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1. Introduction

Studies of ion transport in porous systems are relevant in modern technologies for the creation of
new current sources, water purification devices, biological membranes, channels, etc [1–16]. This is
important for a deeper understanding of these processes and their management. The importance and
justification of such research is noted in many works, including [17–38]. The study of the mechanisms
of anomalous dispersion of rheological fluid flows in heterogeneous porous media [27,32–34] is relevant
from the point of view of practical applications. Another aspect of the research is related to the ionic
conductivity of ionic solutions in porous and layered structures, channels, in “electrolyte – electrode”
systems, which is important in connection with the anomalous behavior of ion diffusion and polarization
effects [18, 20, 21, 30, 39–51].

From the point of view of theoretical studies of ion transport in porous systems, approaches based
on nonequilibrium thermodynamic equations [36–38,40, 41, 45] with constant diffusion coefficients are
used, in particular equations of Poisson–Nernst–Planck, Smoluchovsky electrodiffusion. In [30, 47],
a statistical theory is proposed to describe the processes of electrodiffusion transport of ions in the
“electrolyte-electrode” system, taking into account spatial inhomogeneities and memory effects using
the statistical operator of the non-equilibrium method (NSO). In [30, 48, 49, 51] an experimental and
theoretical study of the subdiffusion impedance for a multi-layer GaSe system with encapsulated β-
cyclodextrin, which has a porous fractal structure, was carried out. It should be noted that some meth-
ods of calculating ion diffusion coefficients depending on coordinates and time for systems “electrolyte
solution – membrane”, “electrolyte solution – glassy materials containing fuel”, “electrolyte solution –
soil” is proposed in [52–54]. In [30, 47], a statistical theory is proposed to describe the processes of
electrodiffusion transport of ions in the “electrolyte – electrode” system, taking into account spatial in-
homogeneities and memory effects using NSO. In the vast majority of works, the equations of diffusion
processes with constant values of the diffusion coefficients of the components are used. Their values
are taken from experimental studies during numerical modeling in specific cases. On the other hand,
diffusion coefficients contain the main mechanisms of how diffusion processes occur through interaction
potentials between system particles, the time evolution operator according to Kubo’s formulas. An
important feature of these systems is their significant spatial heterogeneity, when the diffusion coef-
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ficients are functions of spatial coordinates and time, that is, time correlation functions “flow – flow”
〈ĵ(rl; t)ĵ(rs; t′)〉 in each of the phases and between phases.

It is interesting to study the processes of self-diffusion of ions in charged nanoporous media (particles
that are frozen) using computer modeling methods [55,56]. It is also important to note the recent work
of [16], where the self-diffusion of particles along the longitudinal coordinate in a channel of variable
cross-section was considered with the application of the two-dimensional Enskog–Boltzmann–Lorentz
kinetic equation with appropriate boundary conditions. In work [57], Enskog’s theory was applied to
describe the self-diffusion coefficient of the flow of solid spheres in a disordered porous medium.

In this work, a kinetic approach will be applied to the description of ion transport processes in
the system ionic solution – porous medium, the basic equations of which were obtained in [58]. The
second chapter will detail the generalized kinetic equations of the revised Enskog–Vlasov–Landau
theory for non-equilibrium ion distribution functions in the model of charged solid spheres for the
system ion solution – porous medium. In the third chapter, normal solutions of these equations,
corresponding hydrodynamic equations with analytical determination of mutual diffusion, thermal
diffusion, viscosity and thermal conductivity coefficients through particle distribution functions and
their nature of interaction for the ionic solution – porous medium system will be obtained using the
Chapman–Enskog method.

2. The kinetic equation of the revised Enskog–Landau theory for the electrolyte-porous
medium system

As in paper [58], we will consider the system of an ionic solution that interacts with a porous medium,
diffusing in it. Positively and negatively charged ions of the solution can penetrate into the structure of
the porous medium and move in it, interacting with the particles of the porous medium (matrix). We
will take the entire volume of the system equal to V = Vl+Vs, where Vl is the volume occupied by the
ionic solution, and Vs is the true volume porous matrix. Having entered the volume Vpor of the porous

