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1. Introduction

Stochastic processes are fundamental in research of various phenomena: physical, financial and oth-
ers [1–3]. In order to model stochastic processes one uses stochastic differential equations (SDE), that
are also known as Langevin equations [1,2,4–6]. SDE contain stochastic variables that are usually based
on stochastic Wiener process (Brownian motion). System of SDE is compared to Fokker–Plank equa-
tion (FP) that allows to determine the transition probability density of stochastic process variables (the
Cauchy problem for FP equation) and other stochastic characteristics. As it is known, application of
SDE results in stochastic integrals (differentials of functions of stochastic variables) for which a special
rules of stochastic calculus were developed, like Itô, Stratоnovich, and some intermediate schemes [4,5].
As a result, each schema of SDE system corresponds to a slightly different Fokker–Plank equation.

The path integral method [7–10] plays an important role in obtaining solutions of FP equations.
Actually, integral over Wieners measure is a path integral for the simplest stochastic equation, that
describes Brownian motion. Path integral methods are well developed for one-dimensional SDE, where
path integrals are built based on solutions to FP equations as well as by variable substitution in
Wieners measure [9–11].

In the case of stochastic processes of multiple variables, there are a lot of inconsistencies in building
solution to FP equation using path integral method. In many papers building a solution to Fokker–
Plank equation for transitional probability density is done by analogy like for the propagator of the
Schrödinger equation in quantum mechanics for imaginary time [7]. In [12] for Fokker–Plank equation
a known solution was used for propagator of Schrödinger equation [13] in the multi-dimensional curved
space. The FP equation was received based on SDE in a generalized schema that contains Itô and
Stratоnovich exceptional cases. Let us note, that solution [13] for Schrödinger equation in form of
Feynman integral in multi-dimensional curved space differs from a similar solution [14] by a coefficient
near a term with scalar curviness in Lagrange function. Other generalizations of Feynman integral
known for propagator in curved space [15] differ by a mentioned term with scalar curviness as well as
contain different structure terms.

In of [16] the operator of Fokker–Plank equation is considered as operator of some quantum-
mechanical system with a “classic action” expression received by means of Weyl rule of ordering of
“coordinate” and “momentum” operators. Noted “classic action” was used to build solution to FP
equation in the form of Feynman path integral. A similar approach was used with application of other
ordering rules of “coordinate” and “momentum” operators in [17]. Let us note, that in such approach
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solution to FP equation is written using various path integrals. The Siggia–Rose–Janssen–deDominicis
(MSRJD) method is also used to determine solution to FP equation in the form of path integral [15].

In our work a solution to multi-dimensional FP equation in the form of path integral was built
based on methods described in [11, 18, 19]. We consider FP equation corresponding to Itô’s stochastic
calculus that is generally used in problems of financial engineering. Based on received path integral we
found a solution to the two-dimensional Heston model which is used in research of assets and derivatives
pricing in financial engineering. Obtained solutions of Heston model are compared to solutions found
in [20] using different approaches. We also point out differences in results based on path integrals built
in a number of works mentioned above.

2. Construction of path integral for the Fokker–Plank equation

Let us consider a general stochastic model of multiple variables which is given by system of SDE, which
are also known as Langevin equations [1, 2, 4]:

dXi(τ) = Ai(X(τ)) dτ +

n
∑

j

Bij(X(τ)) dWj(τ), i ∈ {1, . . . , n}. (1)

Here we introduce notation of stochastic variables Xi(τ) and variables of Wieners processes Wi(τ),
i ∈ {1, . . . , n}, τ ∈ [t0, t]. Values Ai(X(τ)), i ∈ {1, . . . , n} denote components of drift vector which
depend on set of variables Xi(τ), Bij(X(τ)) is matrix of dimension n × n, elements of which set
the volatility of stochastic variables ((i, j) ∈ {1, . . . , n}). Wiener processes Wi(τ), i ∈ {1, . . . , n} are
considered to be uncorrelated and fulfill the following known equations:

dWi(τ) dWj(τ) = δij dτ, (i, j) ∈ {1, . . . , n}.
For the SDE system (1) using Itô’s stochastic calculus we receive the following FP equation for tran-
sitional probability density of stochastic process [1, 4]

∂K(x, t)

∂t
=

1

2

n
∑

ij

∂2Σij(x)K(x, t)

∂xi∂xj
−

n
∑

i

∂Ai(x)K(x, t)

∂xi
. (2)

Here K(x, t), Ai(x), Σij(x) depends on set of variables xi, (i, j) ∈ {1, . . . , n}. Diffusion matrix Σ(x)
is defined by matrix B(x):

Σij(x) =

n
∑

k

BikBjk(x), (i, j) ∈ {1, . . . , n}. (3)

In the system of Stratоnovich stochastic calculus or for a number of intermediate systems the FP
equation differs by drift quantities Ai(x), i ∈ {1, . . . , n} [4, 12, 15, 16] hence the following series covers
all mentioned use cases.

