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In the paper, a personalized education planning system that utilizes neural networks and
artificial intelligence to adapt learning paths for individual learners dynamically is pre-
sented. The system employs neural networks to analyze learner profiles, preferences, and
real-time performance data, enabling the generation of tailored study plans. Neural net-
works are integral in predicting learner needs by analyzing past performance, learning
style, and engagement patterns, allowing the system to recommend appropriate learning
modules and optimal study schedules. Additionally, the system adjusts learning plans in
real time, balancing cognitive load and ensuring personalized pacing to prevent learner
fatigue. By incorporating these advanced mechanisms, the system provides content rec-
ommendations and schedules that evolve continuously as learners progress. The adaptive
nature of the system is further enhanced through neural networks’ ability to optimize long-
term learning strategies, ensuring that the right balance between challenge and support
is maintained. The proposed system can be seamlessly integrated with Learning Manage-
ment Systems (LMS), offering a scalable solution for personalized education. The paper
highlights the effectiveness of neural networks in creating efficient, learner-centered study
paths and improving educational outcomes through data-driven adaptation.

Keywords: personalized education planning; neural networks in education; Al-driven
learning systems; adaptive learning; personalized learning recommendation; cognitive load
management; dynamic learning schedule; artificial intelligence in education; education
technology; learner-centered education.

2010 MSC: 68T05, 68T20, 97U70, 68T07, 97D40 DOI: 10.23939/mmc2024.04.1003
1. Introduction

Artificial Intelligence and neural networks have emerged as transformative technologies with the po-
tential to address complex real-world problems across diverse fields. Their versatility and impact
are evidenced by successful applications in healthcare [1,2], manufacturing [3], agriculture [4], data
science [5], cybersecurity [6], education [7,8], etc.

The use of Al in education, especially for personalized learning and self-education, has gained
significant attention in recent years. Various researchers have contributed to the development of
intelligent tutoring systems and adaptive learning platforms designed to cater to individual learning
needs. The field of Artificial Intelligence in Education (AIED) has evolved over the past 25 years, with
researchers identifying key strengths and future opportunities for Al in education. Roll and Wylie
(2016) highlight that AI technologies in education are at a crossroads, offering two distinct approaches
for future research: an evolutionary path that builds on current classroom practices and collaboration
with teachers, and a revolutionary path where Al technologies become embedded in students’ everyday
lives, supporting their learning goals in a personalized manner [9].

The evolutionary approach is primarily concerned with improving current practices, such as en-
hancing one-on-one tutoring experiences through systems that model effective teaching strategies. The
revolutionary approach, on the other hand, emphasizes the integration of Al systems into self-directed
learning, allowing learners to plan and execute their educational journeys with minimal external inter-
vention. The implementation of Al in education has predominantly been through Intelligent Tutoring
Systems (ITS), which offer personalized guidance and feedback to students based on their learning be-
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haviors and performance data. For instance, the work by VanLehn (2011) demonstrates that ITS can
replicate the effectiveness of human tutors by providing step-by-step feedback and tailored educational
content [10].

Similarly, adaptive learning systems, as discussed by Hwang et al. (2021), have been designed to
analyze students’ cognitive and affective performance, adjusting learning plans accordingly to maximize
learning efficiency [11]. These systems are particularly valuable in self-education, where learners often
need real-time feedback to guide their progress without the constant presence of a teacher. Moreover,
studies by Zawacki-Richter et al. (2018) have shown that Al-based systems can analyze large-scale
data from various learners to make informed decisions about personalized content delivery [12].

This is critical in the context of self-education, where Al can offer custom learning paths based on
a learner’s previous performance, preferred learning style, and subject interests. As learners progress,
the AI system refines its understanding of their strengths and weaknesses, enabling more accurate
recommendations for further study. Neural networks, a subset of Al, have been increasingly applied
to improve personalized learning planning. Neural networks excel at identifying patterns in data and
can predict learners’ future performance based on their past behaviors. This predictive capability is
essential for developing personalized learning plans that adapt to the learner’s evolving needs. Roll and
Wylie (2016) point out that neural networks allow for dynamic adjustment of learning goals and can
suggest optimal study paths, considering the subject matter’s complexity and the learner’s proficiency
level [9].