space of the matrix, we can determine its porosity: φ = 1− Vpor

V . We will consider the ionic solution with
certain dielectric properties without explicit consideration of the molecular subsystem, and the porous
matrix as formed by structureless moving particles of s varieties. An example of a porous medium can
be biological systems (macromolecular structures), polymer, composite materials, electrode materials,
which can structurally change in the process of their interaction with ionic solutions. With this
consideration of the system, we have fs = 1− φ — the volume fraction of the porous matrix, fl = χφ
is the volume fraction of filling the pores with an ionic solution, where χ is degree of filling of pores
with an ionic solution (at χ = 1 is complete saturation of the porous medium with ionic solutions) and
fn = (1 − χ)φ is volume capacitive fraction of incomplete pore filling with an ionic solution. We will
assume that the kinetic energy of the ions of the solution is much greater than the kinetic energy of
the particles of the porous medium. In paper [58], for the description of ion transport processes in the
system “ionic solution – porous medium” a kinetic approach based on a modified chain of equations is
applied BBGKI for non-equilibrium particle distribution functions. The generalized kinetic equation
of the revised Enskog–Vlasov–Landau theory for the non-equilibrium distribution function of ions in
the model of charged hard spheres with consideration of short-lived of attractive interactions for the
system “ionic solution – porous medium”. We will use these results under the condition that the kinetic
energy of the ions is significantly greater than the kinetic energy of the particles of the matrix of the
porous medium. So, consider the model of charged hard spheres for the ionic subsystem, when the
interaction potential can be represented as a sum [58–61]:

Φαγ(r, r
′) = Φsh

αγ(r, r
′) + Φl

αγ(r, r
′),

where Φsh
αγ(r, r

′) is the potential of hard spheres, Φl
αγ(r, r

′) is the long-range interaction potential, in
particular the Coulomb potential. In addition, we will describe the interaction of ions and particles of
the porous medium short-term potential of solid spheres Φsh

αs(r, rs). Based on the works of [58–60] in
the case of the solid sphere model for the fluid subsystem, we get:
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(

∂

∂t
+ iLα(1)

)

fα(x1; t) = −
∑

γ

∫ σγ

0
dr2

∫

dp2 i L
sh
αγ(12)

×
∫ 0

−∞
dτ e(ε+iL0

αγ(12)+iLsh
αγ (12))τ gαγ(r1, r2|n; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ)

−
∫ σs

0
dxs i L

sh
αs(12)

∫ 0

−∞
dτ e(ε+iLα(1)+iLsh

αs(12))τ gαs(r1, rs|n; t+ τ)fα(x1; t+ τ)f1(xs; t)

−
∑

γ

∫ ∞

σγ

dr2

∫

dp2 i L
l
αγ(12)

∫ 0

−∞
dτ e(ε+iL0

αγ(12)+iLl
αγ (12))τ gαγ(r1, r2|n; t+τ)fα(x1; t+τ)fγ(x2; t+τ)

is the kinetic equation for the non-equilibrium one-particle distribution function of ions, taking into
account areas of action of short-acting (hard-sphere) and long-acting potentials. Given that in the
field of action of the potential of solid spheres, the interaction time τ → +0, as well as the results of
works [59–61], the equation can be presented in the form:
(

∂

∂t
+ iLα(1)

)

fα(x1; t) = −
∑

γ

∫

dx2 T̂αγ(12)gαγ (r1, r2|n; t)fα(x1; t)fγ(x2; t)

−
∫

dxs T̂αs(1s)gαs(r1, rs|n; t)fα(x1; t)f1(xs; t)

−
∑

γ

∫ ∞

σγ

dr2

∫

dp2 i L
l
αγ(12)

∫ 0

−∞
dτ e(ε+iL0

αγ(12)+iLl
αγ (12))τ gαγ(r1, r2|n; t+τ)fα(x1; t+τ)fγ(x2; t+τ),

where T̂αγ(12) is the Enskog collision operator for charged of hard spheres (ions) [59], T̂αs(1s) is the
operator Enskog collisions for charged hard spheres and hard spheres, describing a porous medium.
Next, if in the long-range part of the collision integral, perform the expansion e[ε+iL0

αγ(12)+iLl
αγ (12)]τ by

the contribution iLl
αγ(12) of the long-range interaction potential and limit ourselves to the first order

of the expansion, we get the following kinetic equation:
(

∂

∂t
+ iLα(1)