Let us write FP equation (2) in operator form
∂K(x, t)

∂t
= −HK(x, t),

where H is the operator of FP equation

H = −1

2

n
∑

ij

∂2

∂xi∂xj
Σij(x) +

n
∑

i

∂

∂xi
Ai(x). (4)

For transitional probability density let us build solution in a form of exponential operator

K(x, x0, t, t0) = e−(t−t0)H
n
∏

i

δ(xi − x0i). (5)

Formula (5) gives a solution to Cauchy problem for FP equation. By generalizing one-dimensional
case [11], let us write operator (4) in the equal form

H = −1

2

n
∑

k

P̂2
k + U(x). (6)
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The following operators are denoted:

P̂k =

n
∑

i

Bik(x)
∂

∂xi
− pk(x), k ∈ {1, . . . , n}. (7)

Values U(x) and pk(x), k ∈ {1, . . . , n} we shall determine from equality of operators (4) and (6). After
a number of transformations we receive a system of equations for determining pk(x), k ∈ {1, . . . , n}:

n
∑

k

Bik(x)

(

pk(x) +

n
∑

j

∂Bjk(x)

∂xj

)

= Ai(x)−
1

2

n
∑

k,j

∂Bik(x)

∂xj
Bjk(x), i ∈ {1, . . . , n}, (8)

and also expression for U(x):

U(x) =
1

2

n
∑

k

p̃k(x)
2 +

1

2

n
∑

k,i

∂p̃k(x)

∂xi
Bik(x),

p̃k(x) = pk(x) +
n
∑

i

∂Bik(x)

∂xi
, k ∈ {1, . . . , n}.

(9)

From the system of equations (8) it results that representation (6) is valid if matrix Bik(x),
(i, k) ∈ {1, . . . , n} is invertable. Then the system of equations (7) unequivocally is solvable for pk,
k ∈ {1, . . . , n}. For exponential operator (5) taking into account form (6) we shall apply Gaussian
path integral [11, 18, 19]

e−(t−t0)H =

∫

Dq(τ) exp

(

− 1

2

n
∑

k

∫ t

t0

q2k(τ) dτ

)

T exp

(

−
n
∑

k

∫ t

t0

qk(τ) P̂k dτ −
∫ t

t0

U(x) dτ

)

. (10)

The following is denoted:

Dq(τ) =

n
∏

k

Dqk(τ), Dqk(τ) =

t
∏

τ=t0

√

dτ

2π
dqk(τ), (11)

symbol ‘T’ denotes chronological ordering of operators.
Let us consider differential operator in exponent (10) in details

n
∑

i

( n
∑

k

Bik(x) qk(τ)

)

∂

∂xi
. (12)

Since terms ∼ ∂
∂xi

for various i ∈ {1, . . . , n} in (12) do not commute in pairs, it is impossible to
“untangle” them. For this let us introduce new set of variables yi, i ∈ {1, . . . , n} based on the following
system of equations:

xi = ϕi(y1, y2, . . . , yn), i ∈ {1, . . . , n}. (13)

Here ϕi(y1, y2, . . . , yn), i ∈ {1, . . . , n} is a set of some linearly independent functions. Actions of
differential operators on arbitrary function Φ(x1, x2, . . . , xn) of variables x1, x2, . . . , xn we shall give as
follows:

n
∑

i

Bik(x)
∂

∂xi
Φ(x1, x2, . . . , xn) =

∂

∂yk
Φ
(

ϕ1, ϕ2, . . . , ϕn

)

, k ∈ {1, . . . , n}. (14)

Here functions ϕi, i ∈ {1, . . . , n} (14) we omit variables for simplicity. Based on (13) and (14) we
receive the following solution:

∂ϕi

∂yk
= Bik(ϕ), (i, k) ∈ {1, . . . , n}, (15)

where in matrix Bik(ϕ) elements we performed substitution xi = ϕi, i ∈ {1, . . . , n} according to (13).
Since determinant ‖∂ϕi

∂yk
‖ 6= 0, the variables yk, k ∈ {1, . . . , n} are linearly independent and map-

ping (13) is bijective.
As a result we receive the following form of operator action in exponent (10)

T exp

(

−
n
∑

k=1

∫ t

t0

qk(τ) dτ
∂

∂yk
−

∫ t

t0

F (ϕ(y)) dτ

) n
∏

i=1

δ(ϕi(y)− x0i), (16)

where F (x) is a some function of n variables.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1046–1057 (2024)



Solution to the Fokker–Plank equation in the path integral method 1049

Differential operators easily “untangle” and for (16) we receive

exp

(

−
∫ t

t0

F (φ(y(τ))) dτ

) n
∏

i=1

δ(ϕi(y(t0))− x0i). (17)

Here y(τ) denotes a set of variables yk(τ), k ∈ {1, . . . , n}:

yk(τ) = yk −
∫ t

τ
qk(τ1) dτ1, k ∈ {1, . . . , n}.

