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Fractional-order modeling represents a viable approach for addressing the inherent limi-
tations of total variation in image deblurring tasks. This technique is achieved through
the discretization of fractional derivatives and has demonstrated significant advancements
in enhancing the quality of reconstructed images. Building upon the success of our pre-
vious work on blind deconvolution, where we utilized an image-based total variation to
reduce the staircase effect, we analyze and test a novel blind deblurring model based on
β-order fractional derivatives using the Nash game. This game employs the same type of
players, each with their strategy to find an optimal solution, as defined in our previous
work. Furthermore, we compare our proposed method with classical and fractional-order
methods with different β parameters. Our numerical results demonstrate, that our method
achieves higher effectiveness and better image quality compared to existing reconstruction
methods.
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1. Introduction

The rectification of blurred images is a crucial aspect of image processing and computer vision, focusing
on mitigating the adverse effects caused by various factors such as camera shake, defocus, or motion
blur, which collectively reduce image sharpness. Image deblurring involves removing blur artifacts to
restore a sharp representation of the visual content. Various methodologies have been proposed to aid
in image restoration efforts, including nonlinear partial differential equations (PDEs) based on total
variation [1–6], as well as non-local techniques [3,7,8]. Additionally, deconvolution, a widely employed
technique, seeks to remove blur by modeling it as the convolution of the original image with a blurring
kernel, which requires solving equations that describe this convolutional process. This study examines
the degradation process inherent in image blurring through the following mathematical formulation:

z = k ⊗ u+ η. (1)
In the context of image deblurring, we denote the observed image as z, the original image as u,

and η represents the noise added to the blurred image. The blur is attributed to the kernel k, and the
convolution operator ⊗ is employed. Total Variation (TV) serves as an established technique for image
deblurring and restoration. The underlying principle of TV-based deblurring is to minimize the total
variation of the image, thereby reducing the degree of blur while preserving essential image features
like edges. This approach formulates the problem as an optimization task, wherein the objective is to
find the image that minimizes the total variation subject to constraints. This optimization problem
is typically resolved through the use of iterative numerical methods. A key challenge inherent in TV-
based deblurring is the ill-posedness of the inverse problem, resulting in unstable solutions and artifacts
in the reconstructed image. To address this issue, the Rudin–Osher–Fatemi (ROF) method introduces
a regularization term, specifically the TV-L2 regularization, into the optimization problem defined by

min
u

J(u) =
1

2
‖k ⊗ u− z‖2L2(Ω) + α

∫

Ω
|∇u| dx. (2)

The TV-L2 regularization combines the total variation term with an L2 fidelity term, which serves to
balance the trade-off between deblurring and noise suppression. In this study, we focus on grayscale
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images for simplicity. These images are considered as functions that map a rectangular domain
Ω =]0, l[×]0, L[ into R (or ]0, 1[), assuming they belong to the space TV-L2. This regularization
approach has demonstrated efficacy in enhancing the stability and improving the quality of the recon-
structed image, rendering it a widely-utilized technique in the field of image deblurring and restoration.
However, the ROF model frequently generates piecewise constant solutions, leading to an artifact com-
monly referred to as the staircasing effect. This artifact manifests as spurious edges or uniform regions
in areas where smooth gradients are expected.

Consequently, Chan and Wong proposed an enhancement of the Rudin–Osher–Fatemi (ROF)
method by introducing an additional regularization term that addresses both the image and the point
spread function (PSF). This term is defined as follows:

min
u,k

J(u, k) =
1

2
‖k ⊗ u− z‖2L2(Ω) + α1

∫

Ω
|∇u| dx+ α2

∫

Ω
|∇k| dx, (3)

where α1 and α2 are non-negative parameters. Moreover, Meskine et al. proposed a blind deconvolution
method using Nash game, defined by

min
u,k

J(u, k) =
1

2
‖k ⊗ u− z‖2L2(Ω) +

∫

Ω
α(x)|∇u| dx +

∫

Ω
(1− α(x))|∇k| dx, (4)

where α(x) = 1
1+γ|∇Gσ⊗z|2

as an edge-stopping function, to control the speed of diffusion, where γ

represents a threshold parameter, and Gσ(x) =
1

2πσ2 exp
(

− |x|2

2σ2

)

