required in the future with the focus being on ability to scale and handle data volumes as well as avoiding
overfitting and underfitting respectively with different available methods. The parameters of the models
may also be slightly improved to capture all the nuances of the bigger datasets with more features.

References

1. Danish, A., Xie, Y., Umair, S. B. (2021). Insurers’ risk management as a business process: a pros-
pective competitive advantage or not? Emerald, 31 (3), 345-366. DOI: https://doi.org/10.1108/EJMBE-08-2021-0221

2. Sanchez-Lengeling, et al. (2021), A Gentle Introduction to Graph Neural Networks, Distill. DOI:
https://doi.org/10.23915/distill.00033

3. Uzair, A. B., Tang, H., Guilu, W., Marjan, S., Hussain, A. (2023). Deep Learning with Graph
Convolutional Networks: An Overview and Latest Applications in Computational Intelligence. International Journal
of Intelligent Systems. DOI: https://doi.org/10.1155/2023/8342104

4. Kipf, T. N., Welling, M. (2016) Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv: 1609.02907 DOI: https://doi.org/10.48550/arXiv.1609.02907.

5. Veli¢kovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lid, P., Bengio, Y. (2017) Graph Attention
Networks. arXiv preprint arXiv: 1710.10903v3. DOI: https://doi.org/10.48550/arXiv.1710.10903.

6. Totaro, S., Hussain, A., Scardapane, S. (2020). A non-parametric softmax for improving neural attention
in time-series forecasting. Neurocomputing, 381, 177-185. DOI: https://doi.org/10.1016/j.neucom.2019.10.084

7. Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan, R., Prasanna, V., Jin, L., Chen, R.
(2022). Decoupling the depth and score of Graph Neural Networks. arXiv preprint arXiv: 2201.07858v1. DOI:
http://arxiv.org/abs/2201.07858v1

8. Liu, T., Chen, Y., Li, D.,, Wu, C., Zhu, Y., He, J., Peng, Y., Chen, H., Guo, G. (2021). BGL: GPU-
Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing. arXiv preprint arXiv: 2112.08541. DOI:
https://doi.org/10.48550/arXiv.2112.08541

9. Tian, Y. (2022). The World of Graph Databases from an Industry Perspective. arXiv preprint arXiv
:2211.13170. DOI: https://doi.org/10.48550/arXiv.2211.13170

10. Wang, Z., loannidis, V. (2022). How AWS uses graph neural networks to meet customer needs. Amazon
Science. https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-customer-needs

11. Zhang, Z. (2018). Improved Adam Optimizer for Deep Neural Networks. 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). DOI: 10.1109/IWQ0S.2018.8624183.

12. Cordonnier, J., Loukas, A., Jaggi, M. (2021). Multi-Head Attention: Collaborate Instead of Concatenate.
arXiv preprint arXiv: 2006.16362. DOI: https://doi.org/10.48550/arXiv.2006.16362

13. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K. (2020). Inductive Representation Learning on
Temporal Graphs. arXiv preprint arXiv:2002.07962. DOI: https://doi.org/10.48550/arXiv.2002.07962

Cnucok aiTepatypu

1. Canues-Jlenpmeninr, Ta in. (2021), Jlarizauii Bctyn g0 rpadoBux HeWponHux wmepex, Distill. DOI:
https://doi.org/10.23915/distill.00033

2. Vzaip, A. B, Tanr, H., I'yiny, B., Map’sn, C., Xycceiin, A. (2023). Im6oke HaBYaHHA 3 IpapOBAMH
3rOPTKOBHMH Mepexamu: O Ta OCTaHHI 3aCTOCYBaHHSI B OOUYHCIIOBAIBHOMY 1HTENEKTi. MidicHapoonuii scypHan
inmenexmyanvrux cucmem. DOI: https://doi.org/10.1155/2023/8342104

3. Kind, T. H., Welling, M. (2016) HamiskoutpomsoBana kiacudikaiisi 3 rpaGoBHMH 3TOPTKOBHMH
Mepekamu. ar Xiv npenpunm: arXiv:1609.02907 DOI: https://doi.org/10.48550/arXiv.1609.02907.

4. Bemiukosiy, I1., Kykypymn, I., Kazanosa, A., Pomepo, A., Jlio, I1., Benrio, . (2017) I'padoBi mepexi
yBard. arXiv npenpunm ar Xiv: 1710.10903v3. DOI: https://doi.org/10.48550/arXiv.1710.10903.