In path integral (10), after transformations (12)–(17), we perform the following variable substitution:

ϕi

(

. . . , yk −
∫ t

τ
qk(τ1) dτ1, . . .

)

= xi −
∫ t

τ
νi(τ1) dτ1, i ∈ {1, . . . , n}. (18)

Differentiating (18) for τ we receive:
∑

k

Bik(x(τ)) qk(τ) = νi(τ), i ∈ {1, . . . , n}. (19)

Here variables xi(τ), i ∈ {1, . . . , n} are given by right sides of equalities (18).
As a result for transitional probability density (5) we receive the following solution in the form of

path integral

K(x, x0, t, t0) =

∫

Dν(τ)J exp

(

− 1

2

n
∑

i,k

∫ t

t0

νi(τ)Σ
−1
ij (x(τ)) νk(τ) dτ

)

× exp

( n
∑

i,k

∫ t

t0

pk(x(τ))B
−1
ki (x(τ)) νi(τ) dτ −

∫ t

t0

U(x(τ)) dτ

) n
∏

i=1

δ

(

xi − x0i −
∫ t

t0

νi(τ) dτ

)

. (20)

Here values pk(x), k ∈ {1, . . . , n}, U(x) are defined in formulas (8) and (9). Functional Jacobian J of
variable substitution (18), (19) is given in Appendix A. Element of functional measure Dν(τ) is defined
in formula (11).

Let us perform a number of transformation in formula (20). In particular, the term in exponent (20)
and the term from Jacobian (49), taking into account equation for pk(x(τ)) (8), we shall transform
like the following

n
∑

i,k

pk(x(τ))B
−1
ki (x(τ)) νi(τ) +

1

2

n
∑

kij

∂Bkj(x(τ))

∂xk
B−1

ji (x(τ)) νi(τ)

=

n
∑

ij

νiΣ
−1
ij (x(τ))

(

Aj(x(τ)) −
1

2

n
∑

k

∂Σkj(x(τ))

∂xk

)

. (21)

Matrix Σ(x) is defined in formula (3). For U(x) (9) after analogous transformations we receive

U(x(τ)) =
1

2

n
∑

ij

Ac
i (x(τ))Σ

−1
ij (x(τ))Ac

j(x(τ)) +
1

2

n
∑

i

∂Ac
i (x(τ))

∂xi

+
1

8

n
∑

ijk

∂Bjk(x(τ))

∂xj

∂Bik(x(τ))

∂xi
+

1

4

n
∑

ijk

Bik(x(τ))
∂2Bjk(x(τ))

∂xi∂xj
. (22)

Here the following is denoted

Ac
i (x(τ)) = Ai(x(τ)) −

1

2

n
∑

j

∂Σij(x(τ))

∂xj
.

The last three terms in (22) can also be reduced to the form

1

2

n
∑

i

∂Ai(x(τ))

∂xi
− 1

8

n
∑

ij

∂2Wij(x(τ))

∂xi ∂xj
− 1

8

n
∑

ijk

∂Bjk(x(τ))

∂xi

∂Bik(x(τ))

∂xj
.

Term (21) and the first term in (22) we shall unite with the term ∼ νi(τ) νj(τ) in exponent (20) and
as the result we write the following:
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K(x, x0, t, t0) =

∫

D̃ν(τ) exp

(

−
∫ t

t0

L(x(τ)) dτ

) n
∏

i=1

δ

(

xi − x0i −
∫ t

t0

νi(τ) dτ

)

, (23)

L(x(τ)) = L0(x(τ)) + U0(x(τ)),

L0(x(τ)) =
1

2

n
∑

i,j

(

νi(τ)−Ac
i (x(τ))

)

Σ−1
ij (x(τ))

(

νj(τ)−Ac
j(x(τ))

)

dτ,

U0(x(τ))) =
1

2

n
∑

i

∂Ai(x(τ))

∂xi
− 1

8

n
∑

ij

∂2Wij(x(τ))

∂xi ∂xj
− 1

8

n
∑

ijk

∂Bjk(x(τ))

∂xi

∂Bik(x(τ))

∂xj
.