)

fα(x1; t) = −
∑

γ

∫

dx2 T̂αγ(12)gαγ (r1, r2|n; t)fα(x1; t)fγ(x2; t)

−
∫

dxs T̂αs(1s)gαs(r1, rs|n; t)fα(x1; t)f1(xs; t)

−
∑

γ

∫ ∞

σγ

dr2

∫

dp2 iL
l
αγ(12)

∫ 0

−∞
dτ e(ε+iL0

αγ(12))τ (1+iLl
αγ(12)τ)gαγ (r1, r2|n; t+τ)fα(x1; t+τ)fγ(x2; t+τ),

where the first term of the expansion is the generalized Vlasov collision operator – the generalized
mean field, and the second term is a generalized collision operator of the Landau type, taking into
account memory effects.

Having revealed the action of the Enskog operator on the right-hand side, in the spatially inhomo-
geneous case (with accuracy up to linear values along the gradients and without taking into account
memory effects) we get:

(

∂

∂t
+ iLα(1)

)

fα(x1; t) = I
(0)
αE(x1; t) + I

(1)
αE(x1; t) + I

(1)
αMF (x1; t) + I

(1)
αL(x1; t), (1)

where the terms on the right are collision integrals, due to the contribution from a certain type of
interparticle interaction. The first and second of them are Enskog-type collision integrals of the RET
theory [58, 59]:

I
(0)
αE(x1; t) =

∑

γ

∫

dv2

∫

dε

∫

b db g(12)gαγ (σαγ |n; t)
(

fα(r1,v
′
1; t)fγ(r2,v

′
2; t)− fα(r1,v1; t)fγ(r2,v2; t)

)

+

∫

dvs

∫

dε

∫

b db g(1s)gαs(σαs|n; t)
(

fα(r1,v
′
1; t)f1(rs,v

′
s; t)− fα(r1,v1; t)f1(rs,vs; t)

)

, (2)
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I
(1)
αE(x1; t) =

∑

γ

σ3
αγ

∫

dr̂12

∫

dv2 Θ
(

r̂12 · g(12)
)(

r̂12 · g(12)
)

·
(

gαγ(r12|n; t)r12 ·
[

fα(r1,v
′
1; t)∇2fγ(r2,v

′
2; t)− fα(r1,v1; t)∇2fγ(r2,v2; t)

]

+ 1
2

(

r̂12 ·∇2gαγ(r12|n; t)
) [

fα(r1,v
′
1; t)fγ(r2,v

′
2; t)− fα(r1,v1; t)fγ(r2,v2; t)

]

)

+ σ3
αs

∫

dr̂1s

∫

dvsΘ
(

r̂1s · g(1s)
)(

r̂1s · g(1s)
)

·
(

gαs(r1s|n; t)r1s ·
[

fα(r1,v
′
1; t)∇2f1(rs,v

′
s; t)− fα(r1,v1; t)∇sf1(rs,vs; t)

]

+ 1
2

(

r̂1s ·∇sgαs(r1s|n; t)
)

·
[

fα(r1,v
′
1; t)f1(rs,v

′
s; t)− fα(r1,v1; t)f1(rs,vs; t)

]

)

, (3)

where b is the aiming parameter, ∇s = ∂
∂rs

, ∇2 = ∂
∂r2

, gαγ(σαγ |n; t), gαs(σαs|n; t) are the contact
values of the paired quasi-equilibrium ion – ion, ion – particle matrix distribution function, r̂12 =

r12

|r12|
,

r̂1s =
r1s

|r1s|
are a unit vectors, v′

1 = v1+r̂12(r̂12·g(12)), v′
2 = v2−r̂12(r̂12·g(12)), v′

s = vs−r̂1s(r̂1s·g(1s))
are the values of particle velocities 1, 2, s after the collision, while v1, v2, vs are the value of their
velocities before the collision, where g(12) = v2−v1, g(1s) = vs−v1 are the relative speed. The work
assumes that the gradients ∂

∂rs
f1(rs,vs; t) and ∂

∂rs
gαs(r1s|n, β; t) are much smaller than ∂

∂r2
fγ(r2,v2; t)

and ∂
∂r2

gαγ(r12|n, β; t), which is characteristic of the matrix structure of the porous medium. Although
in real systems, membranes, electrodes, structural changes can be significant, and then it is necessary
to take into account these contributions in the collision integrals.

