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Collaborative filtering (CF) is a technique that can filter out items that a user might like
based on the behaviors and preferences of similar users. It is a key en-abler technique for an
effective recommendation system (RS). Model-based recommendation systems, a subset of
CF, use data, typically ratings, to construct models for providing personalized suggestions
to users. Our objective in this work is to provide a comprehensive overview of various tech-
niques employed in Model-based RS, focusing on their theoretical foundations and practical
applications. We explore the core challenges associated with recommendation, including
the top-N recommendation problem, and explore the state-of-the-art model-based methods
used to address these challenges. In this survey, we categorize these techniques into three
distinct classes: matrix factorization, similarity-based, and completion-based methods. To
compare their performance, we evaluated these techniques over the MovieLens datasets
using two metrics: Mean Average Precision (MAP), Normalized Discounted Cumulative
Gain (NDCG), precision and recall.

Keywords: recommendation systems; model-based; top-N recommendation; generative
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1. Introduction

In today’s era of digital abundance, where users are inundated with a wealth of in-formation across
various platforms, recommendation systems (RS) have emerged as indispensable tools for curating per-
sonalized content experiences [1,2]. Rooted in data-driven methodologies, these systems have trans-
formed the way users discover tailored products, content, and services. RS are essential for providing
users with tailored suggestions based on data [1-3|. Typically, these data comprise historical user
profiles, encompassing records of a user’s past interactions with items, and item /user metadata, which
contain individual items and user information such as movie actors, song loudness, or demographic
data [4]. User feedback, whether explicit or implicit [5], plays a pivotal role in RS. Explicit feedback
involves clear indications of a user’s interest in an item, often expressed through ratings or reviews,
and is commonly employed by platforms such as Netflix and Amazon [3]. In contrast, implicit feedback
is gathered indirectly during user interactions with the RS, such as selecting and watching a movie
on a video-on-demand service, indicating some level of interest. However, implicit feedback’s unary
nature raises challenges concerning negative experiences. RS can be constructed using three main ap-
proaches [6]: content-based filtering [7,8|, which recommends items such as those in a user’s historical
profile; collaborative filtering [9-11], which identifies similar users and recommends items they have
rated; and hybrid systems [8,12], which combine collaborative and content-based filtering for more ro-
bust recommendations. In this paper, we have focused our review on model-based methods, which are
subset of CF techniques that leverage various approaches to enhance recommendation systems. Among
model-based methods, we delve into the core techniques of Matrix Factorization (MF) [4,13-15], Ma-
trix Completion using quantum computing [16, 17|, and similarity-based approaches [18-20]. These
approaches collectively represent the backbone of model-based collaborative filtering techniques. Ini-
tially, we compiled and scrutinized leading articles and prestigious conference publications to ensure a
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dependable evaluation of the recommendation system models within these approaches. Subsequently,
we structured studies pertaining to model-based recommendation system models and the underlying
technology, subsequently exploring discernible research trajectories. Moreover, we categorized these
approaches into three classes, delving into the recommendation models and techniques adopted within
each class. Thus, this study not only offers a comprehensive overview of model-based RS, but also
offers valuable insights to researchers interested in the diverse technologies and evolving trends within
the application domains of Deep Learning-based generative models used for recommendation systems.
The remaining of this paper is organized as the following. Section 2 presents our classification of
model-based approaches for Recommendation Systems. Section 3, 4, 5, details namely Generative
model-based Matrix Factorization (MF), similarity-based models, and matrix completion-based mod-
els, respectively. In Section 6, we present and discuss the obtained results. The Conclusion closes the

paper.

2. Model based approaches for recommendation systems

Collaborative filtering [9-11,21, 22| can be classified into two categories: memory-based and model-
based approaches [6,11,22]|. They are used in various fields, including machine learning and recom-
mendation systems. In the context of recommendation systems, while memory-based [23] methods
make recommendations based on user similarity or item similarity without explicitly creating a model,
model-based methods create predictive models that represent the underlying relationships and pat-
terns in input data. Model-based recommendation systems use mathematical or statistical functions
in order to capture complex pat-terns and latent factors from the data. To achieve this, they use a va-
riety of techniques (see Figure 1), such as Bayesian models [24,25], clustering algorithm [12], and MF.
Some common techniques used in MF includes SVD (Singular Value Decomposition) [12,26,27], NMF
(Non-negative Matrix Factorization) [28,29]|, ALS (Alternating Least Squares) [30], PCA (Principal
component analysis) [31], and PMF (Probabilistic Matrix Factorization) [32,33].

[ Recommendation systems techniques }

[ Collaborative filtering } [ Ct());st:dnt } [POE:S'ZQWJ [ Hybrid }

{ Memory based } { Model based }

N e T

E User based ] E Item based ] EBayesian models] [Matrix factorization] ECIustering aIgorithm]

Fig. 1. Some recommendation systems techniques.