.
Fractional-order calculus is an extension of integer-order calculus, a discipline with a history span-

ning over 300 years [9–12]. Currently, three primary formulations exist for defining fractional-order
differentiation: the Riemann–Liouville definition, Grünwald–Letnikov definition, and the Caputo def-
inition [12]. Let β be a positive number assumed to be within the range of two consecutive integers,
n− 1 and n, such that 0 6 l = n− 1 < β < n. The fractional β-order differentiation at a point x ∈ R

is denoted by the differential operator Dβ
[a,x], where a and x represent the bounds of the integral over a

one-dimensional (1D) computational domain, specifically lying between the two integers, n− 1 and n.
The initial formulation for a derivative of general order β is referred to as the left-sided Riemann–

Liouville (RL) derivative,

D
β

RL[a,x]f(x) :=
1

Γ(n− β)

(

d

dx

)n ∫ x

a

f(τ) dτ

(x− τ)(β−n+1)
. (5)

Following that, the right-sided RL derivative and the Riesz-RL (central) fractional derivative are,
respectively, presented as

D
β

RL[x,b]f(x) :=
(−1)n

Γ(n− β)

(

d

dx

)n ∫ b

x

f(τ) dτ

(τ − x)(β−n+1)
, (6)

D
β
RL[a,b]f(x) :=

1

2

(

D
β
[a,x]f(x) + (−1)nDβ

[x,b]f(x)
)

. (7)

The second formulation corresponds to the Caputo derivative of order β, defined as

D
β

C[a,x]f(x) :=
1

Γ(n− β)

∫ x

a

f (n)(τ) dτ

(x− τ)(β−n+1)
. (8)

Here, f (n) denotes the nth-order derivative of the function f(x). Similarly, the right-sided derivative
and the Riesz–Caputo fractional derivative are defined equivalently as

D
β

C[x,b]f(x) :=
(−1)n

Γ(n− β)

∫ b

x

f (n)(τ) dτ

(x− τ)(β−n+1)
, (9)

D
β
C[a,b]f(x) :=

1
2

(

D
β
[a,x]f(x) + (−1)nDβ

[x,b]f(x)
)

. (10)

The third formulation corresponds to the Grünwald–Letnikov derivative of order β, defined as

D
β
[a,x]f(x) := lim

h→0

1

hβ

[x−a
h

]
∑

j=1

(−1)jCβ
j f(x− jh), (11)

where C
β
l = (−1)l Γ(β+1)

Γ(l+1)Γ(β+1−l) .
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Both the Riemann–Louville definition and the Caputo definition rely on the Cauchy integral for-
mula, resulting in computational complexity. In contrast, the Grünwald—Letnikov definition can be
transformed into a convolutional form during numerical implementation, showcasing enhanced adapt-
ability to image signal processing. Therefore, this paper utilizes the Grünwald–Letnikov fractional-
order definition to improve the effectiveness and efficiency of image deblurring. Numerous authors
have proposed models based on fractional-order derivatives. In this paragraph, we highlight some
of these works: Zhou and Tang [13] proposed a fractional-order total variation (FOTV) blind image
restoration algorithm based on the L1-norm using iterative semi-quadratic regularization to solve the
problem. Zhang et al. [14] described a novel computed tomography reconstruction method that utilizes
fractional-order total variation, considering more neighboring image voxels and adaptively determin-
ing corresponding weights to suppress the over-smoothing effect. Zhang and Wei [15] proposed a new
variational model for image denoising based on fractional-order derivatives instead of the gradient of
the image. They also provide a numerical algorithm for solving the model based on the discrete frac-
tional difference. Zhou et al. [16] employed a fractional-order model that extends the integer-order
total variation to reduce artifacts. Self-similarity is introduced as prior information because natural
images usually exhibit texture features. The cost function is generated and solved using semi-quadratic
regularization. Another group of authors suggested a method for blind restoration of motion-blurred
images using fractional-order regularization and sparsity constraint. They utilized the split Bregman
method to combine an iterative thresholding algorithm [17]. This paper aims to suppress the over-
smoothing effects and preserve edges in image processing and restoration methods. For this reason,
this paper is organized as follows: Section 2 presents the preliminaries, including fractional-order total
variation using the Nash game proposed in Section 3. The experiments are demonstrated in Section 4,
and the conclusion is presented in Section 5.