The following term in (1) is the contribution calculated in the KMFT [59, 62] mean field theory
approximation:

I
(1)
αMF (x1; t) =

1

mα

∑

γ

∫

dr2
∂

∂r1
Φl
αγ(|r|12) ·

∂

∂v1
gαγ(r12|n; t) · fγ(r2,v2; t)nα(r1; t).

The last term in the (1) is the integral of Landau-type collisions [58–60]

I
(1)
αL(x1; t) =

∑

γ

∫ ∫

dv2 dε b db g(12) (fα(r1,v
∗
1 ; t)fγ(r2,v

∗
2 ; t)− fα(r1,v1; t)fγ(r2,v2; t)) , (4)

which is presented in a simplified Boltzmann form. This formula can be obtained by switching to the
cylindrical coordinate system, by entering the aiming parameter b, the azimuthal scattering angle ε,
distance along the cylinder axis ξ, and integrating along ξ taking into account gαγ(r12|n; t) → 1. When
solving the equation by the Chapman–Enskog method, this form is convenient. In these expressions,
r∗1 v∗

2 are particle velocities after Coulomb scattering:

v∗
1 = v1 +∆v12, v∗

2 = v2 −∆v12,

∆v12 = − 1

mαγ

∫

σαγ

dξ
∂

∂r12
Φl
αγ(|r|12)

1

g12

∣

∣

∣

∣

r12=
√

b2+ξ2
,

mαγ is the reduced mass of particles of the α and γ varieties.

3. Non-equilibrium one-particle distribution function in the first approximation.
The Chapman–Enskog method

To construct normal solutions of the kinetic equation of the Enskog–Landau type, we will use the
Chapman–Enskog method [63, 64]. Since we will be interested in the solution in the linear approxi-
mation by the gradients of the corresponding particle number density nα(r; t), hydrodynamic velocity
v(r; t) and temperatures T (r; t), we will use the corresponding equations of hydrodynamics for the
average values of the densities of the number of particles, momentum and energy [61, 65, 66]:

∂

∂t
nα(r; t) = − ∂

∂r
· jα(r; t), (5)
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ρ(r; t)
∂

∂t
v(r; t) = − ∂

∂r
:
↔
P (r; t), (6)

ρ(r; t)
∂

∂t
ekin(r; t) = − ∂

∂r
· q(r; t)−

↔
P (r; t) :

∂

∂r
v(r; t) (7)

+
∑

α,γ

vα(r; t)

∫

dr12
∂

∂r12
Φl
α,γ(r12)nα(r1; t)nγ(r1 + nα(r1; t); t).

In these equations, the notations are introduced:

nα(r; t) =

∫

dv fα(r,v; t)

is the density of particles of grade α,

ρ(r; t) =
∑

α

mα

∫

dv fα(r,v; t)

is the total particle mass density,

ρ(r; t)v(r; t) =
∑

α

∫

dvmαv fα(r,v; t),

v(r; t) is the full hydrodynamic velocity of the particles,

ρ(r; t)ekin(r; t) =
∑

α

∫

dv
mαc

2
α(r; t)

2
fα(r,v; t),

where cα(r; t) = v − v(r; t) is the thermal velocity, vα(r; t) =
∫

dv fα(r,v; t)v is the average speed
particles of sort α. In the linear approximation by gradients, the partial flow jα(r; t) of particles of

sort α, the full tensor of viscous stresses
↔
P (r; t) and heat flow q(r; t) can be represented by gradients

and transfer coefficients:

jα(r; t) = −n2
∑

ξ

mαmξ

ρ
Dαξdα(r; t)−Dα

T

∂

∂r
lnT (r; t), (8)

↔
P (r; t) = P (r; t)

↔
I −κ

(

∂

∂r
: v(r; t)

)

− 2η
↔
S(r; t), (9)

q(r; t) = −λ
∂

∂r
T (r; t) +

∑

α

wαdα(r; t), (10)

where ξ = γ, s, Dαγ is the mutual diffusion coefficient, Dα
T is the thermal diffusion coefficient, κ is

the bulk viscosity coefficient, η is the coefficient of shear viscosity and λ is the coefficient of thermal
conductivity of solution particles in the solution-porous medium system. dα(r; t) is the diffusion
thermodynamic force of α grade particles, for which the condition