In the context of self-education, neural networks play a pivotal role in creating adaptive learning
environments. For example, some Al-driven platforms use neural networks to continuously assess a
learner’s progress and recommend the next steps in their education plan. These platforms can also
identify when a learner is struggling with specific topics and adjust the difficulty or type of content to
ensure mastery before moving on to more advanced material. The application of Al in self-education
goes beyond just delivering content. Al systems can support learners in setting educational goals,
tracking their progress, and adjusting study plans based on their performance. According to the
systematic review by Hwang et al. (2021), AI can provide scaffolding for learners to engage in self-
regulated learning, guiding them through complex problem-solving processes and fostering critical
thinking skills [11].

This is particularly important for self-directed learners who may lack the external motivation and
structure provided by traditional educational systems. Furthermore, as Al technologies advance, there
is growing potential for creating more immersive and interactive learning experiences. For instance,
Al-powered educational games and simulations offer learners the opportunity to explore subjects in a
hands-on manner, making learning more engaging and effective. Research by Dzikovska et al. (2014)
has shown that complex problem-solving environments supported by Al can significantly enhance
learners’ ability to apply theoretical knowledge to practical situations [13].

Despite the promising advancements in Al for personalized learning, several challenges must be
addressed by researchers and educators. One primary concern is the ethical implications of using Al
to collect and analyze vast amounts of student data. Issues related to data privacy and algorithmic
bias must be carefully managed to ensure that Al systems are fair and transparent. Moreover, as Roll
and Wylie (2016) suggest, integrating Al into education requires a careful balance between technology
and pedagogy. It is essential to ensure that Al complements, rather than replaces, the human elements
of education [9]. Looking ahead, the research suggests that AI, particularly through the use of neural
networks, will continue to play a critical role in shaping the future of self-education. However, further
research is needed to refine the algorithms driving personalized learning systems and ensure they can
be seamlessly integrated into various educational contexts.

1.1. Materials

To integrate Al algorithms into personalized learning systems, researchers have explored various mod-
els and approaches that enhance learning outcomes and engagement. Key Al techniques applied in
personalized learning include neural networks, machine learning, natural language processing, and
cognitive neuropsychology-based models.
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Neural networks and machine learning algorithms form the backbone of adaptive learning platforms,
which tailor content to individual learners based on their performance data. Neural networks enable
predictive models that forecast a learner’s future needs by analyzing past behaviors, thus guiding the
learning journey dynamically. Machine learning algorithms continuously refine the system’s recom-
mendations based on real-time interactions, allowing the platform to become more precise over time.
For example, the Al-enabled intelligent assistant (AITA) framework discussed by Sajja et al. (2024)
leverages ML and NLP to offer personalized support, quizzes, and learning paths based on student
inquiries and performance [14].

Natural language processing is essential for developing intelligent tutoring systems that provide
personalized feedback and interaction. These systems can interpret student inputs, assess the compre-
hension level, and offer tailored responses, creating an interactive and engaging learning experience.
This technology is particularly beneficial in e-learning platforms, where timely feedback and personal-
ized content are crucial for self-directed learners [15,16].

Adaptive learning platforms (ALPs) such as Carnegie Learning and DreamBox Learning apply
AT to adjust the learning content dynamically to a student’s progress and comprehension. These
platforms rely on a combination of Al techniques, including learning analytics, to assess a learner’s
current knowledge and suggest optimal learning activities. The goal is to enhance learning efficiency
by presenting material that aligns with the learner’s evolving understanding [10-12].

Some adaptive systems are designed using principles from cognitive neuropsychology, which align
Al-driven personalized learning with how the brain processes information. This approach improves
student engagement and retention by adapting content based on the learner’s cognitive state and
providing feedback that is neurologically aligned with learning patterns [11,12].