2. Preliminaries

2.1. Definitions and operators of Fractional-order total variation

The Grünwald–Letnikov definition. The Grünwald–Letnikov fractional-order derivatives, ∇β
x and

∇β
y , for an input image u of order β ∈ R

+, are given by

∇β
xui,j :=

k−1
∑

l=0

C
β
l ui−k,j, (12)

∇β
yui,j :=

k−1
∑

l=0

C
β
l ui,j−k. (13)

Here, k signifies the number of neighboring pixels. Additionally, the discrete fractional-order gradient
is denoted as ∇βu = (∇β

xu,∇
β
yu)T.

Definition of the adjoint and divergence operators of FOTV. The adjoint operators for the
fractional-order derivatives are defined as follows:

(

∇β
x

)T
ui,j :=

k−1
∑

l=0

C
β
l ui+k,j, (14)

(

∇β
y

)T
ui,j :=

k−1
∑

l=0

C
β
l ui,j+k. (15)

By applying these definitions to a vector function p(x, y) = (p1(x, y), p2(x, y)), we can derive the
fractional divergence operator as:

divβ p = (−1)β
(

∇β
)T

p = (−1)β
((

∇β
x

)T
p1i,j + (∇β

y )
Tp2i,j

)

. (16)

2.2. Properties

Zang and Chen discuss a generalization of the Total Variation (TV) regularizer in [18], known as the
fractional total β-order regularizer, and its associated mathematical properties within the β-bounded
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variation space. The fractional total β-order variation of a function u is defined by

TVβ(u) = sup
v

{
∫

Ω
−u divβ v dx | v = (v1, v2) ∈

(

C1
0 (Ω,R

2)
)2

, ‖v‖L∞ < 1

}

,

where 0 6 l = n−1 < β < n, ‖v‖L∞ = max
√

v21 + v22, and divβ v = ∂βv1

∂x
β
1

+ ∂βv2

∂x
β
2

denotes a fractional β-

order derivative of vi along the xi direction. The space Cl0(Ω,R
2) represents the l-compactly supported

continuous-integrable function space. When β = 1, the definition of TVβ coincides with that of TV.

3. Fractional-order total variation using Nash game

3.1. Problem formulation

Our model applies a non-local framework for our blind deconvolution problem to recover the image
without blur and noise. Our work defines a combination of two techniques: the local method [1] and
our proposal a non-local framework based on the work of Gilboa and Osher [7], in which: we split the
original optimization into non-local and fractional order strategies to play a static game of complete
information. We started with defined our functionals:

min
u

Ju(u, k) =
1

2
‖k ⊗ u− z‖2L2(Ω) +

∫

Ω
α(x) |∇w−NLu| dx+

δ

2
‖u‖2L2(Ω), (17)

min
k

Jk(u, k) =
1

2
‖k ⊗ u− z‖2L2(Ω) +

∫

Ω
(1− α(x))|∇βk| dx. (18)

Our objective is to engage in a competition involving two players following this structure:

• The first player utilizes the blurred image as a strategy to minimize (17).
• The strategy employed by the second player involves utilizing the kernel to minimize (18).
• Both players act simultaneously and iteratively.
• The objective is for both players to refine their strategies to achieve the optimal solution iteratively.

The goal is to demonstrate the existence and uniqueness of a solution (u∗, k∗) that minimizes both
Ju(u, k) and Jk(u, k)).