∑

α dα(r; t) = 0 is fulfilled.
The presented equations of hydrodynamics can be constructed on the basis of solutions of the

kinetic equation (1). To find the appropriate expressions for the transfer coefficients according to the
method. We will look for the Chapman–Enskog [61, 63, 64] solution of the equation (1) in the form:

fα(r1,v1; t) = f0
α(r1,v1; t)

(

1 + ϕα(r1,v1; t)
)

,

where f0
α(r1,v1; t) is the locally-equilibrium Maxwell function as a zero approximation corresponding

to ideal hydrodynamics,

f1 ≡ f (0)
α (x1; t) = nα(r1; t)

(

mα

2πkBT (r1; t)

)3/2

exp

(

−mαc
2
α(r1; t)

2kBT (r1; t)

)

.

The correction ϕα(r1,v1; t) is written in terms of Sonin–Lager polynomials [61, 63, 64]:

ϕα(r1,v1; t) = −
√

mα

2kBT
Eα

(

mα(cα)
2

2

)

ncα · dα −
√

mα

2kBT
Aα

(

mα(cα)
2

2

)

cα · ∂

∂r
lnT (r1; t)

− mα

2kBT
Bα

(

mα(cα)
2

2

)(

cαcα − 1

3
(cα)

2
↔
I

)

,
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where

Eα(x) =

∞
∑

j=0

Eα
j L

3/2
j (x), Aα(x) =

∞
∑

j=0

Aα
j L

3/2
j (x), Bα(x) =

∞
∑

j=0

Bα
j L

5/2
j (x),

Lr
j(x) =

j
∑

s=0

(−1)sxs
j! Γ(j + r + 1)

s! Γ(s+ r + 1)Γ(j − s+ 1)
.

Based on the works [61], we define the functions Eα(x), Aα(x), Bα(x), after which the zero polynomial
approximation we obtain the following expressions for the transfer coefficients taking into account the
porosity φ of the matrix and the fraction χ of filling the porous space with an ionic solution:

Dαγ = − nαρ

mγn

√

kBT

2mα
Eα

0

is the mutual diffusion coefficient of ions,

Dα
T = mαnα

√

kBT

2mα
Aα

0

is the thermal diffusion coefficient of ions of the sort α,

κ =
8

9

∑

αγ

σ4
αγχφgαγ(σαγ |n, β)nαnγ

mαγ

mγ

√

2πmαγkBT

+
8

9

∑

α

σ4
αs(1− φ)gαs(σαs|n, β)nαns

mαs

ms

√

2πmαskBT =
∑

αξ

καξ

is the volume viscosity coefficient,

η =
3

5
κ+

∑

α

nαkBT

[

1 +
2π

15

∑

ξ

nξσ
3
αξfξgαξ(σαξ|n, β)

(

1 +
mαB

ξ
0

mξB
α
0

)]

Bα
0 (11)

is the coefficient of shear viscosity, fξ = fγ , fs, fγ = χφ, fs = 1− φ and

λ =
3

2

∑

αξ

kBmαmξ

(

1

2
(mα +mξ)−

1

8

(mα −mξ)
2

mα +mξ

)−3

καξ

+
5

4

∑

α

nαkB

√

2kBT

mα

[

1− Aα
0

Aα
1

+
π

5

∑

ξ

nξσ
3
αξfξgαξ(σαξ|n, β)

(

1 +
m

3/2
α Aξ

1

m
3/2
ξ Aα

1

)]

Aα
1

is the thermal conductivity coefficient of the system, where

wα =
5

4
nnα

√

2(kBT )3

mα
Eα

0 . (12)

The most interesting among the transfer coefficients are the diffusion coefficients of the ions of the
solution in the porous space of the medium. This is related to the important question of how much
and how quickly the ionic solution can fill the porous space of the medium. Therefore, let’s consider
the structure of the ion diffusion coefficient in more detail. To do this, we will calculate the function
Eα

0 [61] for our model

Eα
0 = −

∑

γ

3πmγ

8ρnα

√

πmα

mαγ

(

χφ
(

gαγ(σαγ |n, β)αγΩ(1,1)
hs +αγ Ω

(1,1)
l

))−1

− 3πms

8ρnα

√

πmα

mαs

(

(1− φ)gαγ(σαs|n, β)αsΩ(1,1)
hs

)−1
,

for the mutual diffusion coefficient, we obtain the following expression:

