odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 11, No. 3, pp. 870-882 (2024) I\/I @P”ti"g

athematical

A data-driven fusion of deep learning and transfer learning
for orange disease classification

Sghir A.', Ziani M.', El Handri K.123

LLMSA Laboratory, Department of Mathematics, Faculty of Sciences,
Mohammed V University in Rabat, Morocco
2 Awancity School of AI & Data for Business & Society, France
3 Faculty of Medicine and Pharmacy, Mohammed V University in Rabat,
Medical Biotechnology (MedBiotech) Laboratory

(Received 15 December 2023; Revised 12 September 2024; Accepted 17 September 2024)

In agriculture, early detection of crop diseases is imperative for sustainability and maximiz-
ing yields. Rooted in Agriculture 4.0, our innovative approach combines pre-trained Con-
volutional Neural Networks (CNNs) models with data-driven solutions to address global
challenges related to water scarcity. By integrating the combined L;/Ls regularization
technique to our model layers, we enhance their flexibility, reducing the risk of the over-
fitting effect of the model. In the orange dataset used in our experiments, we have 1790
orange images, including a class of fresh oranges and three disease categories. Applied on
this dataset for classification, our model exhibits notable performance, namely 92.17% for
CNN and 97.28% for ResNet-50 model. Evaluated across metrics like accuracy, precision,
recall, F1-score, confusion matrix, and cross validation, our approach surpasses traditional
classifiers, significantly contributing to smart agricultural and global food resilience amidst
mounting water scarcity pressures.

Keywords: multi-class classification; orange disease; water scarcity; Agriculture 4.0;
data-driven; deep learning; convolutional neural networks; transfer learning; ResNet-50.
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1. Introduction and background

Agriculture, as the foundation of human sustenance, faces a multitude of challenges exacerbated by
the global environmental crisis and dwindling water resources [1|. Among the crucial agricultural
commodities, oranges hold a significant place, contributing to nutrition, livelihoods, and economic
growth worldwide. However, the efficient management of orange crop health is under duress, especially
in regions grappling with the scarcity of water, a challenge that threatens sustainable production [2].
In response to this pressing issue, innovative technologies and data-driven methodologies have emerged
as indispensable tools for sustaining crop health in water-scarce environments [3]. At the forefront of
this transformation lie deep learning techniques, particularly Convolutional Neural Networks (CNNs),
which have revolutionized image analysis, including disease detection in plants [4]. Our article aims to
harness the power of CNNs, renowned for their ability to extract intricate patterns from images, and
complement this capability with transfer learning, allowing the adaptation of pre-existing knowledge
to the specific context of orange disease classification. By integrating these techniques, the article
seeks to provide a robust tool empowering stakeholders in the agricultural sector to effectively manage
diseases in water-scarce environments. This fusion approach has the potential to revolutionize disease
detection and contribute to sustainable agricultural practices for citrus cultivation. Figure 1 illustrates
the used process.

In the context of our article, we will provide an in-depth exploration of this critical issue. In the
upcoming sections, we resolve to delve into the heart of our study on enhancing the management of
orange crop health in environments constrained by limited water resources. Our analysis starts with
a ‘Review of Literature’, where we will delve into existing knowledge regarding the classification of
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Fig. 1. Convolutional Neural Network Coupled with a Transfer-Learning.

diseases in plant crops. This review will establish a solid foundation for our research. We will then
move on to the ‘Methodology’, detailing the tools, techniques, and data used in our analysis. The
following ‘Results’ will provide insights into the findings of our study, and the ‘Discussion’ section will
unveil the implications of these results. At last, the ‘Conclusion’ will bring together all these elements
to offer a comprehensive perspective on how our approach, based on deep learning and transfer learning,
can transform the management of orange crop health in arid contexts.

2. Literature review

Plant disease detection using Convolutional Neural Networks (CNNs) and transfer learning has shown
remarkable accuracy in various studies. Researchers have achieved high levels of accuracy, often ex-
ceeding 90%, in identifying plant diseases through image analysis. For instance, in a study by Rupali
Saha et al. [5], a CNN-based model achieved an accuracy of approximately 93.21% in identifying orange
fruit disease, showcasing the potential of deep learning in this domain. Similarly, a research project by
Poonam Dhiman et al. reported an accuracy rate of around 98.25% in classifying plant diseases using
deep learning models CNN-LSTM (CNN Long Short-Term Memory Network) with edge computing [6].