These algorithms play a crucial role in data analysis and machine learning, enabling the extraction
of valuable insights and predictions from complex datasets. Model-based algorithms typically involve
a learning process where the algorithm adjusts the model’s parameters to fit the observed data. This
process often includes optimization techniques to find the best-fitting model. Model-based collaborative
filtering approaches, though effective in many cases, face key challenges. One is the “Cold Start issue”,
where they struggle with new users or items lacking enough data. Also, as datasets grow, scalability

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1078-1092 (2024)



1080 Filali Zegzouti S., Banouar O., Benslimane M.

becomes an issue, leading to higher computational demands. Overfitting is a concern, as models might
become overly specialized to the training data, potentially compromising their ability to generalize
well to diverse user preferences. Data sparsity poses another obstacle, especially in scenarios where
users rate only a few items. Additionally, some complex models lack interpretability, making it hard
to understand their recommendations. In this survey, we classify these techniques into three distinct
classes:

— Generative models-based Matrix Factorization (MF),
— Similarity-based methods,
— Matrix completion-based methods

In the upcoming, we will delve deeply into algorithms recently employed within each category. Sub-
sequently, we will conduct a quantitative comparison after applying these algorithms to two MovieLens
datasets (1M ML and HetRec).

3. Generative models-based matrix factorization

It refers to an approach in RS that combines matrix factorization techniques with generative models.
On the one hand, matrix factorization algorithms [13-15,34,35], in the case of CF, work by decomposing
the user-item rating matrix (URM) into the product of two lower dimensionality rectangular matrices,
which are latent factors for users and items. In the context of RS, the goal is to predict missing ratings
or recommend new items to users.

On the other hand, generative models are class of models that are designed to generate new data
samples that resemble a given training dataset. In the context of RS, they can be applied to capture
complex relationships and patterns in user-item inter-actions. In this paper, our primary focus centers
on a specialized class of deep learning models known as Generative Adversarial Networks, or GANs
for short [36-38|. These groundbreaking models, first conceived by Goodfellow et al. in 2014 [36], have
rapidly been expanding into a variety of fields, including computer vision, natural language processing,
speech processing, and even cyber-security applications like mal-ware detection. GANs have proven
their versatility and effectiveness in generating and manipulating data, making them indispensable
tools across a wide spectrum of fields and industries. Mathematically: the original GAN is defined as
a two-player game (see Figure 2) involving the following elements:

— Probability Space: denoted as (€2, jiyef), where Q represents the sample space, and i represents
a probability measure on that space. This defines the GAN game.

— Two Players: the game involves two players, namely the generator and the discriminator.

— Generator’s strategy set: the generator’s strategy set is represented as P(€2), which is the set of all
probability measures u¢g on the sample space €.

— Discriminator’s strategy set: the discriminator’s strategy set consists of Markov kernels pup: Q@ —
P([0,1]), where P([0,1]) is the set of probability measures on the interval [0, 1].

— Zero-sum game: the GAN game is a zero-sum game, meaning that the gain of one player is exactly
balanced by the loss of the other player.

— Objective function: typically includes terms related to both the discriminator’s ability to distinguish
between real and generated items and the generator’s ability to generate realistic items (Loss
Function (GAN)=Loss Function (G)+Loss Function (D)+Regularization Part).

The objective function of the GAN game is defined as follows:

L (pc: pp) = Efx ~ et y ~ pp ()] In(y)] + £z ~ pe, y ~ po(@)] [In(1 - y)].
Here, E denotes the expectation operator, & ~ p.ef signifies sampling from the reference distribution,
and x ~ e represents sampling from the distribution produced by the discriminator given input z.
The objective consists of two terms, one involving the reference distribution and the other involving
the generator’s distribution. The goal of the generator is to minimize this objective function, while the
goal of the discriminator is to maximize it. This adversarial process drives the generator to produce
data that is indistinguishable from real data, ultimately leading to improved generative capabilities.
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In the original paper and most subsequent papers, it is typically assumed that the generator makes
the first move, followed by the discriminator, resulting in the following minimax game formulation:
minmax L (ug, pp) = Efw ~ pires,y ~ pp(@)] In(y)] + E [z ~ pe,y ~ pp(@)] {In(1 —y)].
In this formulation, the generator aims to minimize the objective function, and the discriminator
aims to maximize it.

Backpropagation

v e

I Real sample 4/—
Real 1 1

~

A\ 4

samples | |
, Fake sample x
N e = —_ =
Random: Fake
noise samples

A Backpropagation

Fig. 2. Architecture of GAN.

In this section, we focus on two models-based Matrix factorization (PureSVD, and WRMF), three
models-based variants of generative models (CFGAN, CAAE, and GraphGAN), and one model that
combine both Matrix Factorization techniques with Generative Models, called GANMF.

3.1. PureSVD

PureSVD, introduced by Cremonesi et al. in 2009 for solving the Top-N recommendation problem,
utilizes Singular Value Decomposition (SVD) to factorize the Userltem Rating Matrix (URM). SVD
decomposes the URM into three matrices: M, a real orthonormal matrix of dimensions |U| x K rep-
resenting user latent factors; ¥, a K x K matrix containing only the top K singular values; and N,
a real orthonormal matrix of dimensions |I| x K representing item latent factors. This decomposition
enables the extraction of user and item latent factors. In the application of SVD, missing ratings in
the URM are typically imputed with zeros, although the authors note that other imputation values do
not significantly affect the algorithm’s performance. PureSVD is considered one of the top-performing
baseline models for the Top-N recommendation problem [12,18,26,27]. However, it has some computa-
tional limitations, as it performs the decomposition into dense matrices even when the URM is sparse,
rendering optimized libraries for sparse matrices unusable and potentially causing memory issues.