3.2. Analysis of our proposed method

This approach enhances the robustness of image restoration by leveraging the synergistic benefits
of blind deconvolution, which addresses the convolution process, and fractional-order total variation
regularization, which effectively reduces image blur while preserving more details and edges. This
study presents a novel approach proposing a Nash equilibrium-based framework for Fractional-Order
Total Variation (FOTV) as follows:

min
u,k

J(u, k) =
1

2
‖k ⊗ u− z‖2L2(Ω) +

∫

Ω
α(x) |∇w−NLu| dx+

∫

Ω
(1− α(x))|∇βk|dx+

δ

2
‖u‖2L2(Ω), (19)

where ∇β represents the β-order gradient operator (1 6 β 6 2), the non-local gradient (∇wu) (x) : Ω→
Ω is defined as follows:

(∇w−NLu) (x, y) := (u(y)− u(x))
√

w(x, y), x, y ∈ Ω (20)

and |∇βk| =

√

(∇β
xk)2 + (∇β

yk)2.
We resolve the functionals using the first-order optimality conditions:

∂Ju−NL(k)

∂u
= k(−x,−y)⊗ (k ⊗ u− z)−∇α(x) ·

∇w−NL(u)

|∇w−NL(u)|
+ δ · u = 0 x ∈ Ω, (21)

∂J(k)

∂k
= u(−x,−y)⊗ (u⊗ k − z)− (∇β

x)
T

[

(1− α(x))
∇β

xk
√

(∇βk)2 + ε2

]

= 0 x ∈ Ω. (22)

Incorporating α(x) as a spatially and scale adaptive function,

∂Ju−NL(u)

∂u
= k(−x,−y)⊗ (k ⊗ u− z)
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−

∫

Ω
α(x)(u(y) − u(x))w(x, y)

(

1

|∇w−NLu| (x)
+

1

|∇w−NLu| (y)

)

dy + δ · u, (23)

∂J(k)

∂k
= u(−x,−y)⊗ (u⊗ k − z)−

(

∇β
x

)T

[

(1− α(x))
∇β

xk
√

(∇βk)2 + ε2

]

= 0 x ∈ Ω. (24)

With w(x, y) is a weighted function that presents the affinity between pixels based on image features
(e.g. gray level value, edge indicator, dominant frequency, dominant direction, etc), the weight is
defined generally by

w(x, y) =

{

g(Ff(x), Ff(y)) if y ∈ Ωw(x),
0 otherwise,

where

g(Ff(x), Ff(y)) = exp

{

−

(

‖Ff(x)− Ff(y)‖a2
h

)2
}

, (25)

Ff(x)(u) = f(x) ∈ Bx, where Bx is a patch centered at x, Ωw(x) = Ω.
Solving these fractional differential equations simultaneously through an iterative method enables

us to derive the optimal solution and approximate the deblurred image.

3.3. Algorithm Nash equilibrium

It is generally difficult to determine the optimal u and k simultaneously; a commonly used technique
is alternating minimization, that alternatively updates one variable while keeping the other fixed. The
Nash equilibrium is computed by the following decomposition algorithm.

Algorithm 1 Nash Equilibrium Algorithm for FOTV.

1: Input: Initial values u(0), k(0); Tolerance ε > 0; Maximum iterations N

2: Output: Updated values u(n), k(n)

3: Initialize n← 0
4: while not converged and n < N

5: Phase 1: Update u:
6: u(n+1) ← argmin

u
Ju(u, k

(n))

7: Phase 2: Update k:
8: k(n+1) ← argmin

k
Jk(u

(n+1), k)

9: Check convergence:

10: if ‖u(n+1) − u(n)‖ < ε and ‖k(n+1) − k(n)‖ < ε then

11: Convergence flag ← true

12: else

13: Convergence flag ← false

14: Increment n by 1

4. Numerical experiments

In this section, we present the numerical results obtained from applying fractional-order total variation
for image deblurring and compare our method with alternative approaches through two tests. We utilize
standard images with varied fractional-order values to assess the effectiveness of our model.

To measure performance, we utilize the Peak Signal-to-Noise Ratio (PSNR) metric, the Struc-
tural Similarity Index Measure (SSIM), and the Improvement in Signal-to-Noise Ratio (ISNR). Our
algorithm, based on the concept of total fractional variation, consistently outperforms conventional
methods across a wide range of applications, demonstrating superior accuracy and precision.

In Test 1, we evaluate our approach against the improved Perona and Malik (IP-M) model proposed
by Perona et al. [19], the fourth-order (F-O) PDE model introduced by You et al. [20], the improved
fourth-order (IF-O) PDE model proposed by Hajiaboli et al. [21], the Rudin–Osher–Fatemi (ROF)
model by Rudin et al. [2], and the fractional order total variation (FOTV) denoising algorithm. The
standard images used in this test include Lena and Barbara (both sized at 512 × 512 pixels) and
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Peppers (sized at 256 × 256 pixels). These images are subjected to Gaussian noise (at levels 10, 20,
and 30) and a Gaussian blur kernel of size 3, with β set to 1.2 (as detailed in Table 1).