Dαγ =
3π

8n

√

πkBT

mαγ

(

χφ
(

gαγ(σαγ , n)
αγΩ

(1,1)
hs +αγ Ω

(1,1)
l

))−1
. (13)
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The quantities αγΩ
(1,1)
hs and αγΩ

(1,1)
l are called Ω-integrals [59, 61, 64]. For this system, they have the

following form:

αγΩ
(1,1)
hs =

√

kBT

2πmαγ
πσ2

αγ ,

αsΩ
(1,1)
hs =

√

kBT

2πmαs
πσ2

αs,

αγΩ
(1,1)
l =

√

kBT

2πmαγ

π

2

(

ZαZγe
2

εkBT

)2

ln
D

σαγ
,

where ε is the dielectric constant, Zα is the valence of ions of the α sort, D is the Coulomb shielding
radius. For the diffusion coefficient of α particles in the system, the ionic solution is porous environment
we get:

Dα =
3π

8n

√

πkBT

mαα

(

χφ
(

gαα(σαα, n)
ααΩ

(1,1)
hs +αα Ω

(1,1)
l

))−1

+
3π

8n

√

πkBT

mαγ

(

χφ
(

gαγ(σαγ , n)
αγΩ

(1,1)
hs +αγ Ω

(1,1)
l

))−1

+
3π

8n

√

πkBT

mαs

(

(1− φ)gαs(σαs, n)
αsΩ

(1,1)
hs

)−1
. (14)

It is important to note that we can account for the charge of the porous medium Zs by introducing the

function (1−φ)αsΩ
(1,1)
l in the last term in (14). As we can see, for further numerical calculation of the

diffusion coefficient, it is necessary to calculate the contact values of the paired distribution functions
of the particles of the solution and the porous medium, as well as the corresponding shielding radius D.
In the case of the model without taking into account long-range interactions, we obtain the diffusion
coefficient for the fluid system – a porous medium based on the solid sphere model:

Dα
sh =

3π

8n

√

πkBT

mαα

(

χφgαα(σαα, n)
ααΩ

(1,1)
hs

)−1

+
3π

8n

√

πkBT

mαγ

(

χφgαγ(σαγ , n)
αγΩ

(1,1)
hs

)−1

+
3π

8n

√

πkBT

mαs

(

(1− φ)gαs(σαs, n)
αsΩ

(1,1)
hs

)−1
.

It is important to note that in (14) the shielding radius D can be calculated according to the work
of [67] as D = 1

2Γ, and Γ is the solution of the equations:

4Γ2 =
e2

ε

M
∑

α=1

nαX
2
α,

Xα =

(

Zα − π

2

σ2
α

1−∆
Pm

)

(1 + Γσα)
−1,

Pm =
M
∑

α=1

nασαZα

1 + Γσα

(

1 +
π

2(1 −∆)

M
∑

α=1

nασ
3
α

1 + Γσα

)−1

,

where ∆ =
∑M

α=1 ∆ασ
3
α, ∆α = πnα

6 .
Expressions for the coordinate distribution functions gαγ(r) can be obtained based on the results of

the works [68–71]. It is important to note that in [68] the Percus–Yevick equation for the radial function
of the distribution of particles in a liquid is generalized to the case of an n-component mixture, in [69]
gαγ(r) was calculated for ionic mixtures in the case of Coulomb and shielded Coulomb interactions. A
more accurate formula for calculations of gαγ(r) based on the Percus–Yevick approximation is given
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in [70], and [71] applies a new closure for the Ornstein–Zernike equation for a system of charged
particles with a specific interaction potential. Based on this, gαγ(r) at the contact of solid spheres can
be used in calculations of transfer coefficients in the form:

gαα(σα) =
((

1 + ∆
2

)

+ 3
2∆γσ

2
γ(σα − σγ)

)

(1−∆)−2,

gγγ(σγ) =
((

1 + ∆
2

)

+ 3
2∆ασ

2
α(σγ − σα)

)

(1−∆)−2,

gαγ(σαγ) = (σγgαα(σα) + σαgγγ(σγ))/2σαγ .