3.2. Weighted Regularized Matrix Factorization (WRMF)

Weighted Regularized Matrix Factorization (WRMF) is a Matrix Factorization technique tailored for
implicit feedback in recommendation systems. It employs alternatingleast-squares (ALS) [30] as its
training approach [14]. The process involves converting the User-Item Rating Matrix into a binary ma-
trix, with 1 denoting user-item interaction and 0 denoting no interaction. WRMF assigns a confidence
value (cy;) to each interaction, representing the system’s confidence in the user’s preference for an item.
This confidence value is calculated using a formula involving a factor a and the binary interaction.
WRMF aims to minimize an optimization function that incorporates confidence-weighted interactions,
user and item latent factors, and regularization terms to prevent overfitting. The model is trained
iteratively using ALS, alternating between fixing user or item latent factors while optimizing the other.
When fixing item latent factors, WRMF derives closed-form solutions for user latent factors based on
confidence-weighted interactions. Similarly, when fixing user latent factors, it computes closed-form
solutions for item latent factors using confidence-weighted interactions [39].
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3.3. Conditional Feedback Generative Adversarial Network (CFGAN)

Conditional Feedback Generative Adversarial Network (CFGAN) [21]| represents an innovative ap-
proach to the integration of Generative Adversarial Networks (GANSs) into the realm of RS, with a
specific emphasis on tackling the Top-N recommendation challenge. The developers of CFGAN have
meticulously identified limitations in the training methodology of another GAN-based recommenda-
tion model called IRGAN, and they have documented their claims with rigorous experimental evidence
in [34]. In response to these identified issues, CFGAN introduces a pioneering technique known as
“vector-wise training” tailored specifically for GANs operating within the RS domain. The CFGAN
minimax objective is given as:

TP = =" (log(ruleu) +log (1= D((Fu ® eu)lc))) ,
TG ==Y log (1 - D((Fu @ eu)le)) .

In the context described, we have objectives JP and J being minimized by D and G, respectively,
and we are dealing with generated profiles 7 for user u, user conditioning vectors c¢,, and masking
vectors e, defined as e, = 7, with element-wise multiplication represented by the symbol ®.

This approach revolves around treating a user’s past interactions as a structured vector. During
training, the GAN’s generator is meticulously taught to create realistic and deterministic historical
user profiles. This stands in contrast to the conventional approach of randomly selecting relevant
items. In this paradigm, the discriminator’s primary task is to distinguish between GAN-generated
user profiles and authentic ones. CFGAN follows a conditional GAN (cGAN) framework. Here, the
generator network (G) receives a user conditioning vector (c,), an unique user identifier and crucial
input. Notably, CFGAN differs from typical cGANs by omitting the incorporation of random noise
vectors (z). This omission is intentional, as CFGAN’s main goal is to generate deterministic user
profiles. These generated profiles are seamlessly merged with real ones for training the discriminator
(D). As aresult, this training approach enhances the discriminator’s ability to classify GAN-generated
profiles, leading to more effective and accurate performance.

3.4. Collaborative Adversarial Autoencoders (CAAE)

CAAE consists of three key models: the positive item generator (referred to as G), the negative item
generator (referred to as Gp), and the discriminator (referred to as D) [22]. The roles of G and D
in our framework are akin to those of G and D in other Generative Adversarial Networks (GANSs).
Specifically, when given a user, G primary objective is to generate a set of items that the user may
find interesting and potentially choose. Meanwhile, D role is to differentiate between these generated
items and the user’s actual items derived from ground truth data. Furthermore, we introduce another
generative model called Gy, which is dedicated to generating negative items-items that the user is
unlikely to be interested in. This Gy model is seamlessly integrated into this framework [38].

Discriminator: formally, the objective function of D is JP = lg AN 5 -reg(e).

JP comprises two key elements: the GAN loss (LE ) and L2 regularization (reg()), controlled
by 8. It emphasizes:

— JP components: JP combines Lg v and reg(p), representing GAN loss and L2 regularization,
respectively.

— Model parameters: ¢ signifies D's model parameters.

— L2 regularization: reg(y) prevents overfitting, computed as half of ¢'s L2 norm.

— Binary classification: D classifies “real” user items from ground truth vs. “fake” items generated by
G or Gy.

— Preference learning: BPR-MF is used for learning relative user item preferences, improving over
standard MF.
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— Pairwise preferences: D is trained via a pairwise objective, maximizing the likelihood of user
preferences to distinguish “real” from “fake” items.

— Discrimination function: D(i, jlu) calculates the probability of item i being preferred over j for
user u based on item characteristics.

— Overall objective: JP combines expectations over user item pairs, weighted by the log of the
discrimination function output and L2 regularization.

Positive item generator: The objective function of the positive element generator (G), denoted as
J9 §9 = X158, + (1 = N)lag + B - reg(#) comprises three crucial elements:

— GAN loss (A * Lg )¢ this part represents the loss associated with the Generative Adversarial
Network (GAN) and is controlled by the parameter A to maintain balance.

— Autoencoder loss ((1 — \) * Lag): it quantifies the loss associated with the Autoencoder (AE)
within the model, which focuses on reconstructing a dense purchase vector from a sparse one.

— L2 regularization (S-reg(f)): this element introduces L2 regularization, regulated by the parameter
5, to prevent overfitting.