One notable advantage of the transfer learning approach is its ability to achieve high accuracy even
with limited datasets, which is often the case in agriculture due to the complexity and diversity of
diseases. For instance, a study by Junde Chen et al. [7] used transfer learning with a pre-trained VG-
GNet model and achieved an accuracy of over 92% in identifying multiple rice plant images. Similarly,
a research project by Zhang et al. [8] reported an accuracy rate of around 96.90% in classifying orange
diseases using the DenseNet model. This study compares two Convolutional Neural Network (CNN)
architectures, MobileNet and Self-Structured (SSCNN), for classifying citrus leaf diseases, offering a
cost-effective method for detection based on smartphone images. The results indicate that SSCNN
achieved higher accuracy, with a 99% validation accuracy at epoch 12, compared to MobileNet, mak-
ing it a more accurate and efficient choice for classifying citrus leaf diseases from smartphone images [9].
Another research assesses the application of convolutional neural networks (CNNs) for fruit counting
in agriculture. Two common CNN architectures, Faster R-CNN with Inception V2 and SSD with
MobileNet, achieve fruit counting performance up to 93% and 90%, respectively, which could enhance
decision-making in agriculture [10].
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3. Methodology

3.1. Data collection and preprocessing
Table 1 and Figure 2 illustrate the dataset used in our paper. The dataset contains 1790 images, of

—~ ; which 1164 are used to train the
model, and 626 are used to test it.
i In this dataset, there is the class
/ with fresh oranges and three other
- diseases, namely, citrus canker, black

b c d

spot, and greening citrus. Fach im-
age has a height of 28 pixels and a
Fig. 2. Sample images of dataset (a) Grenning, (b) Fresh, width of 28 pixels, for approximately
(¢) Canker, (d) Blackspot. 784 pixels. Each pixel is associated
with a single pixel value, indicating the brightness of that pixel. This pixel value is an integer ranging
from 0 to 255.
With a preliminary understanding of our data, our next
crucial step is data preparation for our neural network. We
will reformat all image data into a 128 x 128 format. Our

dataset is clean and requires minimal preprocessing. This

Table 1. Orange diseases dataset.

Class | Count Group
0 344 Blackspot

1 349 Canker ; ] 3 .

5 D) Frosh ensures a reliable foundation for deep learning, allowing us

3 545 Grenning to concentrate on model development without extensive data
cleaning.

3.2. CNN model implementation
3.2.1. Convolutional layers

The convolutional layer serves as the initial component in the architecture of CNNs. Its primary func-
tion is to extract features from input images. The feature map results from the convolution operation
between a filter and the input image. This feature map encapsulates comprehensive information about
image structures, encompassing interesting points, textures, edges, ridges, and more. Subsequent lay-
ers depend on this feature map to perform operations like dimensionality reduction and reduction of
the number of features [11-13].

Definition 1. Let X be an input matrix of dimensions m X n, representing pixel values of an image.
Let W be a weight matrix (filter) of dimensions p x q. The convolution of X by the filter W is defined
as

q
(X W) =YY Xiva 15401 Wap. (1)
a=1 b=1

By adding the bias term b, the output Y of the convolutional layer is obtained by applying an
activation function f element-wise:
Yy = f((X # W +b)i5). (2)
The choice of the activation function depends on the model, but Rectified Linear Unit (ReLU) is
commonly used. In terms of dimensions, if X is m x n and W is p x ¢, the output Y is (m —p+ 1) X
(n—q+1).
Remark 1. The definition 1 above holds for convolutional layer parameters set to K = 1 (using a
single filter), S = 1 (stride of 1 for complete coverage), P = 0 (no zero-padding), and D = 1 (no
dilation applied). The layer utilizes a single filter to extract specific features from the input image.
The stride (.S) is set to 1, ensuring complete coverage of the image without skipping pixels, and zero

pixels are added around the image (P = 0). Additionally, no dilation is applied to the filter (D = 1),
preserving proximity between the elements of the convolution kernel.
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3.2.2. Activation function (ReLU)

To ensure the non-linearity of the convolutional layer, to improve the effectiveness of treatment and to
overcome the problem of saturation, we use ReLU as activation function. The ReLU (Rectified Linear
Unit) activation function [14] is formulated as follows.