Here U0(x(τ)) has a missing first term (∼ Ac
i A

c
j) if compared with formula (22), and also element of

functional measure in (23) is equal to:

D̃ν(τ) =
t
∏

τ=t0

1

det(B(x(τ)))

n
∏

k

Dνk(τ), Dνk(τ) =
t
∏

τ=t0

√

dτ

2π
dνk(τ). (24)

This way the path integral (23) give the solution for transitional probability density of FP equa-
tion (2), which corresponds to the system of SDE (1). Path integral (23) is given in the “velocity”
space νi(τ) [7,11,18,19], where the solutions with “coordinates” xi(τ), i ∈ {1, . . . , n} is defined in (18).
One can be convinced that for one-dimensional case of for a system of independent one-dimensional
SDE the path integral (23) coincides with the one given in [11].

Let us make a few comments regarding building of path integral for FP equation based on quantum-
mechanical analogy [7, 16, 17]. In particular, based on (23) one can obtain description of “quantum-
mechanical system” by transition to imaginary time t → it and by substitution νk(τ) → νk(τ)/i,
k ∈ {1, . . . , n} (i is imaginary unit). Then inside exponent (23) we receive

−
∫ t

t0

L(x(τ)) dτ → i

∫ t

t0

LQM (x(τ)) dτ,

where

LQM(x) =
1

2

n
∑

i,j

(

νi − iAc
i (x)

)

Σ−1
ij (x)

(

νj − iAc
j(x)

)

− U0(x) (25)

is a Langrange function of some “classic system”. Based on (25) we find Hamilton function by ususal
means [7]

HQM(x) =
n
∑

i

νi
∂LQM (x)

∂νi
− LQM(x),

and “momentum”:

pi =
∂LQM(x)

∂νi
, i ∈ {1, . . . , n}.

As a result we find Hamilton function of the system

HQM(x) =
1

2

n
∑

i,j

piΣij(x) pj + i
n
∑

i

Ac
i(x) pi + U0(x). (26)

Hamilton function (26) compares to FP operator (4)

H =
1

2

n
∑

i,j

p̂i p̂j Σkj(x) + i

n
∑

i

p̂iAi(x), (27)

where following “momentum” operators are denoted:

p̂i = −i
∂

∂xi
, i ∈ {1, . . . , n}. (28)

Application of Feynman integral in phase space [7,16,17] for Hamilton function (26) and transforming
back to real time allows to obtain solution to FP equation which is equivalent to (23).

Approach of works [7, 16, 17] for building path integral consists in establishing a form of Hamil-
ton function (26) and application of Feynman integral in phase space. Procedure of “quantification”
(replacement of “momentum” with corresponding operators (28)) in combination with the certain rule
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of “ordering” must lead to operator of FP equation (27). However application of such an approach in
this case does not give expected results. It can be seen from application of various ordering rules of
operators [16, 17] for function (26) lead to scalar expressions built using matrix elements Σij(x) and
their derivatives. At the same time U0(x) in (26) contains expressions with elements of matrix Bij(x)
and their derivatives, which are not possible to express in terms of Σij(x). This way operator (27)
cannot be received from (26) using any of the ordering operators of “momentum” and “coordinates”.

3. Heston model

Let us consider Heston model given by the following two SDE:

dS(τ) = µS(τ) dτ + S(τ)
√

V (τ) dWs(τ),

dV (τ) = κ(θ − V (τ)) dτ + σ
√

V (τ) dWv(τ).
(29)

First equation models price dynamics S(τ), where volatility contains stochastic value V (τ), dynamic
of which is given by the second equation. Equation of price dynamics is a generalization of geometric
Brownian motion and the second equation is known as CIR stochastic process [21]. Wiener process in
equations (29) are considered correlated:

〈dWs(τ)〉 = 〈dWv(τ)〉 = 0, 〈dWs(τ)
2〉 = 〈dWv(τ)

2〉 = dτ,

〈dWs(τ) dWv(τ)〉 = ρ dτ, −1 6 ρ 6 1.

Heston model is an extension of Black–Scholes option pricing model and takes into account stochastic
volatility. Heston obtained solution for option price in mentioned model [21] by means of selection
of characteristic function and giving form structure of option price. Equation for option price in
Heston model was investigated by various methods [21] like: characteristic functions, transformations
of Laplace and Fourier. Let us note that option price equation C(t) is an inverted Kolmogorov equation
for discount average of the payment function

C(t) = e−r(t−t0)

∫ ∞

K

∫ ∞

0
K(S, S0, V, V0, t, t0)(S −K) dV dS,

where r is interest rate, K is strike price [21].
FP equation for transitional probability density of stochastic variable in (29) model where investi-

gated much less. In particular FP equation for Heston model was solved in work [20], where Fourier
and Laplace transforms of S and V variables respectively where applied.