The Autoencoder serves as a neural network tasked with reconstructing input data by learning
hidden patterns. In the context of collaborative filtering (CF), it takes a sparse purchase vector as
input and generates a denser vector with predicted values for items not yet purchased. The Autoencoder
architecture includes a hidden layer with weight matrices and biases. The Autoencoder loss function
(Lag = >, || (ry = Ty) - €4]|) employs squared error terms and an indicator vector (e,) to account for
missing entries in the purchase vector. A softmax function is utilized to generate plausible items for
users based on the Autoencoder’s output, facilitating the computation of item selection probabilities.
The GAN loss of G(Lg an) leverages this probability distribution. The overall objective function for
G(J%) combines the components of GAN loss, Autoencoder loss, and L2 regularization.

Negative Item Generator: the
Negative Item Generator, Gg, shares y o
similarities with G but has a distinct Embedding 1 \

[

Gradient backpropagated only to single user embeddings

. U L
role. Like G, Gy employs an Au- aver
toencoder to calculate softmax prob- K I !

e . . I
abilities for item generation. How- K Lo P
. . . user latent factors | X Embedding = | ———»!Discriminator

ever, Gy primary aim is to generate Layer i !
|

negative items for a given user, this [
exp(;; u)

expressed (pgr(ixu) = m)’

. Item Single user prdfile
where pg(ig|u) represents the prob- | Embedding ° i /
ability of selecting item i; as a neg- Layer '—/

ative choice for user uw. In contrast

to G’ GO has an opposing objective. Gradient backpropagated to all item embeddings

. . . . . K
While G aims to deceive the discrim- Generator
inator D, Gq assists D in correctly Fig. 3. Overview of our CAAE framework [33].

distinguishing between real and fake items from Gg. The objective function for Gy, denoted as
(Jao = —Eicpune (ilu),jopy Gl I D, 7|w)] + g - 10'?), differs from that of G. Notably, it excludes
the reconstruction loss function.

3.5. Learning graph representations using generative adversarial networks (GraphGAN)

In GraphGAN framework, the central focus lies in the careful selection of appropriate generator and

discriminator components for the task of graph representation learning [40]. The traditional softmax

functions, however, prove inadequate for the role of the generator for two fundamental reasons:

— Absence of Graph Structure Awareness: conventional softmax treats all vertices of a graph uniformly
when considering a specific vertex, neglecting crucial information relating to the graph’s inherent
structure and proximity.
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— Computational inefficiency: the computation of softmax entails the involvement of all vertices
within the graph, resulting in a computationally demanding and inefficient process.

To surmount these challenges, the authors introduce an innovative generator concept named “Graph
Softmax” in [40]. This approach reimagines how connectivity distributions are defined within a graph
and boasts advantageous traits such as normalization, a heightened understanding of the graph’s
structure, and enhanced computational efficiency. Furthermore, a novel online generating strategy
is proposed for the generator, grounded in random walks, and aligns seamlessly with the principles
underpinning graph softmax. This strategic shift significantly reduces the computational complexity
associated with the process. The overarching framework of GraphGAN is articulated as follows: When
provided with a graph G = (V, E), where V = vy, ..., vy signifies vertices and E = {e;;}; jey denotes
edges. We define “N(v.)” as the set of vertices directly connected to a specific vertex “v.”. We use the
term “conditional probability”, referred to as “pirue(v|ve)”, to describe the true connectivity distribution
for vertex “v.”. This probability helps us understand the preferences of “v.” when it comes to connecting
with other vertices within the larger set “V”. We can view “N(v.)” as a collection of observed samples
that are drawn from this “pge(v|ve)” distribution. The primary objective is to cultivate two distinct
models:

— Generator (G): this model (G(v|ve; 6c)) strives to approximate the authentic connectivity distribu-
tion for a given vertex v, either selecting or generating the most probable vertices for connection
with v, from the set of vertices, V.

— Discriminator (D): in contrast, the discriminator, D(v,v.;6p), is tasked with discerning the con-
nectivity status between pairs of vertices (v,v.) and produces a scalar indicating the likelihood of
an edge existing between them.

In this dynamic interplay, the generator and discriminator engage in a two-player minimax game.
G endeavors to meticulously mimic pyue(v|ve) and generate pertinent vertices, aiming to deceive D.
Conversely, D endeavors to distinguish between genuine neighbors of v, and those conjured by G. The
objective functions for both G and D are meticulously defined, invoking a minimization of g for G
and a maximization of 8p for D. The essence of their competition is encapsulated within the value
function V (G, D). In each iterative cycle, D is primed with positive and negative samples, whereas G
is iteratively refined using policy gradients under the astute guidance of D. This ongoing competitive
dynamic persists until G attains an indistinguishable likeness to the genuine connectivity distribution.
Formally, G and D are playing the following two-player minimax game with value function:

N
minmax V(G, D) = Z (Evpirue (-ve) [log D(v,0¢:0D)] + By ueive) [1 — log D (v, ve;0p)]) -

0c Op po

3.6. GAN-based Matrix Factorization for Recommendation Systems (GANMF)
Generative Adversarial Network with Matrix Factorization is an advanced machine learning model
tailored for user profile generation [15]. This model seamlessly integrates Matrix Factorization tech-

niques into the framework of a Conditional Generative Adversarial Network (¢cGAN). Here is a concise
overview of GANMF:

— Conditional GAN (cGAN): GANMF is firmly grounded in the concept of a Conditional Generative

Adversarial Network (cGAN) [14]. In this setup, the generator’s actions are guided by specific
information, represented as a user identifier ‘4’ in GANMF. The objective function in a ¢cGAN is:

mGln mDaX Eprdata [].Og D(‘T‘C)] + EZsz []‘Og(l - D)] .