Definition 2. For an input value z, the ReLU (Rectified Linear Unit) function is defined as

0 if <0
ReLU(z) = { v if £330 = max{0,z}. (3)
One of its advantages is its low computational cost, as it involves taking the maximum between
the value 0 and the weighted sum value. Another advantage is that it does not suffer from saturation,
as it has no upper limit in the positive region and all negative values in input are replaced by zeros.

3.2.3. Pooling layers

The pooling layer is strategically positioned between the convolutional layers in a neural network
architecture. Its primary purpose is to reduce the size of images while retaining crucial features,
achieved by selecting either the maximum or average values within rectangular regions. The input
image is partitioned into a series of rectangles, each containing n pixels. MaxPooling identifies the
maximum element in each region, AveragePooling calculates the average output of the region, and
Sumpooling computes the sum of the elements within the region.

Definition 3. Let X be an input matrix of dimensions m X m, representing an activation map.
Consider a pooling window of size p X q. The output matrix Z after MaxPooling, AveragePooling, and
SumPooling operations is defined, respectively, as:

Z(i,j) =max X (i x p+p,j x ¢+ ),
p,q
1

Z(i,j)szqZX(iprrp’,j><q+</)7 (4)
.
Z(i,j) =Y X(ixp+p,jixq+d).
p'.q’

The output matrix will have dimensions % x 2,

[}

3.2.4. Flatten layers

“Flatten” is a vital step in Convolutional Neural Networks (CNNs), converting the multi-dimensional
output into a one-dimensional vector. This process streamlines feature maps into a linear array, serving
as input for fully connected layers. It bridges convolutional and fully connected layers, enabling the
network to understand complex data relationships.

Definition 4. If X is an input matrix of dimensions m X n, then Y is defined as Y =
(X1.1,X1,2,..., Xmnl|, where X;; represents the element located at the i-th row and j-th column
of the matrix X.

3.2.5. Fully connected layers
The final layer of the CNN takes as input our image that has been entirely transformed by convolutions
and other operations (in vector form), and produces the prediction.

3.2.6. Activation function (SoftMax)

The SoftMax activation function that assigns a probability to each of these distinct classes while
ensuring that the sum of these probabilities equals 1. This type of activation function aligns perfectly
with our objectives, and it is commonly employed in multi-layer neural networks and for multi-class
classifications. When applied to the output layer, Softmax transforms the raw scores (also known as
logits) produced by the previous layers into probabilities that correspond to different classes. These
probabilities represent the model’s confidence in each class prediction. The SoftMax activation function
is formulated as follows.
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Definition 5. For X = (z1,...,2), we have 0i(X) = ;o5 Tamar-

3.2.7. Learning algorithm

Each neuron has a weight, and the goal is to adjust these weights to reach the overall minimum value
of the loss function [15]. Our categorical cross-entropy loss function measures the disparity between
the probability distribution predicted by the model and the actual probability distribution of labels in
a dataset with multiple classes. J is minimized following two steps:

— Forward Propagation: it is the passage of input data through the network, where each layer performs
specific operations such as convolution, activation, pooling, etc. The results from each layer are
transmitted to the next layer, and this process repeats until reaching the output of the softmax
layer, ultimately generating a prediction.

— Backpropagation: this process updates the weights of neurons based on the gradient descent of
the loss function. The new weight value for each neuron depends on the difference between the
predicted value and the observed one. As long as neurons have a high error rate, their new weights
will be very small, with higher weights for neurons with lower error rates.