The aim of this work is to develop a flexible and adaptive personalized learning planning system that
leverages neural networks and artificial intelligence to optimize the learning experience for individual
learners. The system aims to dynamically generate and adjust personalized learning paths based on
real-time learner data, ensuring that each learner receives tailored educational content, feedback, and
pacing to improve learning efficiency and outcomes. This aim focuses on building a system that not
only personalizes learning but also enhances the overall educational process by integrating Al-driven
decision-making, allowing for continuous optimization and adaptation of learning strategies based on
the learner’s performance and preferences.

As personalized learning planning involves managing a complex set of variables and constraints, a
Constraint Satisfaction Problem (CSP) approach is a natural choice to proceed with. CSP methods
have been extensively studied and applied in various fields to address intricate problem-solving sce-
narios, and many advanced techniques are currently in development. For example, recent innovations
such as Recurrent Transformer models and Graph Neural Networks (GNNs) have emerged as powerful
tools in handling CSPs with complex, sequential, or relational data. GNNs, in particular, excel in
representing variable dependencies in scheduling or adaptive learning systems by modeling entities
(e.g., learning tasks or time slots) as nodes and constraints as edges, making them highly suited for
our personalized learning application. Additionally, methods like SATNet, which integrates neural net-
works with traditional satisfiability (SAT) solvers, offer promising directions for combining data-driven
insights with classic CSP techniques.

In our system, Graph Neural Networks are utilized for their efficacy in capturing relationships and
dependencies in educational scheduling, allowing our personalized learning plan to adapt dynamically
to evolving learner needs. Integrating other approaches, such as Recurrent Transformer models, could
further enhance long-term learning strategies, ensuring efficient and context-aware recommendations
for each student.

1.2. Problem statement

For a Personalized Learning Planning System (PLPS), we seek an automated system that, given certain
input data regarding learner preferences, progress, and available resources, can generate a personalized
learning plan. The system must ensure that the recommendations align with the learner’s goals and
adapt over time as learning progresses, while satisfying individual constraints.
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The PLPS problem can be formally described as follows.
Given a list of:

1. Learners with unique profiles, including learning goals, cognitive abilities, and available learning
hours.

2. Learning modules (or subjects) categorized by complexity, time commitment, and required prereq-
uisites.

3. Resources such as available instructors, multimedia content, self-paced exercises, and assessments.

4. Neural network models for recommending content and tracking progress, personalized based on
past interactions.

The PLPS problem consists of planning a learning pathway for each learner in such a way that:

1. Each learning module is tailored to the learner’s pace and ability, with some modules offering
flexibility in delivery mode (e.g., visual, textual, or interactive).

2. The recommended modules should not conflict with the learner’s prerequisites; only one learning
module requiring the same prerequisite should be scheduled at any given time.

3. Modules can be spaced out over time to balance the learner’s workload and prevent cognitive
overload. Consecutive learning sessions may be scheduled for intensive subjects or for project-
based work.

4. A learning resource (e.g., an instructor or learning assistant) cannot be assigned to more than one
learner at the same time for live, synchronous sessions.

5. The time commitment assigned to a learner per day should not exceed the learner’s availability as
defined in their profile.

6. Assessments or collaborative projects may be assigned to more than one learner, especially for
subjects that benefit from group work or peer feedback.

7. Learning sessions must be distributed in a way that avoids overlap of learning goals in conflicting
cognitive domains (i.e., technical and creative tasks should not be scheduled back-to-back unless
designed to complement one another).

2. Design of PLPS

As personalized learning planning involves managing a complex set of variables and constraints, a
Constraint Satisfaction Problem (CSP) approach is a natural choice to proceed with. Mathemati-
cally, a CSP is a triplet (X, D,C), where X is a non-empty finite set of variables, D is the set of
domains for these variables, and C' is the set of constraints restricting the values the variables can take
simultaneously.

The Personalized Learning Planning System (PLPS) must schedule and organize different inter-
linked entities: the learners’ goals and progress, the available learning resources, and the learning
modules (subjects). This problem, while complex, can be broken into smaller, manageable tasks based
on learning objectives, time availability, and content progression.