In equations (1) Wieners processes are given correlated, for that matter let us perform transforma-
tion to uncorrelated Wieners processes W1(τ), W2(τ) in (29):

Ws(τ) =
√

1− ρ2W1(τ) + ρW2(τ), Wv(τ) = W2(τ), 〈W1(τ)W2(τ)〉 = 0.

System of equation of Heston model (29) we leave in the form
(

dS(τ)
dV (τ)

)

=

(

µS(τ)
κ(θ − V (τ))

)

dτ +
√

V (τ)

(

S(τ)
√

1− ρ2 S(τ) ρ
0 σ

)(

dW1(τ)
dW2(τ)

)

. (30)

Based on (30) we write drift vector and diffusion matrix of the model:

A(τ) =

(

µS(τ)
κ(θ − V (τ))

)

, B(τ) =
√

V (τ)

(

S(τ)
√

1− ρ2 S(τ) ρ
0 σ

)

. (31)

3.1. Case of uncorrelated Wieners processes ρ = 0

Let us consider the case of uncorrelated Wieners processes and set ρ = 0 in (31). Substituting val-
ues (31) in general formula (23) we receive:

L(τ) = L0(τ) + U0(V ), (32)

L0(τ) =
1

2

(

ν1(τ)− µS(τ) + S(τ)V (τ)
)2

S(τ)2V (τ)
+

1

2

(

ν2(τ) +
σ2

2 − κ(θ − V (τ))
)2

σ2V (τ)
, (33)

U0(V ) = −κ

2
+

µ

2
− σ2

32V (τ)
− 3V (τ)

8
.
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Element of functional measure (24) is the following:

D̃ν(τ) =

( t
∏

τ=t0

1

σ S(τ)V (τ)

) 2
∏

k=1

Dνk(τ), Dνk(τ) =
t
∏

τ=t0

√

dτ

2π
dνk(τ), k ∈ {1, 2}. (34)

Dependency on S(τ) is only in the first term L0(τ) (33), so let us split expression L0(τ) intot two parts

L0(τ) = L0S(τ) + L0V (τ),

where

L0S(τ) =
1

2

(

ν1(τ)− µS(τ)
)2

S(τ)2V (τ)
+

ν1(τ)

S(τ)
, (35)

L0V (τ) =
1

2

ν2(τ)
2

σ2V (τ)
+

(

κ

σ2
+

1− α

2V (τ)

)

ν2(τ) +
1

8

(1− α)2σ2

V (τ)
+

1

2
V (τ)− µ+

1

2
(1− α)κ+

κ2

2σ2
. (36)

Here denoted α = 2θκ
σ2 .

Path integrals we calculate successively, first over variable S(τ). In particular, for the second term
in (35) we receive

exp

(

−
∫ t

t0

ν1(τ)

S(τ)
dτ

)

= exp

(

−
∫ t

t0

Ṡ(τ)

S(τ)
dτ

)

=
S0

S
.

Taking into account the form of the first term in (35) we perform variable substitution in path integral
ν1(τ) → q1(τ) using formula

ν1(τ)− µS(τ)

S(τ)
√

V (τ)
= q1(τ). (37)

Let us consider the first order differential equation (37) relative to function S(τ) (Ṡ(τ) = ν1(τ))
with initial condition S(t) = S, where functions V (τ), q1(τ) are considered unknown. Solution of
equation (37) is the following

S(τ) = exp

(

− µ(t− τ)−
∫ t

τ

√

V (τ1) q1(τ) dτ1

)

S.

For corresponding δ-function in formula (23) we receive

δ

(

exp

(

− µ(t− t0)−
∫ t

t0

√

V (τ) q1(τ) dτ

)

S − S0

)

. (38)

By calculating Jacobian of variable substitution (37) using approach given in Appendix A we receive

JS =

∥

∥

∥

∥

δν1(τ)

δq1(τ ′)

∥

∥

∥

∥

=

( t
∏

τ=t0

S(τ)
√

V (τ)

)

√

S0

S
. (39)

In order to calculate path integral for q1(τ), τ ∈ [t0, t] we use Fourier transform for δ-function (38),
which is given in Appendix B. As a result for path integral of variable q1(τ), τ ∈ [t0, t] we receive the
following

IS(V ) =

√

(

S0

S

)3 ∫

Dq1(τ) e
− 1

2

∫ t

t0
q1(τ)2dτ 1

2π

∫ ∞

−∞

1

S0
e−ik ln(S0/S)e

−i k
(

µ(t−t0)+
∫ t

t0
q1(τ)

√
V (τ) dτ

)

dk

=

√

S0

S3

1

2π

∫ ∞

−∞

e−i k(ln(S0/S)+µ(t−t0)) e
− k2

2

∫ t

t0
V (τ)dτ

dk.