GNN implementation approachesin aws cloud for risk assessment in the insurance area 271

5. Totapo, C., Xycceiin, A., Ckapaanane, C. (2020). Hemapamerpuunuii copTMakc Al MOKPAIICHHS
HEHpOHOBOI yBarWm TIIpH TPOTHO3YBaHHI 4YacoBUX psmiB. Hetpoxomn'romune, 381, 177-185. DOI:
https://doi.org/10.1016/j.neucom.2019.10.084

6. 3enr, X., XKan, M., Yia, 1., CpiBactaBa, A., Manesiu, A., Kaunan, P., [Ipacanna, B., JIxin, JI., Yen, P.
(2022). BimokpemiieHHS TIIMOWHU Ta OLHKK rpaoBHX HEHPOHHHX Mepex. arXiv mpenpunm arXiv: 2201.07858v1.
DOI: http://arxiv.org/abs/2201.07858v1

7. Jho, T., Yen, 1., JIi, /1., By, K., XKy, 1., Xi, 1., ITen, I., Yen, X., I'yo, XK. (2021). BGL: GPU-edexrrBHe
napuanHss GNN nuissxom onTuMi3aliii BBEIEHHSA-BHBEACHHsS Ta MOMEepenHboi 00poOku rpadoBux maHux. arXiv
npenpunm arXiv: 2112.08541. DOI: https://doi.org/10.48550/arXiv.2112.08541

8. Tian, M. (2022). Cit rpadoBux 6a3 1aHUX 3 TOUKH 30py iHAyCTpil. arXiv npenpunm: arXiv :2211.13170.
DOI: https://doi.org/10.48550/arXiv.2211.13170

9. Bam, 3., HMoaninic, B. (2022). Ax AWS gukopucmosye zpagosi neiiponni mepesxci ons 3a00601eHHS.
nompe6 knichma. Amazon Science. https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-
customer-needs

10. XKan, 3. (2018). Bmockonanenuii Ontumizarop AJAM mns raubokux HedipoHHux Mepex. 2018
|[EEE/ACM 26-uii Misicnapoonuii Cumnosiym no axocmi nocaye (IWQoS). DOI: 10.1109/IWQ0S.2018.8624183.

11. Kopmousep, X., Jlykac, A., Jxarri, M. (2021). YBara mo 6ararb0X BEpIIMH: CIHIiBIOpAns 3aMicTh
00’ emuanHs. arXiv npenpunm ar Xiv:2006.16362. DOI: https://doi.org/10.48550/arXiv.2006.16362

12. Iy, J., Pyan, K., Koprieorny, E., Kymap, C., Aman, K. (2020). HaBuaHHs iHIyKTHBHOTO MPEICTABICHHS
Ha yacoBuX rpadax. arXiv npenpunm ar Xiv:2002.07962. DOI: https://doi.org/10.48550/arXiv.2002.07962

NIaAxXoaAu BNPOBAAKEHHS 'HM B XMAPHUX CEPBICAX AWS
JJIA OOIHKH PU3UKIB Y COEPI CTPAXYBAHHA

Ousexcanap Jyuenxo?, Cepriii Illep6ax’

! Hanionaneauii YHiBepcuter “JIbBiBchKa nomitexHika”, kapenpa ICM, m. JIbBiB, Ykpaina
! HanionansHwuii Vuisepcuter “JIpBiBchbka nomitexnika”, kapeapa ICM, m. JIsBiB, Ykpaina
E-mail: Oleksandr.V.Lutsenko@Ipnu.ua, ORCID: 0009-0008-7644-6056
E-mail: serhii.s.shcherbak@Ipnu.ua, ORCID: 0000-0003-2914-2101

© Jlyyenxo O. B., ll]epbak C. C., 2024

VY wmiii crarti aHani3yloThes TpH HaiimommupeHimi migxomm g0 peasizamii apxitektypm 'HM y
xmapHux cepicax AWS nist oninku pusukiB y cepi crpaxyBanns. CTarTsi nogijieHa Ha KijibKa po3-
ainiB, mepmuid 3 AKX MicTuTh oruisia 3 migxoxiB no apxirexkrypu I'HM, npyruii onucye nepexymMoBu
JJisl BIPOBA/KeHHsI, i, HAPeLITi, BIPOBAKeHHs TA NOPiBHSIHHS BCiX MigXoaiB 1Jjsi BUOOpPY Halikpa-
10T 0.