To optimize the process, we employ neural network-based recommendation systems to suggest
content that aligns with the learner’s current progress. In the first phase, a high-level learning plan
(Master Learning Path, MLP) is created, providing a framework of learning modules that can be
tailored to the learner’s preferences. The system checks for prerequisites and suggests modules based
on the learner’s profile, learning pace, and available resources.

In the second phase, personalized adjustments are made through a fine-tuned planner (Personalized
Learning Planner, PLP). The PLP adjusts the recommended learning path by analyzing real-time
data on learner performance, recommending new resources, or changing the learning sequence based
on progress and evolving interests.

2.1. Input for the learning planner

Before the system begins generating personalized learning pathways, it requires specific input data
about the learner and the available resources. A detailed case study of personalized learning systems
can illustrate these inputs. The inputs required include:
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— Learner profile: including learning objectives, learning style (e.g., visual, interactive), cognitive
load, and daily available study time.

— Learning modules: subjects or topics categorized by complexity, prerequisites, and estimated com-
pletion time.

— Awvailable resources: instructors, self-paced digital content, and collaborative learning opportunities
(e.g., group projects, peer feedback).

— System preferences: including scheduling flexibility, recommended pacing, and content delivery
modes (text, video, exercises).

— External resources: information on relevant external sources like e-books, MOOCs, or subject
matter experts.

Based on the learner’s profile and preferences, the system processes these inputs to generate an
adaptive, personalized learning path that evolves over time as new data (e.g., learner progress or
feedback) is added.

Example Input Tables: Learner Profile: An example of learner data input is provided in Table 1,
showcasing learning goals, cognitive load capacity, and daily study hours.

Table 1. Learner Profile.

Learner Goal Cognitive Load | Available Time | Learning Style | Preferred Pace
Learner 1 | Python Proficiency | Medium 2 hrs/day Visual Steady
Learner 2 | Data Science High 4 hrs/day Interactive Fast

Table 2. Learning Modules.

Module Prerequisite Time to Complete | Type Level
Python Basics None 10 hrs Theory Beginner
Data Structures Python Basics 15 hrs Practical Intermediate
Machine Learning | Data Structures | 20 hrs Theory + Practical | Advanced

2.2. Personalization layers
The learning pathway generation system operates in two distinct layers.

Master Learning Path (MLP): This system component generates an overarching learning pathway
based on the learner’s long-term goals, such as mastering a subject or completing a certification. The
MLP organizes learning modules based on prerequisites, and provides a high-level overview of the
subjects that need to be covered. The output is a learning blueprint that assigns tentative schedules
and learning sequences.

Personalized Learning Planner (PLP): At this layer, more granular personalization occurs, adjust-
ing the learner’s daily or weekly learning tasks based on real-time data. The PLP makes on-the-fly
adjustments based on learner feedback, progress, and performance metrics, ensuring the plan evolves
as the learner advances. For example, if a learner struggles with a particular topic, the PLP may
reschedule or provide supplementary material.

The design approach leverages the power of neural networks to improve the personalization process
continuously. By balancing the complexity of the problem across these layers, we can provide a robust
personalized learning plan that adapts dynamically to each learner’s needs.

2.3. Personalized scheduling strategies

In personalized learning, scheduling must account for the learner’s goals, time constraints, and cognitive
load. The system checks feasibility based on available learning time, resources, and the difficulty of
subjects. Below is the adapted version of scheduling strategies for Personalized Learning Planning:

— Feasibility check — If the learner’s available study hours per week multiplied by the number of
modules they can engage with per week is greater than or equal to the total workload required to
achieve their goals, then a feasible learning plan can be generated. The workload includes time
for consuming learning materials, engaging in interactive activities, and completing assessments. If
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scheduling cannot be achieved, adjustments can be made by reducing the learning intensity (fewer
subjects) or distributing study hours more effectively across the week (e.g., allocating some tasks
to evenings or weekends).