— Autoencoder-Based Discriminator: in contrast to traditional cGANs that employ binary classifier
discriminators, GANMF adopts an autoencoder-based discriminator. This unique discriminator
takes user profiles, whether real or synthetic, and produces a reconstruction of the input. It utilizes
the reconstruction error to differentiate genuine from generated profiles. The reconstruction error
of the autoencoder acts as the energy function: D(x) = || Dec(Enc(z)) — z||3.
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— Matrix Factorization (MF): GANMF combines GAN architecture with Matrix Factorization tech-
niques innovatively. It includes two embedding layers: one for encoding user latent factors and
another for item latent factors. These latent factors capture crucial data patterns. In generating
synthetic user profiles, GANMF utilizes these latent factors along with the user identifier ‘y’ to
produce profiles that reflect individual user preferences and behaviors.

— Profile Generation: in the generation process, the ‘y’ value plays a central role. It is used to

identify the specific row in the user latent factor matrix corresponding to the given user. By
accessing this row, the generator obtains vital information to craft a synthetic user profile that
accurately represents the user associated with ‘y’. A synthetic user profile is generated as follows
(see Figure 4): G(y) = VZE[y,:|T.
To fool the discriminator, the generator minimizes the reconstruction error of the discriminator
on generated profiles: LY (y) = D(G(y)) + Ag * ||Q¢||3, where ‘D’ represents the discriminator
function, ‘G’ represents the generator function, ‘y’ denotes the user row within the URM, Aq is the
regularization coefficient for Lo regularization, and )¢ includes the parameters associated with the
generator.

— Loss Functions: GANMF employs specialized loss functions for effective training of both the gen-
erator and the discriminator. The generator’s main goal is to minimize the reconstruction error
assessed by the discriminator when evaluating the generated profiles. Furthermore, GANMF in-
troduces additional loss terms, such as maximum mean discrepancy, to strike a balance between
ensuring the plausibility of generated profiles and their ability to capture individual user charac-
teristics. The parameter ‘a’ in these loss terms allows for fine-tuning of this trade-off. Therefore,
we modify LG by adding this additional loss:

LE(z,y) = (1 = @)D(G(y)) + al| Enc(z) — Enn(G(y))|| + AcllQc |3

In this scenario, ‘Enc’ represents the output produced by the encoder within the GANMF discrim-
inator. The variable ‘y’ corresponds to the user conditioning attribute, while ‘z’ stands for the real
user profile associated with ‘y’. Additionally, ‘@’ serves as a constant that regulates the trade-off
between the adversarial and feature matching losses.

— Training: GANMEF’s training regimen follows an iterative process, with alternating updates to the
generator and discriminator. This iterative training continues until the discriminator can no longer
distinguish between synthetic profiles generated by the model and real profiles from the dataset.
The goal is to train the generator to produce profiles that are nearly indistinguishable from genuine
ones.

U
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gradient I—;
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ENErator | s—) —) D(o — — —
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Fig. 4. Generator network casted as MF-based approach with embedding layers [15].
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4. Similarity based models

4.1. Slim: sparse linear methods for top-N recommendation systems

SLIM (Sparse Linear Methods) [18,39], a model designed for solving the top-N recommendation prob-
lem. Despite being a model, SLIM operates more like a memorybased collaborative filtering (CF)
technique. It builds a model of item-item similarity by optimizing certain criteria, including minimiz-
ing the Frobenius norm of the difference between a user-item interaction matrix and the product of
item similarity matrix (SIMI) and a regularization term. The optimization process encourages sparsity
using the 11-norm and ensures that similarity values are non-negative (SIMI > 0) while avoiding triv-
ial solutions (diag(SIMI) = 0). Once SLIM learns the similarity matrix, it predicts user-item ratings by
summing over items the product of a user’s interaction history and the corresponding item similarity.
This prediction method resembles item memorybased CF but differs in how the item-item similarity
matrix is constructed. Finally, based on the predicted ratings, SLIM can recommend items that the
user has not interacted with in the past, ordered by their predicted ratings in decreasing order, up to
a specified limit V.

4.2. ltem-based k-Nearest Neighbors (ItemKNN)

Item-based k-Nearest Neighbors [41] is a widely used model-based collaborative filtering technique in
recommendation systems. It operates by creating connections between items based on user-item in-
teractions. The core component of ItemKNN is the item-item similarity matrix, which measures the
closeness or similarity between items. Common similarity metrics include cosine similarity, Pearson
correlation, or Jaccard similarity, chosen based on dataset characteristics. The neighborhood size,
denoted as ‘k’, is crucial in ItemKNN as it determines the number of similar items considered when
making recommendations for an item. Smaller ‘k’ values lead to more localized recommendations,
while larger ‘k’ values provide broader recommendations [14,23]. The optimal ‘k’ depends on factors
like data sparsity and desired personalization. One challenge in recommendation systems is popular-
ity bias, where popular items dominate recommendations due to higher user interactions. ItemKNN
addresses this by using a shrink term for regularization, reducing the impact of popularity, and en-
suring less popular items get fair recommendations. Tuning the shrink term is vital for optimizing
ItemKNN'’s performance. Fine-tuning ItemKNN involves systematically exploring various parameter
configurations, including similarity metrics, neighborhood sizes (k), and shrink terms. This experimen-
tation helps identify the best parameter setup for effective recommendations tailored to the dataset
and context.