Table 1. Our result compared with some fractional order methods with gaussian noise 10, 20, 30.

Image σ IP-M F-O-PDE IF-O-PDE ROF TVβ
2L

2 Our-Method
Barbara 10 31.2427 29.3776 29.3777 31.0871 31.9791 38.0261

20 26.6231 24.8155 24.8156 26.8212 26.9798 36.3326

30 24.4496 22.9267 22.9273 24.7415 24.8166 34.3686

Lena 10 33.6393 31.3776 31.5442 33.8378 34.7437 37.7452

20 29.7665 27.8080 24.8156 27.8098 31.4387 36.7909

30 27.4437 26.0883 22.9273 26.1019 29.6095 35.6760

Peppers 10 33.6967 31.8199 31.8205 33.8715 33.9328 32.0172
20 30.0275 28.0437 28.0457 30.1768 0.4965 32.6416

30 27.4982 26.1613 26.1694 28.2689 28.8305 31.8039

In Test 2, we compare our method with ROF, Li et al. [22], FOTV, and Golbaghi et al. [23]. Using
four standard images: Boat (512 × 512 pixels) and Cameraman, and Peppers (256 × 256 pixels), we
again apply Gaussian noise (at levels 15 and 25) and a Gaussian blur kernel of size 3, with various β

values (results are presented in Table 2).

Table 2. Our result compared with some fractional order methods with gaussian noise 15, 25.

Image σ ROF Li [22] Kazemi [23] FOTV β = 1.2 β = 1.4 β = 1.6 β = 1.8
Boat 15 34.4135 35.4193 35.8691 35.5267 36.6882 36.3396 36.3885 36.4989
Cameraman 15 28.4928 28.6568 29.4564 29.2562 31.4537 31.0828 31.1706 31.4220
Peppers 15 27.8284 27.3912 28.2503 27.9234 28.2503 28.3451 28.1105 27.8713
Boat 25 25.1717 26.1105 26.3206 26.2016 35.3350 35.6500 36.8521 36.7034
Cameraman 25 24.7547 25.9211 25.2113 25.4810 30.9349 30.9125 30.6907 30.6585
Peppers 25 24.2375 27.7213 26.9012 26.8215 26.9012 26.9667 26.9719 26.9390

a b c

Fig. 1. Tests images, (a) The sharp image of Barbara, (b) The blurred image with gaussian noise 10 and
gaussian blur kernel 3 and β=1.2, (c) The restored image using our method.

a b c

Fig. 2. Tests images, (a) The sharp image of Barbara, (b) The blurred image with gaussian noise 20 and
gaussian blur kernel 3 and β = 1.2, (c) The restored image using our method.
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Fig. 3. This plot compares the PSNR values of different meth-
ods applied to two images (Boat, Cameraman) with Gaussian
noise levels σ = 15 and σ = 25. The methods compared are
ROF, Li, Kazemi, FOTV, and several versions of the “Our

Method” parameterized by β values (1.2, 1.4, 1.6, 1.8).

In these numerical results, the ef-
fectiveness of our algorithm, based on
the concept of total fractional variation,
stands out significantly. It consistently
outperforms conventional methods, high-
lighting its potential to greatly enhance
accuracy and precision across a wide ar-
ray of applications. By incorporating the
notion of fractional variation, our algo-
rithm converges to a solution of vital im-
portance, showcasing its superiority when
compared to existing methods.

Table 1 presents a comparative anal-
ysis between our proposed method and
five conventional methods. Our approach
exhibits superior efficiency, particularly
concerning the Barbara and Lena im-
ages, as evidenced by the evaluation using
PSNR.

This visualization facilitates a comparative analysis of the effectiveness of various denoising and
deblurring methods across different images and noise levels. It specifically highlights the β value that
yields the highest PSNR for our method, thereby indicating its optimal parameter setting for superior
deblurring efficiency (Figure 3).