— Creation of master learning path (MLP) — Using the learner’s available study hours and goals, the
system allocates time slots to different subjects. Each subject is assigned a priority based on
its prerequisite structure and importance to the learner’s objectives. For subjects that involve
collaboration or live interaction, fixed time slots are created first. Self-paced or asynchronous
subjects are then scheduled flexibly around these fixed sessions. This master schedule becomes the
blueprint for personalized learning. Subjects that cross multiple domains (interdisciplinary) are
prioritized to avoid conflicts in cognitive load.

2.4. Types of constraints checked in personalized learning planning
For effective personalized planning, several constraints need to be checked, similar to traditional
scheduling systems:

1. Learner time preference constraint: Learning sessions should match the learner’s availability and
preferences (e.g., morning, evening, or spread throughout the day).

2. Subject complexity constraint: Some subjects may require extended focus or consecutive sessions
(e.g., practical labs or project work), while others can be divided into shorter, self-paced units.

3. Resource availability constraint: For interactive subjects involving instructors or group work, re-
sources (instructors or peers) should not be overbooked at the same time.

4. Learning load constraint: The system ensures that the total number of learning hours per day or
week does not exceed the learner’s cognitive load capacity, preventing burnout.

2.5. Output of the personalized learning planner (PLP)

The output of the Personalized Learning Planner (PLP) will be a list similar to the following, where
each subject is assigned its study time slot based on the learner’s preferences and needs.

Table 3. Personalized Learning Path Output.

Subject Code | Module Assigned Learning Time Slots
ML-01 Machine Learning | Session 1 Session 2 Session 3 Session 4 | Session 5
Morning Slot | Evening Slot | Free Study | Practice | Assessment

Using this schedule, the learner can follow their personalized study plan, which adapts dynamically
as they progress through their modules.

2.6. Creation of personalized learning schedule
The Personalized Learning Planner (PLP) scheduler will handle the final stage by assigning study ses-
sions, learning modules, or interactive activities to specific time slots based on the learner’s preferences
and availability. Since the learner’s time is allocated flexibly in earlier stages, the scheduler will ensure
that there are no conflicts among subjects or tasks requiring similar cognitive efforts.

The following constraints need to be taken into account:

1. Learner preferences for study time (morning/evening or specific days).

2. More than one learner can participate in collaborative sessions (such as group projects or peer
assessments).

3. A learner cannot be assigned two conflicting cognitive tasks at the same time (for instance, solving
complex mathematical problems and working on a creative writing task simultaneously).

4. A limit on the maximum number of hours assigned per day or week to prevent cognitive overload.

2.7. The scheduling model
In the personalized learning system, the scheduling model is based on three key entities: Subject

(learning module), Learner, and Study Time Slots. Each of these variables is described below:
Variables:
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1. Learning Module Object: The number of learning module objects corresponds to the number of
subjects or learning units the learner will engage with during a given period. The system stores
data on assigned study sessions, completion status, and the associated study time slots.

Table 4. Learning Module Object.

Integer completionLevel=0; Used to check if the learning module is completed.
If completionLevel < workload, the module is incomplete.
Integer workload; The total number of study hours allocated to the learning module.
String timeSlotCode[workload]; An array of strings used to store time slots assigned
for studying the module.
String learnerCode[workload]; Stores the learner ID assigned to the module
in the corresponding time slots.
Constructor and get/set functions | Functions to manage the module data.

2. Learner Object: Each learner object stores data on available study hours, the number of assigned
learning tasks, and preferences such as learning pace and time slots for study.

Table 5. Learner Object.

Integer studyLoad=0; Used to check if the learner is assigned the correct amount of study
hours. If studyLoad < planned load, assignments are incomplete.
Integer workload; Stores the total number of study hours required by the learner
for the session.
String timeSlotCode[workload]; An array of strings used to store study session time slots for
the learner.
String moduleCode[workload]; An array of strings used to store learning module codes corresponding
to the assigned time slots.
Constructor and get/set functions | Functions to manage the learner’s study plan.