Multiplier from Jacobian (39) is partially reduces with an analogous in (34). So transitional probability
density is determined using following path integral

K(S, S0, V, V0, t, t0) =

∫

D̃ν2(τ) e
−

∫ t

t0
(L0V (τ)+U0(V )) dτ

IS(V ) δ

(

V − V0 −
∫ t

t0

ν2(τ) dτ

)

.

Here element of functional measure is given by the following expression

D̃ν2(τ) =

t
∏

τ=t0

√

dτ

2πσ2V (τ)
dν2(τ).

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1046–1057 (2024)



Solution to the Fokker–Plank equation in the path integral method 1053

For the second term in L0V (τ) (36) we receive (V̇ (τ) = ν2(τ))

exp

(

−
∫ t

t0

(

κ

σ2
+

1− α

2V (τ)

)

ν2(τ) dτ

)

= exp

(

− (V − V0)κ

σ2

)(

V

V0

)− 1
2
(1−α)

.

In the next step, using structure of the first term (36) we shall perform the following variable substi-
tution

ν2(τ)

σ
√

V (τ)
= q2(τ). (40)

We shall solve differential equation for V (τ) with initial condition V (t) = V :

V̇ (τ)

σ
√

V (τ)
= ż2(τ), z2(τ) = z2 −

∫ t

τ
q2(τ1) dτ1,

receiving

V (τ) =
1

4
σ2z2(τ)

2.

Jacobian of variable substitution (40) we calculate using approach given in Appendix A. Thus we
receive the following:

JV =

∥

∥

∥

∥

δν2(τ)

δq2(τ ′)

∥

∥

∥

∥

=

( t
∏

τ=t0

σ
√

V (τ)

)

4

√

V0

V
.

Taking into account mentioned transformations for transitional probability density we receive

K(S, S0, V, V0, t, t0) =
4

σ2
e

1
2
(µ+ακ)(t−t0)

√

S0

S3
e−

(V −V0)κ

σ2

(

V

V0

)
1
4
(2α−3) 1

2π

∫ ∞

−∞

e−i k(ln(S0/S)+µ(t−t0))

×
∫

Dq2(τ) e
− 1

2

∫ t

t0
ż2(τ)2dτ e

− 1
2
ω2

∫ t

t0
z2(τ)2dτ−

1
2
(λ2− 1

4
)
∫ t

t0
z2(τ)2dτ δ

(

z2(t0)
2 − z2

2
0

)

dk. (41)

Here the following was denoted:

ω =
1

4

√

4κ2 + (4k2 + 1)σ2, λ = α− 1,

z2 =
2

σ

√
V , z20 =

2

σ

√

V0.

The path integral in (41) is also known as integral for radial oscillator [17] and it’s value is given in Ap-
pendix C. By substituting value of integral (50) into formula (41) and after a number of transformations
we receive the following

K(S, S0, V, V0, t, t0) =
2

σ2
e

1
2
(µ+ακ)(t−t0)

√

S0

S3
e−

(V −V0)κ

σ2

(

V

V0

)
1
2
(α−1) 1

2π

∫ ∞

−∞

ei k(ln(S/S0)−µ(t−t0))

× exp

(

− 2(V + V0)ω coth(ω(t− t0))

σ2

)

ω

sinh (ω(t− t0))
Iλ

(

4
√
V V0 ω

σ2 sinh(ω(t− t0))

)

dk. (42)

This way formula (42) gives solution for transitional probability density in Heston model. As we know,
there was no such solution given in the literature before. As we already noted the FP equation for
Heston model is solved in work of [20], where there was the Laplace transform over variable V used.
However there was no inverse Laplace transform given for the solution. For that matter let us consider
transitional probability density for stochastic variable S for ∀V ∈ [0,∞]

K(S, S0, V0, t, t0) =

∫ ∞

0
K(S, S0, V, V0, t, t0) dV (43)

and compare it to the respective expression from work [20]. After integrating (42) over variable V we
receive

K(S, S0, V0, t, t0) = e
1
2
(µ+ακ)(t−t0)