Regularized loss function. The incorporation of combined L; and Lo regularization into our
loss function represents a significant advancement in optimizing the weights of our neural network
model. This unique approach leverages the distinct benefits of L, regularization, promoting sparsity
by eliminating less important connections, and Lo regularization, controlling weight growth to avoid
excessive values. By combining these two techniques, our model achieves a subtle balance between
selecting crucial features and maintaining optimization stability. This innovative strategy contributes
to faster convergence during training, improved generalization to unseen data, and increased resilience
against overfitting. The regularized loss function Jreg(W(l)) for a layer [ is defined as a combination of
categorical cross-entropy loss and L;/Ls regularization terms,

1O - A A
Jes(WO) = =33 Viclog (Vi) + 5= S W[+ 225~ (w!9)?, (5)
i=1 c=1 i, i,

where m is the number of samples in the dataset, C is the number of classes, Y; . is the actual value
of class ¢ for sample i, Ym is the predicted value of class ¢ for sample i, A\; and A9 are regularization
coefficients for Ly and Lo.

Gradient of regularized loss function. The gradient with respect to the weights W) is obtained
by adding the gradients of categorical cross-entropy loss and L /L9 regularization terms,

OJvg  OJ A Oy L A2 )
w0~ oD + 5, " sign (W) + e W, (6)
where % is the gradient of categorical cross-entropy loss.

Update moments with bias correction and weights with Adam Optimizer.
Algorithm 1 ADAM Algorithm [16].
)

Inputs: Learning rate n, 81, B2, €; initial parameters W}
Initialization: mg + 0, vg < 0,t+ 0

while not converged

Calculate gradient g; <= VJ;eg (Wéllg)

tt+1,my < Br-mi_1+ (L= P1) ge, v < Bo-ve1 + (1 — B2) - g7

my < —11:%:{

Dy 13—%;
@) @ i
new < Wog —n- \/E:’E

élc;w - I/V(r%)w — 2 sign (W) — 22
! !
Woia < Waew

Our model is a sequential Convolutional Neural Network (CNN) for image classification, see Figure 3.
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Fig. 3. Description of implemented model.

It begins with convolutional layers with ReLLU activation and max-pooling to reduce spatial dimen-
sions. Kach Conv2D layer is equipped with L; and Ly regularization, with respective rates of 0.01,
allowing for the control of weights and ensuring model stability. The final layers include a flattening
step, followed by dense layers with ReLLU activation and dropout to prevent overfitting. The output
layer employs softmax activation for multi-class classification. The model is compiled using the Adam
optimizer with a learning rate 0.0001 and categorical cross-entropy loss. It is trained for 50 epochs on
provided training data, focusing on accuracy as the evaluation metric. The training time is recorded
to measure its efficiency. The selection of these parameters and hyper-parameters represents the cul-
mination of an extensive series of experiments involving various regularization methods and numerous
CNN architectures. The model configurations above represent the optimal settings we have identified
to achieve the best possible results.

3.3. Transfer learning with ResNet-50

Transfer learning is a machine learning technique that involves repurposing a pre-trained model from
one dataset to address a different problem with a distinct dataset but a related context. This approach
spares us the effort of painstakingly searching for the optimal model and investing substantial time in
constant testing and parameter tuning. This becomes particularly beneficial when dealing with sizable
datasets and intricate tasks, where training a model from scratch can be time-intensive. Leveraging
transfer learning mitigates the need for an extensive dataset to introduce a new model, yielding a more
efficient and effective way to approach new implementations |17, 18].

Residual Block in ResNet-50

The residual block in ResNet50 consists of three key steps.

e Batch Normalization (BN).

Definition 6. Let X be the input matrix and Y be the matrix after the convolution operation. Batch
Normalization is applied to normalize Y, producing the normalized matrix N :

v 0 |
N = A LA WO) (7)
o2 4 ¢

where Y is the output after the convolution at the i-th layer, v(?) and () are the parameter matrices
of BN, u(i) and o) are the means and standard deviations calculated along the appropriate axes, and
€ is a small constant to avoid division by zero.

e Residual Block with ReLU: A residual block F;(X(~1) with X(~1) as input is defined as
F;(X07V) = RELU (BN (Wi * Fia (XU0) + X070 15, 81)), (8)

where W; ; is the convolution weight matrix, 7; ; and 3; ; are the Batch Normalization parameters, *
is the convolution operator and ReL.U is the activation function.

e Residual Connections: Residual connections are introduced by directly adding the input XY to
the output of the residual block, producing the final matrix F;(X (i_l)).
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Fig. 4. Representation of the RESNET-50 architecture.