3. Time Slot Object: The number of time slot objects is determined by the learner’s available study
hours per week, multiplied by the number of study sessions scheduled. Each time slot object stores
data on which learning module and learner it is assigned to.

Table 6. Time Slot Object.

Integer assigned=0; Used to check if the time slot is assigned to a learner for a specific study session.
String moduleCode; Stores the learning module assigned to the time slot.

set, get functions Functions to manage time slot assignments.

Constructor of the class | Initialization functions for creating new time slots.

2.8. Domains for the variables

In the Personalized Learning Planning System (PLPS), the domain of each variable is defined based
on the type of object involved in the learning process.

The domain of Learning Module objects consists of the set of study sessions (time slot codes) and
learner IDs. The domain of Learner objects includes pairs of time slot codes and learning module
codes, representing when and what the learner is studying. The domain for Time Slot objects is the
set of time slot codes that represent the available study periods during a learner’s schedule.

2.9. Constraints for the Master Learning Path Scheduler (MLP)

The number of variables in the system equals the number of Learning Module objects (subjects) that
need to be scheduled.

The system creates Learning Module objects identified by their module codes. For example, mod-
ule codes could include PY-ML-01 for Python Basics or DS-ML-02 for Data Structures in Machine
Learning. These objects are partitioned into categories based on their complexity or subject type, such
as core modules and elective modules.

Two sets of time slots are maintained.
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Assigned time slots: These are the slots that have already been allocated to a learner. Unassigned
time slots: These are the available slots that can be used for further assignments. Assignments are
made from the unassigned time slots based on the following constraints:

Constraint 1: Core learning modules that are prerequisites for more advanced subjects must be
scheduled first. For instance, foundational topics such as Python Basics need to be completed before
moving on to Machine Learning.

Constraint 2: The number of hours assigned to a learning module must match its workload, ensuring
that each module is given enough time for mastery.

Constraint 3: Using learner preferences for time of day (morning, afternoon, evening), assignments
are made from the set of unassigned time slots. Additionally:

Intensive or project-based learning sessions should be assigned consecutive slots. Regular theory-
based sessions should be spread out to ensure a balanced cognitive load.

Constraint 4: No two modules of the same cognitive domain (e.g., two highly technical subjects)
should be assigned back-to-back without a break to avoid cognitive fatigue. For example, a learner
should not have Data Structures followed by Advanced Algorithms without a break or a creative task
in between.

The system performs constraint checking only for assigned time slots. Once all core learning
modules are scheduled, elective modules are assigned using similar constraints.

2.10. Constraints for the Personalized Learning Planner (PLP)

Once the Master Learning Path (MLP) assigns learning modules to time slots, the Personalized Learn-
ing Planner (PLP) assigns specific study sessions or collaborative tasks to learners. The following
constraints are applied.

Constraint 1: The system checks each learner’s learning preferences to ensure that study sessions
align with their preferred schedule (e.g., morning study sessions for a learner who performs better
earlier in the day).

Constraint 2: A learner cannot be assigned two different modules at the same time. The system
ensures that no overlapping study sessions are assigned, avoiding schedule conflicts between modules.

3. Conclusion

The implementation of a personalized education planning system using neural networks demonstrates a
promising advancement in the field of education technology. The system provides a dynamic, adaptive
learning experience that can adjust to individual learners’ needs, preferences, and learning styles. This
approach not only enhances the efficiency of learning processes but also helps learners achieve better
outcomes.

Through the integration of real-time data, neural networks continuously assess learner progress,
optimize learning paths, and provide tailored recommendations that evolve with the learner’s develop-
ment. This allows for a more engaging and supportive educational experience. Moreover, the ability
to adapt to various learning management systems (LMS) makes the proposed system highly scalable
and versatile across different educational settings.
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NMepcoHanizoBaHe naiaHyBaHHS HABYAHHSI HA OCHOBI HEMPOHHUX MepeX

Konunrpaak O., Kazumupa ., Mykan O., Borgap b.