√

S0

S3

1

2π

∫ ∞

−∞

ei k(ln(S/S0)−µ(t−t0))

× exp

(

− (1 + 4k2)V0

4(κ+ 2ω coth(ω(t− t0)))

)(

cosh(ω(t− t0)) +
κ sinh(ω(t− t0))

2ω

)−α

dk. (44)
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Also in (44) we shall perform variable substitution x = ln S
S0

and make a drift of variable k in complex

plane k → k − i
2 . This transformation is reasonable since the integral function (44) is analytic in the

region −1
2

√

1 + (2κ/σ)2 < ks <
1
2

√

1 + (2κ/σ)2 of complex plane (k = kc + i ks). As a result we shall
write the following

K(x, V0, t, t0) = e
1
2
ακ(t−t0) 1

2π

∫ ∞

−∞

ei k(x−µ(t−t0))

× exp

(

− V0k(k − i)

κ+ 2ω̃ coth(ω̃(t− t0))

)(

cosh(ω̃(t− t0)) +
κ sinh(ω̃(t− t0))

2ω̃

)−α

dk, (45)

where the following is denoted

ω̃ =
1

2

√

κ2 + k(k − i)σ2.

Expression (45) for transitional probability density matches with the one given in [20]. Using for-
mula (45) it can be seen that transitional probability density normalized

∫∞

−∞
K(x, V0, t, t0) dx = 1.

By a similar approach one can obtain transitional probability density for stochastic variable V by
integrating over S in (42)

K(V, V0, t, t0) = e
1
2
ακ(t−t0)e−

(V −V0)κ

σ2

( V

V0

)
1
2
(α−1)

× exp

(

− (V + V0)κ coth(
1
2κ(t− t0))

σ2

)

κ

σ2 sinh 1
2κ(t− t0)

Iλ

( 2
√
V V0 κ

σ2 sinh 1
2κ(t− t0)

)

. (46)

The received expression (46) is a known solution to the Cox–Ingersoll–Ross model [21] (the second
equation of (29)) for the transitional probability density.

Let us consider some peculiarities that arise as a result of application of path integrals to solution of
FP equation in a number of works we mentioned earlier. In particular in [16] the FP equation received
based on a system of SDE in Stratоnovich scheme was considered. As it is known from [12, 15, 16] in
order to transition to Stratоnovich scheme in (23) one should perform variable substitution

Ai(x) → Ai(x) +
1

2

n
∑

k,j=1

Bjk
∂Bik

∂xj
.

With all that being said let us find out a difference between Lagrange functions in [16] (LAR) for
Heston model and the expression found based on (32) L(τ)

L(τ)− LAR =
Ṡ(τ)

2S(τ)
− V (τ)

8
+

V̇ (τ) + θκ− σ2

4

4V (τ)
− κ

4
.

In work [12] for a multi-dimensional FP equation the path integral was used for propagator of
Schrödinger equation in a curved space of imaginary time. Comparing L(τ) with Lagrange function
(LRC) [12] for Heston model we find that

L(τ)− LRC =
σ2

96V (τ)
.

One can show that “scalar curvature” [12] for Heston model is equal to R = σ2

V (τ) . It follows that the
other options of path integral where the Lagrange functions differs by a multiplier near the term with
a scalar curvature [14,15] lead to a different results than those from this work. In [15] a path integrals
with Lagrange functions are given, which apart from other multiplier near the scalar curvature term
contain other terms of a fairly complicated structure. However we do not give comparison them in
this case. Regarding the MSRJD method for building the propagator of Schrödinger equation an it’s
application to the FP equation solutions, the respective formulas in [15] contain double path integrals
(over conjugated variables) and so it is impossible to perform comparison of Lagrange function.

3.2. Correlated Wieners processes ρ 6= 0

In the case of correlated Wieners processes the algorithm of obtaining a solutions follows the one
described above, hence we give the summary result. Transitional probability density is equal to (for
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variable x = ln S
S0

)

K(x, V, t) =
2

σ2

(

V

V0

)
1
2
(α−1) 1

2π

∫ ∞

−∞

ei k(x−µ(t−t0))e
1
2
αγ(t−t0)e−

γ(V −V0)

σ2

× exp

(

− 2(V + V0)ω coth(ω(t− t0))

σ2

)

ω

sinh
(

ω(t− t0)
) Iα−1

(

4
√
V0V ω

σ2 sinh
(

ω(t− t0)
)

)

dk. (47)

Following is denoted:

γ = κ+ i kρ σ, ω =
1

2

√

γ2 + k(k − i)σ2.