Table 2. Hyper-parameters used

i the ResNet50-based model. The overall structure of ResNet50 is formed by stack-

ing multiple of these residual blocks. The final output

Inpl\f:gﬁ;pe (11{262,1\1](;;5,3) is obtained by passing through these blo.cks successively.
Weight Initialized to ImageNet The network parameterg, Su.Ch as the weights of COI.1V01u—
Optimizer Adamax tions and Batch Normalization parameters, are adjusted
Loss function  Categorical crossentropy during training using the gradient descent backpropaga-
Learning rate 0.0001 tion algorithm, as mentioned earlier. Figure 4 represents
Regularization L; and Lo Regularization the RESNET-50 architecture.
Classifier Softmax We employed ResNet-50 as our base model, as in-
Epochs 950 dicated in Table 2. This model was initially trained to
Batch size 32 recognize objects in the ImageNet dataset. We opted
Dropout rate 0.25

for it due to its widespread recognition and strong per-
formance across various image classification tasks.

3.4. Comparison between the general connections and the residual connections used in ResNet
The architecture of a standard Convolutional Neural Network (CNN) and a residual block in ResNet50
presents a distinct contrast in how information is processed. The conventional CNN follows a sequential
approach, progressively trans-
forming features of an im-
age across its layers. How-
ever, this method may face
challenges such as the van-
ishing gradient during the
training of deep networks.
In contrast, ResNet50 in-
troduces residual blocks
that create shortcuts to fa-
cilitate the propagation of information. In these blocks, input information is added to the output rather
than simply being transformed. This creates a ‘“residual path”, allowing the network to learn identity
functions, thereby easing gradient propagation. This architecture addresses the vanishing gradient
problem and enables the training of much deeper networks. Figure 5 shows this difference.

Residual connection

X
weight layer

General connection

X
weight layer

relu

F(x)

Fig.5. The comparison between the general connections and the residual
connections used in ResNet.
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4. Results and discussion

4.1. Performance evaluation of CNN model

The accuracy curve of the CNN model, with a test accuracy of 92.17%, showcases its remarkable
ability to classify test data successfully. This high performance reflects the model’s reliability in its
predictions. Simultaneously, the low loss of 4.0404 indicates its efficiency in minimizing errors during
training, thereby enhancing its overall performance and predictive capability.

model accuracy model loss
100 A
0.95 4
0.90 4 80 4
0.85
> 60 4
® - train w - train
5 "]
2 0.80 — test o — test
8
40 4
0.75 A
20 1
0.70 A
0.65 i— T T T T T 01— T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
epoch epoch

Fig. 6. Accuracy curve and loss curve of the CNN model.

The presented table illustrates the performance metrics of the CNN model across different classes
of orange crop diseases. Notably, the “Fresh” and “Grenning” classes exhibit exceptional results with
perfect accuracy, recall, and F1-Score, each scoring 100%. The “Blackspot” class achieved an accuracy
of 76%, while maintaining a high recall of 96% and an F1-Score of 85%. The “Canker” class demon-
strated a remarkable accuracy of 95%, with a recall of 69% and an F1-Score of 80%. These metrics
provide a detailed insight into the model’s proficiency in accurately classifying and recognizing various
orange crop diseases.

The confusion matrix indicates that the

model incorrectly classified 14 instances of Table 3. Performance metrics of the CNN model.

the “Blackspot” class as “Canker”. Simi- Class Accuracy | Recall | F1-Score | Support
larly, 105 instances of the “Canker” class Blackspot 0.76 0.96 0.85 344
were mistakenly predicted as belonging to Canker 0.95 0.69 0.80 349
the “Blackspot” class. Additionally, 2 in- Fresh 1.00 1.00 1.00 552
stances of the “Canker” class were erro- Grenning 1.00 1.00 1.00 545

neously classified as “Fresh”. Despite these
few misclassifications, the overall high accuracy, recall, and F1-score values, as mentioned earlier, reflect
the CNN model’s robustness in correctly classifying orange crop diseases.