Y nepuiomy po3aiji mpeacraBjieHO0 TPU apXiTeKTypHi nmiaxxoau a0 snpoBamxenns I'HM, a came:
I'padoBi Mepexi 3roprku (I'M3), I'padoBi Mepexi YBaru ('MY) i GraphSAGE (I'padosi 36ip Ta
arperamis). ApXiTeKTypH ommcaHi 3 aKIeHTOM Ha MatemMaTuuHi (opmymoBanns. Ha 3aBepuieHHs
PO31ijly BHpilIeHO MPOJOB:KMTH TOJAJIbllle BNPOBA/KEHHsI BCiX TPHOX Mojesell B iHQpacTpyKTypy
AWS i nmpoanagizyBaTH pe3yJbTaTH Ha THX caMUX IpadoBHX JaHUX, 00 BHOpaTH HaWKpammii
BapiaHT AJs OUiHKN PU3UKY AJIS CTPAX0BOI KOMIIAHII.

Hdani crarTsi nmpoaoBi:kye BHOIp iHCTpyMeHTIB i miAroroBky aaHux aas iX MNOJAJbIIOro
BHKOPHCTAaHHA B LisaXx HaBuyanHs Ta TectyBanHs ['HM. Ilicisi amanisy BapianTiB BUKOpHCTaHHS
BUPIIICHO 30CepeAuTHCH JMIIe Ha cTpaxyBaHHI (ismuHnx oci0. OcHOBHa MeTa HoJsirac B aHaJi3i
YHIKQJbHUX BJIACTHBOCTEH KOMKHOI JIOAWHH, sIKi MOKYTh BIIMBATH HA PU3HK ii CTPaXyBaHHS, a TAKOXK
Ha ii 3B’A3KM 3 iHIIMMH oco0aMu. OCHOBHMMM iHCTpyMeHTaMHu 1Jsi BUkopuctanus € NeptuneDB nas
30epiranns rpadis i Sagemaker st po3ropraHHs Ta HaBYaHHs Mojedi. CTaTTs TAK0XK 30cepe/zKeHa Ha
BHOOpi BiIMOBiTHOro iHCTPYMeHTY AJsA peasi3anii, NOpPiBHIOYM ABAa HAWOLTbII BHKOPHCTOBYBaHi

272

O. Lutsenko, S. Shcherbak

¢peitmBopru Python PyTorch PyG i Deep Graph Library (DGL), npu uboMy npiopurer HagaeThcs
PyG.

Jayi onucaHo mpouec BNOPOBaJ:KeHHs BciX Tpbox miaxonis, cmouyarky I'M3, motim T'MY i,
Hapewri, GraphSage. IlotiM Moaeni miAIalTHC HABYAHHIO TA TECTYBAHHIO3 MOJAJBIIHM AHAJI30M
BUXITHUX JaHuX. 3 orasay Ha pe3yiabtaTn anadisy, IMY i GraphSage 3a6e3neuyoTs HaiiGiabI TOYHI
pe3yabTatu, 30epiraroun To4YHicTh MiA 4Yac TecTyBaHHs. OIHAK, BPaXOBYIOUHM CTATHCTHYHI JaHi 000X
Mojeeil, BusijeHo, mo GraphSage mae Giapury pisHHII0 MidK HMOBIPHOCTAMH PH3HKIB Ta 10JaTKOBI
BiIOMOCTi 3aBASiIKM aHaNi3y BaKJIUBOCTI 0COOJMBOCTeH JaHUX, IO POOUTH iHOro Halikpamum JIs
CUeHAPil0 BUKOPHCTAHHS OHIHKU PU3HKY.

Ha 3aBepumieHHsi cTaTTi 3a3Ha4YeHo, 10 3 YCiX TPhOX NMPOAHATI30BAHUX APXiTeKTYp HalOIIbLII
NPUAATHOIO I 3aBAaHHs ouiHku pu3uky € GraphSAGE 3 HeBelMKoI0 mepeBaroio mie€i mojgesi Haj
I'MY, BinnoBigHo ii BUpilleHO BUKOPUCTATH A NOJAJBLIIOr0 aHAJII3Yy Ta BAOcKOHAJeHHs. Kpim Toro, y
CTATTi 3rayeTbesl KijibKa KPOKIiB /1 MOTeHUiHHOr0 Mali0yTHHOr0 BJOCKOHATEHHS MOJesel, a TaK0XK
30cepe/IKeH0 YBary Ha TeCTYBaHHI Ta HABYaHHI Ha OlibIoMy HA0Opi naHMX, 1100 3po0UTH Fioro OLILIIT
32CTOCOBHUM JUISI peaTbHUX MPOrpaM.

KmrouoBi ciosa: I'padori 3ropraabni Mepexi (I'3M), I'padosi Mepexi Yearm (I'MY),
GraphSAGE (36ip Ta arperauisi), I'pa¢, I'padosi Heiiponni mepexi (THM), Auneppaiitunr, Ctpaxy-
BaHHs, Oninka Pusukis.