Havionasvruti ynisepcumem «/Iv6i8CoKa noAIMeETHIKA»,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

VY crarTi mpeacTaBIeHO ePCOHATIZ0BAHY CUCTEMY IIJIAHYBAHHSI HABUYAHHS, sIKQ BUKOPHUC-
TOBY€ HEHPOHHI MepexXKi Ta INTYYHUN IHTEJEeKT I JUHAMIYHOI aJanTallil HaBYaJILHUX
HUISIXIB JIJIsT OKPeMEUX KOpucTyBadiB. CrucTreMa BUKOPUCTOBYE HEHPOHHI MePeXKi Jjisl aHaJIi-
3y mpodiIiB KOPUCTYBAtiB, YIIOA00aHb i JAHUX MPO ePEeKTUBHICTb y PeaJbHOMY Yaci, 1o
JI03BOJISIE CTBOPIOBATH iHAWBIIya/IbHI HaBYAIbHI ranu. Heitponni Mepexi € HeBin eMHOIO
YaCTUHOIO IPOTHO3YBAaHHsI MOTPEO YUHIB IMIJISXOM AHAJIZYy MUHYJIOI YCIINIHOCTI, CTUJIIO
HaBYAHHS Ta MOJEJel 3aJlydeHHs, MO J03BOJISIE€ CUCTEMI PEKOMEH/IyBATH BiIITOBiIHI HaB-
qaJIbHI MOYJ/Ii Ta ONTUMAJbHI PO3KJIaIN IIePCOHAII30BaHOTO HaBYaHHa. KpiMm Toro, cucre-
Ma KOPWT'Y€ HaBYaJIbHI IIJIAHU B PEAJIbHOMY 4Yaci, 6aJlaHCyI0un KOIHITUBHE HABAHTAKEHHS
Ta 3a0e3Medy0vn MMepcoHaIi30BaHuil TeMIl, 1mo0 3amobirtu BTOMi. BukopucroByioun i
BJOCKOHAJICHI MEXaHI3MHU, CUCTEMA HAJIA€ PEKOMEHIAINT OO0 KOHTEHTY Ta rpadiky Hab-
JaHHs, 9Ki HOCTIHO 3MIHIOIOTLCS B MIpy IIPOrpecy KOpUCTyBada. ANANTUBHUNE XapaKTep
CHCTEMHU MOJATKOBO MOCHUJIIOETHCS 3aBIAKN 3JATHOCTI HEMPOHHUX MEpPEXkK OIITHMI3yBaTh
JIOBI'OCTPOKOBI cTpaTerii HaBYaHHsd, 3a6e3medyodn 0aJaHc MiK ITOCTABJICHUM 3aBIAHHIM
i miaTpuMKo. 3aIpONOHOBAHY CUCTEMY MOXKHA JIEKO IHTErpyBaTH 3 CHCTEMaMU YIIPaB-
minng naguangaam (LMS), npononyioun MacirraboBane pillleHHs Jjisi II€PCOHATIZ0BAHOIO
HaBYAHHSA. Y CTATTI MiAKPECTIOETHCH e(DEeKTUBHICTh HEPOHHUX MEpPEeXK y CTBOPEHHI edek-
TUBHUX, OPIEHTOBAHUX HA YYHS ILIAHIB HABYAHHS Ta MOKPAINEHHI PE3YJILTATIB HABUAHHSI
3a JOIIOMOTOIO aJlaITallil Ha OCHOBI JaHUX.

Knto4oBi cnoBa: nepconanizosane nAGHYSaHHA HAGHAHHA; HeTPOHHT MEPECT 8 0CBIM;
HABYAALHE CUCTNEMU HA OCHOBL WIMYUHO20 THMEAEKMY; A0anmusHe HaA8UaGHHA; NEPCOHANT-
308aHG PEKOMEHIAULA HABUAHMA; YNPABATHNA KOZHIMUBHUM HASAHMANCEHHAM; OUHAMIY-
HUT PO3KAAD HABHAHHA; WMYWHUT THIMEAEKT 68 0CBIMI; 0CEIMHI TETHOA02I; HABYAHHA,
OPIEHMOBARE HA YUHA.
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