4.3. P3a recommendation approach

The P3a recommendation approach is a sophisticated method designed for personalized recommenda-
tions. It operates within a graph-based framework, specifically utilizing a bipartite graph representing
users and items. Users and items are nodes, and their interactions are edges in this graph. This
graph-centric approach provides a structured representation of user-item relationships. P3ca calculates
item similarity through a unique method involving 2-step random walks within the bipartite graph,
starting from user nodes [20]. This exploration helps quantify intricate item associations, crucial for
generating relevant recommendations. To optimize performance, P3« fine-tunes two key parameters:
neighborhood size (k), determining the scope of item consideration for recommendations, and similarity
scaling coefficient (), adjusting similarity values between items. These parameters play pivotal roles
in tailoring recommendations to users’ needs and preferences, making P3a a robust recommendation
approach within a graph-based framework.

5. Matrix Completion based models

One would like to guess the missing data in a matrix or tensor. This problem is known as the matrix
completion or tensor completion problem [42]. It comes up in a great number of applications including
those of recommendation systems. Build such a system is the task of automatic predicting of the entries
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in an unknown data matrix or tensor. A popular example is the movie recommendation case where the
task is to make automatic predictions about the interests of a user by collecting taste information from
his formal interests or by collecting them from other users. The direct representation is to model this
problem as a matrix (for matrix completion). Users, rows of the matrix, are given the opportunity to
rate items, columns of the data matrix. However, they usually rate very few ones so there are very few
scattered observed entries of this data matrix. In this case, the users-ratings matrix is approximately
low-rank because it is commonly believed that only very few factors contribute to an individual’s tastes
or preferences.

Authors in [43] proposed an approach for recommender systems where they used two step process.
For each missing data given by a user u to an item ¢, the process runs a bi-clustering step to detect the
users respectively items that share the most characteristics with u respectively i. It then constructs a
sub-matrix containing the ratings that users who belong to u’s cluster gave to items that belong to the
1’s cluster. The missing ratings are then obtained by using the Singular Value Thresholding algorithm
SVT presented by [17]. Authors in [16], proposed an advanced version of this process by including a
quantum implementation for the clustering process. This solution has a better time complexity.

The SVT algorithm objective is to minimize the rank of users-ratings. The rank minimization is
a NP hard problem. However, it is possible to resolve it by convex programming. The rank function
counts the number of non-vanishing singular values when the nuclear norm sums their amplitude. The
nuclear norm is a convex function. It can be optimized efficiently via semi-definite programming.

Matrix completion-based approaches then minimizes the following problem:

e minimize || X]||.,
e subject to Po(X) = Po(M),
where the nuclear norm || X ||, is defined as the sum of its singular values:
1X = 3 ai(X).
7
6. Discussion and experimental results
6.1. Datasets
In this study, we evaluate all the mentioned approaches using two well-established datasets within
the RS community: MovieLens 1M, and MovieLens HetRec. The dataset statistics are detailed in

Table 1. For this research, we had focused
on implicit feedback only, by excluding movie

Table 1. Dataset statistics.

ratings from the MovicLens datasets. As a Dataset Interactions | Users | Items | Sparsity

. . ML 1M 1000209 6040 | 3706 9553%
result, we keep only the interactions between

: . i ) ML HetRec 855598 2113 | 10109 | 9600%
users and items, which collectively constitute
the Userltem Rating Matrix (URM). This matrix is referred to as the full URM. To ensure a bal-
anced distribution of data for both model training and evaluation, we have randomly divided each
dataset into training and test sets, maintaining a 4:1 ratio, and we have considered only those users
who have interacted with a minimum of 2 items. The test set is reserved exclusively for the final
evaluation of all the algorithms (see Table 1).

6.2. Metrics
We use four metrics to compare results MAP, NDCG, PRECISION and RECALL.

— Mean Average Precision (MAP): MAP is a metric used in recommendation systems to measure how
well the system ranks and suggests relevant items to users. It looks at the precision (the proportion
of relevant items) in the top recommendations and calculates an average across multiple users or
queries. A higher MAP indicates better recommendation quality.

s s _ (NumberofRelevantItemsinTop-kRecommendations )
Precision: Precision@ k = % .

Average Precision (AP): AP = + S| Precision@k x Relevance@k.
Average Precision (MAP): MAP = % Zlel AP;.
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— Normalized Discounted Cumulative Gain (NDCG): NDCG is another metric for recommendation
systems that assesses the quality of recommendation lists. It considers both the relevance of items
and their positions in the list. NDCG ranges from 0 to 1, with 1 indicating a perfect ranking where
all relevant items are at the top. It is a measure of how well a recommendation system ranks and
orders items for users. .

Discounted Cumulative Gain (DCG): DCGQk = Zle %, where: rel; is relevance at posi-
tion 4. ety

Ideal Discounted Cumulative Gain (IDCG): IDCGQk = Ele %, where rel(;) is relevance
when sorted.

Normalized Discounted Cumulative Gain (NDCG): NDCGQk = %. NDCG ranges from 0
to 1, with 1 indicating a perfect ranking where all relevant items are top ranked.