In the case of considering a simple model of the system ionic solution – porous medium, we have
a three-component system: positively and negatively charged ions of the solution σα, α = +,− and
particles of the porous medium σs, which are considered stationary and can have a charge Zs. For
such a model, the shielding radius D is determined from the corresponding equations:

4Γ2 =
e2

εl
(n+X

2
+ + n−X

2
− + nsX

2
s ),

X+ =

(

Z+ − π

2

σ2
+

1−∆
Pm

)

(1 + Γσ+)
−1,

X− = (Z− − π

2

σ2
−

1−∆
Pm)(1 + Γσ−)

−1,

Xs =

(

Zs −
π

2

σ2
s

1−∆
Pm

)

(1 + Γσs)
−1,

Pm =

(

n+σ+Z+

1 + Γσ+
+

n−σ−Z−

1 + Γσ−
+

nsσsZs

1 + Γσs

)(

1 +
π

2(1−∆)

(

n+σ
3
+

1 + Γσ+
+

n−σ
3
−

1 + Γσ−
+

nsσ
3
s

1 + Γσs

))−1

,

∆ =
π

6

(

n+σ
3
+ + n−σ

3
− + nsσ

3
s

)

,

and the contact values of even distribution functions have the following form:

g++(σ+) =
((

1 + ∆
2

)

+ 3
2

(

∆−σ
2
−(σ+ − σ−) + ∆sσ

2
s(σ+ − σs)

))

(1−∆)−2,

g−−(σ−) =
((

1 + ∆
2

)

+ 3
2

(

∆+σ
2
+(σ− − σ+) + ∆sσ

2
s(σ− − σs)

))

(1−∆)−2,

gss(σs) =
((

1 + ∆
2

)

+ 3
2

(

∆+σ
2
+(σs − σ+) + ∆−σ

2
−(σs − σ−)

))

(1−∆)−2,

g+−(σ+−) =
(σ−g++(σ+) + σ+g−−(σ−))

2σ+−
,

gs−(σs−) =
(σ−gss(σs) + σsg−−(σ−))

2σs−
,

gs+(σs+) =
(σ+gss(σs) + σsg++(σ+))

2σs+
,

where ∆+ = π
6n+, ∆− = π

6n−, ∆s =
π
6ns.

4. Conclusions

The kinetic approach is applied to the description of ion transport processes in the ionic solution-
porous medium system. By solving the Enskog–Landau kinetic equations for charged solid spheres,
constructing hydrodynamic equations, analytical expressions for mutual diffusion, thermal diffusion,
viscosity, and thermal conductivity coefficients due to particle distribution functions and their nature
of interaction were obtained. Their structure fully reflects the character of the model of interaction of
system particles, namely, at small distances – the model of hard spheres, at large – Coulomb shielded
interaction.

The transfer coefficients in such a model depend on the contact values of the paired distribution
functions of the charged solid spheres, the shielding radius D, the porosity φ of the medium, its density,
and the parameter χ of the proportion of filling the porous space with an ionic solution. We discussed
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one of the ways of calculating D above. However, these problems are related to the approximation
of gαγ(r12|n; t) → 1 in the Landau-type collision integral (4). To find gαγ(r12|n; t), it is necessary
to use the system of equations of the Ornstein–Zernike type in the non-equilibrium case [72–74], or
the method of collective variables [75], which will be applied in the following works in the case of
ionic solutions. This is important from the point of view of consideration of non-stationary transport
processes in the system ionic solution – porous medium.
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Кiнетичнi коефiцiєнти транспорту iонiв у пористому середовищi
на основi кiнетичного рiвняння Енскога-Ландау

Токарчук М. В.1,2

1Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, 79011, Львiв, Україна
2Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Отримано нормальнi розвязки кiнетичного рiвняння Енскога–Власова–Ландау в ме-
жах моделi позитивно i негативно заряджених твердих сфер для системи iонний роз-
чин – пористе середовище. Застосовано метод Чепмена–Енскога. Шляхом побудови
рiвнянь гiдродинамiки на основi нормальних розвязкiв кiнетичного рiвняння орти-
мано аналiтичнi вирази для коефiцiєнтiв вязкостi, теплопровiдностi, дифузiї iонiв в
системi iонний розчин – пористе середовище.

Ключовi слова: кiнетичнi рiвняння; функцiя розподiлу; рiвняння гiдродинамiки;

коефiцiєнти переносу; дифузiя; радiус екранування; iонний розчин – система пори-

сте середовище.
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