Table 2 provides a comparative analysis of PSNR measurements across fractional orders of β (1.2,
1.4, 1.6, 1.8). Our proposed method shows optimal performance with beta values between 1.2 and 1.6.

a b c

Fig. 4. Tests images, (a) The sharp image of Lena, (b) The blurred image with gaussian noise 10 and gaussian
blur kernel 3 and β = 1.2, (c) The restored image using our method.

a b c

Fig. 5. Tests images, (a) The sharp image of Lena, (b) The blurred image with gaussian noise 20 and gaussian
blur kernel 3 and β = 1.2, (c) The restored image using our method.
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a b c

Fig. 6. Tests images, (a) The sharp image of Peppers, (b) The blurred image with gaussian noise 10 and
gaussian blur kernel 3 and β = 1.2, (c) The restored image using our method.

a b c

Fig. 7. Tests images, (a) The sharp image of Peppers, (b) The blurred image with gaussian noise 20 and
gaussian blur kernel 3 and β = 1.2, (c) The restored image using our method.

a b c

Fig. 8. Tests images, (a) The sharp image of Boat, (b) The blurred image with gaussian noise 15 and gaussian
blur kernel 3 and β = 1.2, (c) The restored image using our method.

a b c

Fig. 9. Tests images, (a) The sharp image of Boat, (b) The blurred image with gaussian noise 25 and gaussian
blur kernel 3 and β = 1.4, (c) The restored image using our method.
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a b c

Fig. 10. Tests images, (a) The sharp image of Boat, (b) The blurred image with gaussian noise 15 and gaussian
blur kernel 3 and β = 1.6, (c) The restored image using our method.

a b c

Fig. 11. Tests images, (a) The sharp image of Peppers, (b) The blurred image with gaussian noise 15 and
gaussian blur kernel 3 and β = 1.4, (c) The restored image using our method.

5. Conclusion

The proposed methodology integrates fractional-order total variation with Nash game principles to
advance the efficiency of image deblurring and eliminate the staircase artifacts typically encountered
in image restoration.

By incorporating fractional-order total variation, the method adeptly balances image smoothness
with edge preservation. This integration is crucial for maintaining sharp image details while effectively
reducing artifacts such as staircase effects.

Additionally, the application of Nash game principles introduces a competitive optimization frame-
work that enhances the deblurring process through the consideration of interactions between different
image regions. This localized approach leverages the intrinsic characteristics of the image to refine
accuracy in restoration.

In summary, the synthesis of fractional-order total variation and Nash game principles within our
method presents a robust solution for image deblurring. This convergence not only augments efficiency
but also produces high-quality restored images devoid of undesirable staircase artifacts.
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Слiпе усунення розмиття зображення за допомогою дробових
похiдних i повної варiацiї: пiдхiд рiвноваги Неша

Бергiч С., Мусаїд Н.

Унiверситет Хасана II Касабланки, LMCSA, FST, Мохаммадiя

Моделювання дробового порядку є життєздатним пiдходом для усунення властивих
обмежень загальної варiацiї в задачах усунення розмиття зображення. Цей пiдхiд до-
сягається за рахунок дискретизацiї дробових похiдних i демонструє значний прогрес
у покращеннi якостi реконструйованих зображень. Спираючись на успiх нашої по-
передньої роботи зi слiпої деконволюцiї, де використано загальну варiацiю на основi
зображення для зменшення ефекту сходiв, аналiзуємо та тестуємо нову модель слi-
пого усунення розмиття на основi дробових похiдних β-порядку за допомогою гри
Неша. У цiй грi використовується той самий тип гравцiв, кожен зi своєю стратегiєю
пошуку оптимального рiшення, як визначено в нашiй попереднiй роботi. Крiм того,
порiвнюємо наш запропонований метод з класичними методами та методами дро-
бового порядку з рiзними параметрами β. Нашi чисельнi результати демонструють,
що наш метод досягає вищої ефективностi та кращої якостi зображення порiвняно з
iснуючими методами реконструкцiї.

Ключовi слова: слiпе зображення; зменшення розмитостi зображення; похiднi

дробового порядку; загальна варiацiя; рiвновага Неша.
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