— Recall is another important metric in the context of RS as it measures the ability of a model
to capture all the relevant items. It is calculated as the ratio of the number of relevant items
retrieved to the total number of relevant items. The formula for Recall@k, which considers the

. . i __ (NumberofRelevantItemsinTop-kRecommendations)
top-k recommendations, is as follows: Recall@Qk k = TotalNumberof ReleoaniTiems .
6.3. Results

Below, a comprehensive overview of the comparative analysis of all the approaches discussed in this
research. The best results per dataset and per metric are given in bold, second-best results are
underlined (see Tables 2 and 3). In our experiments, we have used hyper-parameters that align with
state-of-the-art literature, as documented in [15-18,20-22,39-41,43|.

Table 2. Comparison of MAP and NDCG results over MovieLens 1M, and MovieLens HetRec.

Datasets 1M ML HetRec

Cutoff @5 @20 @5 @20
Models/Metrics MAP NDCG MAP NDCG MAP NDCG MAP NDCG
SLIM 0.3249 | 0.4298 | 0.2147 | 0.3775 0.471 0.5643 | 0.3284 | 0.4862
ItemKNN (cosine sim) | 0.3121 | 0.4088 | 0.2063 | 0.3577 | 0.4783 | 0.5599 | 0.3215 | 0.4664
P3a 0.3086 | 0.4066 | 0.2016 | 0.3553 | 0.4539 | 0.5432 | 0.3028 | 0.4532
PureSVD 0.3243 | 0.4197 | 0.2139 | 0.3644 | 0.5126 | 0.5933 | 0.3604 | 0.5020
WRMF 0.3200 | 0.4229 | 0.2178 | 0.3783 | 0.4859 | 0.5762 | 0.3393 | 0.4923
CAAE 0.1531 | 0.2217 | 0.0913 | 0.1941 | 0.3894 | 0.4767 | 0.2467 | 0.3902
CFGAN-user 0.3066 | 0.4044 | 0.1977 | 0.3487 | 0.4151 | 0.5123 | 0.2695 | 0.4224
GANMPF-user 0.3551 | 0.4564 | 0.2423 | 0.4032 | 0.5255 | 0.6076 | 0.3715 | 0.5151
MC-CF 0.3867 | 0.4476 | 0.4298 | 0.2254 | 0.5391 | 0.6105 | 0.4298 | 0.3211
QMC-CF 0.4105 | 0.4509 | 0.4306 | 0.2065 | 0.5547 | 0.6309 | 0.4306 | 0.3084
SVT 0.2894 | 0.4106 | 0.3107 | 0.1907 | 0.4973 | 0.5783 | 0.4231 | 0.3587

Table 3. Comparison of PRECISION (Pres) and RECALL (Rec) results
over MovieLens 1M, and MovieLens HetRec.

Datasets 1M ML HetRec

Cutoff (@) @20 @5 @20
Models/Metrics PRES | RECA | PRES | RECA | PRES | RECA | PRES | RECA
SLIM 0.4051 | 0.1037 | 0.2817 | 0.2541 | 0.5405 | 0.0624 | 0.4279 | 0.1682
ItemKNN (cosine sim) | 0.3880 | 0.0912 | 0.2743 | 0.2286 | 0.5414 | 0.0502 | 0.4155 | 0.1421
P3a 0.3809 | 0.0904 | 0.2698 | 0.2289 | 0.5179 | 0.0536 | 0.3996 | 0.1434
PureSVD 0.3968 | 0.0915 | 0.2811 | 0.2279 | 0.5770 | 0.0563 | 0.4510 | 0.1541
CAAE 0.2091 | 0.0400 | 0.1552 | 0.1137 | 0.4574 | 0.0423 | 0.3453 | 0.1164
CFGAN-user 0.3817 | 0.0897 | 0.2654 | 0.2206 | 0.4933 | 0.0476 | 0.3736 | 0.1284
GANMPF-user 0.4311 | 0.1070 | 0.3066 | 0.2629 | 0.5870 | 0.0582 | 0.4616 | 0.1592
MC-CF 0.6398 | 0.4298 | 0.5011 | 0.3209 | 0.7452 | 0.498 | 0.6977 | 0.4010
QMC-CF 0.6098 | 0.4193 0.481 0.3087 | 0.7259 | 0.4892 | 0.6741 | 0.3865
SVT 0.4161 | 0.2204 | 0.3924 | 0.2916 | 0.4996 | 0.3032 | 0.4812 | 0.3965

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1078-1092 (2024)



Recommendation systems techniques based on generative models and matrix factorization ... 1089

6.4. Discussion

The results in Tables 2 and 3 provide a comprehensive overview of the performance of various recom-
mendation algorithms, based on MAP, NDCG, Precision, and Recall across two datasets MovieLens 1M
and Hetrec2011, and cutoff values (@5 and @20). Analyzing the results, we observe that several rec-
ommendation models exhibit different levels of performance.

In terms of MAP and NDCG metrics, PureSVD, WRMF, P3qa, ItemKNN (cosine similarity) and
SLIM consistently provide commendable results. Specifically, these models achieve MAP scores ranging
from 30.86% to 32.49% and NDCG scores ranging from 40.66% to 42.98% at the top 5 positions.
However, their performance drops slightly when looking at the top 20, with MAP scores ranging from
20.16% to 21.78% and NDCG scores ranging from 35.53% to 37.38%. In contrast, CAAE performs
lower, with MAP and NDCG in the top 5 and top 20. It should be noted that these models might
require additional adjustments or might not be suitable for this dataset. Notably, GANMF-u, MC-CF
and QMC-CF stand out as the top-performing models, systematically excelling in MAP and NDCG,
especially in the top 5 positions, where their scores reach up to 45.64% for NDCG. However, SVT’s
performance fluctuates across different evaluation metrics, excelling in NDCG @5 but underperforming
in NDCG @20.