Integrating over variable V in (47) we receive transitional probability density for stochastic variable x

K(x, t) =
1

2π

∫ ∞

−∞

ei k(x−µ(t−t0))e
1
2
αγ(t−t0) exp

(

− k(k − i)V0

γ + 2ω coth(ω(t− t0))

)

×
(

cosh(ω(t− t0)) +
γ sinh(ω(t− t0))

2ω

)−α

dk. (48)

From formula (48) it also follows, that K(x, t) is normalized and formula (48) transforms into (45)
for ρ = 0. The expression for transitional probability density (48) matches with an analogous for-
mula given in [20]. From formula (45), (48) it can be seen that they define a ground expression for
characteristic function of Heston model of variable x = ln S

S0
, since integral over k is fairly complicated.

4. Conclusions

The path integral method was applied to solution of FP equation of multiple variables that corresponds
to a system of SDE. Solution for transitional probability density of stochastic variables written in the
form of path integral is given. The solutions for transitional probability density in Heston model was
found in [20] based on FP equation using integral transforms of Laplace and Fourier over corresponding
variables. As a result it is shown that the solutions obtained using path integrals matches the one given
in [20] work.

Based on an example of Heston model it is also shown that path integrals obtained in a number
of works for FP equation based on quantum-mechanical analogy [12–15] lead to different results. We
illustrated that application of a known quantum-mechanical approach for FP equation does not allow
to receive the path integral given in the current work.

The path integral for transitional probability density is convenient for analyzing models of multiple
variables that contain two or more SDE [22,23]. Those and others problems will be a subject of study
of a separate work.

Appendix A

Specified Jacobian of variable substitution (18), (19) is equal to functional determinant of derivative
matrix

J =

∥

∥

∥

∥

δqk(τ)

δνi(τ ′)

∥

∥

∥

∥

.

As a result we receive

J =

∥

∥

∥

∥

B−1
ki (x(τ)) δ(τ − τ ′)−

n
∑

j

∂B−1
kj (x(τ))

∂xi
θ(τ ′ − τ) νj(τ)

∥

∥

∥

∥

.

After a number of transformations we receive

J =

( t
∏

τ=t0

1

det(B(x(τ)))

)∥

∥

∥

∥

δkk′ δ(τ − τ ′) + θ(τ ′ − τ)

n
∑

ij

∂Bk′j(x(τ))

∂xk
B−1

ji (x(τ)) νi(τ)

∥

∥

∥

∥

.

As a result, we receive the following for Jacobian [11, 18]

J =

( t
∏

τ=t0

1

det(B(x(τ)))

)

exp

(

1

2

n
∑

kij

∫ t

t0

∂Bkj(x(τ))

∂xk
B−1

ji (x(τ)) νi(τ) dτ

)

. (49)
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Appendix B

Let us consider the Fourier integral

δ(Sex − S0) =
1

2π

∫ ∞

−∞

f(k) ei kxdk.

From where we receive f(k)

f(k) =

∫ ∞

−∞

δ(Sex − S0) e
−i kxdx =

1

S0
e−i k ln(S0/S).

As a result

δ(Sex − S0) =
1

2πS0

∫ ∞

−∞

ei k(x−ln(S0/S))dk.

Appendix C

The path integral in formula (41) is known from the problem of radial oscillator and has analytical
solution [7, 17]. Transforming to the “velocity” variables we receive

∫

Dq(τ) exp

(

− 1

2

∫ t

t0

ż(τ)2dτ

)

exp

(

− 1

2
ω2

∫ t

t0

z(τ)2dτ − 1

2

(

λ2 − 1

4

)
∫ t

t0

dτ

z(τ)2

)

δ
(

z(t0)
2 − z20

)

=
1

2
exp

(

− 1

2
(z2 + z20)ω coth(ω(t− t0))

)√

z

z0

ω

sinh(ω(t− t0))
Iλ

(

zz0 ω

sinh(ω(t− t0))

)

. (50)
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Розв’язок рiвняння Фоккера–Планка
в методi функцiонального iнтегрування

Янiшевський В. С.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Розглянуто рiвняння Фоккера–Планка багатьох змiнних, що вiдповiдає системi СДР.
Розв’язок для густини умовної ймовiрностi записаний у виглядi функцiонального iн-
тегралу. Показано, що для моделi Гестона запропонований функцiональний iнтеграл
приводить для вiдомого результату отриманого iншим шляхом. Вказано також на
вiдмiнностi результатiв на основi функцiональних iнтегралiв наведених у рядi робiт.

Ключовi слова: стохастичнi диференцiальнi рiвняння; рiвняння Фоккера–Планка;

умовна ймовiрнiсть, функцiональний iнтеграл; модель Гестона.
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