Focusing on the HetRec dataset, SLIM, ItemKNN, P3q, PureSVD and WRMF demonstrate robust
performance than on dataset 1M ML. This time, they get higher overall scores, indicating improved
recommendations, with MAP and NDCG scores ranging from 45.39% to 56.43% for the top 5 positions.
CAAE, although still lagging the top models, shows better results compared to its performance on the
1M ML dataset. GANMF-u appears to perform well, meaning its ability to provide high-quality
recommendations on this dataset. However, MC-CF and QMC-CF also show strong performance,
especially in the top 5 positions. Meanwhile, SVT’s performance remains inconsistent, resembling
trends seen in quality analysis.

Moving to Precision and Recall metrics, MC-CF and QMC-CF stand out as top-performing models,
particularly excelling at higher cutoff values. These models consistently achieve high Precision and
Recall scores, indicating their effectiveness in recommending relevant items to users. On the contrary,
CAAE, CFGAN-user, and SVT show comparatively lower precision and recall values, suggesting need
for improvement.

These results highlight the importance of selecting the right recommendation model and cutoff for
specific datasets and the potential for further optimization in certain cases.

7. Conclusion

In conclusion, this survey reveals the richness of recommendation system techniques, from classical
matrix factorization to cutting-edge GAN-based approaches. By tuning various parameters and un-
derstanding the nuances of each method, we can harness their power to provide tailored, high-quality
recommendations. The diverse array of models discussed here underscores the need for a nuanced
approach in choosing the right recommendation technique, considering factors such as data character-
istics, application requirements, and computational resources. As the field of recommendation systems
continues to evolve, this survey serves as a valuable resource for both researchers and practitioners
seeking to navigate this dynamic landscape.
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MeTtoan peKomer,au,wnme CNCTEM Ha OCHOBI
reHepaTMBHUX mMogenein i maTpu4yHoi cpakTopu3sauii: ornsag

®ijani Bersyri C.', Banyap 0.2, Bencaiman M.

L Tabopamopia nayx, mexwixu ma ynpaeasinna, Yuisepcumem Cidi Moxameda Ben A6desrazxa, Pec, Maporko
2 Jlabopamopis inoicenepii ma cucmem xomn romeprux nayx, Ynisepcumem Kadi Atisda, Mappaxew, Mapokko

Cuinbaa dinerpanist (CF) — 1e TexHnika, sika Moxe BifdiabTpyBaTn ej1emMeHTH, siKi MO-
XKYTb CIIOI00ATHCST KOPUCTYBAYIEBi, HA OCHOBI MMOBEIIHKN Ta BIOI0OAHD MOIIOHUX KOPHUCTY-
BauiB. lle KJIFO9OBMIT METOI, IO CHOPHUSIE CTBOPEHHIO e(DEKTUBHOI CUCTEMH DPEKOMEHIIAIIIi
(RS). Cucremu pexomenmariit Ha ocHOBi Mogesi, miavuokuaa CF, BukopuctoByoTh naHi,
3a3BUYall PEATHHTH, /I TOOYI0BU MOJiesIel st HaIaHH ePCOHATI30BAHNX TPOTIO3UTIii
KopuctyBadaM. MeTta 1€l pobOTH MOJISATA€ B TOMY, 100 HAJIATH BCEOITHMIT OTVIsi/T pi3HUX
METO/IiB, 10 BUKOPUCTOBYIOTHCS B MOZIEJIbHOMY RS, 30cepeKyrodnch Ha X TeOPEeTUIHUX
OCHOBaX 1 MpaKTUIHOMY 3aCcTOCyBaHHI. J{OCTIKYIOTbCS OCHOBHI ITPOOJIeMHE, TTOB’si3aHi 3 pe-
KOMEHIAIi MU, BKJIIOIHO 3 11pobJieMoio top-N pekoMeHarliil, i Joc/TimKyoThes Halicyaac-
Hil MeTOo/IM Ha OCHOBI MOJiesiell, siKi BUKOPUCTOBYIOTHCS JIJIsI BUPIIIIEHHT X pobaeM. Y
IIBOMY OTVISIZIi PO3/Ii€HO Il METOIM HA TPU OKPEMi KJIach: MaTpudHa (paKTOpi3allis, MEeTO !
Ha, OCHOBI MOAIOHOCTI Ta MeToaM Ha OoCcHOBI 3amoBHeHHsI. 11106 mopiBHATH TX €(DeKTUBHICTD,
OITIHEHO IIi MeToaM 3a Habopamu gannx Movielens 3a 10IIOMOToI0 IBOX IMTOKA3HUKIB: Cepe]I-
ubol cepenanol Tounocri (MAP), HopMaai30BaHOIO JUCKOHTOBAHOIO CYKYIIHOIO BUTDAIILY
(NDCGQG), rouHOCTi Ta HOBHOTH.

Kntouosi cnoBa: pexomendayitini cucmemu; na 0cnosi modeai; top-N pexomendauis;
2EHEPATNUGHO-3MAZANLHA MEPENCA; MATMPUNHA PAKTMOPUSAULA; 3ANOSHEHHA MATNPUL.
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