The cross-validation results showcase the robustness and generalization ability of our model across
diverse folds. With an average accuracy of approximately 85.47%, our model consistently demonstrated
its proficiency in correctly classifying instances. The Fl-score, averaging around 78.21%, reflects a
harmonious balance between precision and recall, indicative of the model’s ability to handle both false
positives and false negatives effectively. Furthermore, the impressive average AUC of approximately
97.67% attests to the model’s discriminative power in distinguishing between classes.

4.2. Performance evaluation of ResNet-50

The ResNetb0 model achieved outstanding performance, as evidenced by its accuracy curve. With
an impressive test accuracy of 97.28%, the model exhibited an exceptional ability to correctly classify
the dataset. Moreover, the model’s remarkably low loss value of 1.6199 indicates minimal errors in
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Fig. 7. The confusion matrix of CNN’s model.

Table 4. Cross-validation results.

Fold  Accuracy (%) Fl-score AUC

Fold 1 0.8938 0.8361  0.9861
Fold 2 0.8770 0.7817  0.9788
Fold 3 0.8379 0.7728  0.9733
Fold 4 0.8770 0.8568  0.9719
Fold 5 0.8379 0.7536  0.9902
Fold 6 0.8324 0.7536  0.9771
Fold 7 0.8044 0.6613  0.9687
Fold 8 0.7597 0.6333  0.9573
Fold 9 0.9385 0.9333  0.9890
Fold 10 0.8882 0.8332  0.9749
Average 0.8547 0.7821  0.9767

its predictions. These results underscore the ResNet50 model’s exceptional accuracy and efficiency,
making it a powerful choice for the given task.

model accuracy model loss
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Fig. 8. Accuracy curve and loss curve of the ResNet50 model.
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The table presents a detailed summary of the ResNet model’s performance, showcasing the accuracy,
recall, and F1l-score for each class. Notably, the model achieved remarkable results across all classes,
with an accuracy of 0.92 at 1.00.

In the confusion matrix, ResNet50 ex-

hibited two misclassifications where the Table 5. Performance metrics of the ResNet50 model.

true label was “Blackspot”, but the model Class Accuracy | Recall | F1-Score | Support
incorrectly predicted “Canker”.  These Blackspot 0.92 0.97 0.95 344
limited misclassifications suggest that the Canker 0.97 0.92 0.94 349
model’s performance in distinguishing dif- Fresh 1.00 1.00 1.00 552
ferent orange crop diseases remains highly Grenning 1.00 1.00 1.00 545
accurate.

-500
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Fig. 9. ResNet50 Confusion Matrix.

The cross-validation results table provides
a detailed view of the robustness of our model
across different folds. Each row represents a

Table 6. Cross-validation results.

Fold  Accuracy (%) Fl-score AUC

specific fold, and metrics such as accuracy, F1- Fold 1 0.9832 0.9791  0.9991
score, and AUC offer a comprehensive evalu- Fold 2 0.9944 0.9950 1
ation of the model’s performance. Some folds Fold 3 ! 1 1
demonstrated outstanding excellence, achiev- Fold 4 0.9858 0.8568  0.9998
ing perfect accuracy and Fl-score of 100%. Fold 5 0.9921 0.7536  0.9997
These results indicate that the model suc- Fold 6 1 1 1
cessfully generalized across diverse datasets. Fold 7 0.9924 0.6613  0.9977
The overall average confirms the consistency of Fold 8 0.9932 0.6333 1
these high performances, instilling confidence Fold 9 0.9801 0.9333  0.9998
in the model’s ability to maintain outstanding Fold 10 ! 1 1
Average 0.9932 0.9918  0.9996

performance under various conditions.

4.3. Comparative analysis

Table 7 provides a detailed comparison of the accuracy of two models, CNN and ResNet50, across
different classes. In the “Blackspot” class, ResNet50 outperforms CNN with an accuracy of 0.92
compared to CNN’s 0.76. This improvement can be attributed to ResNet50’s deeper architecture and
skip connections, allowing it to capture more complex features and gradients effectively.
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Moving to the “Canker” class, ResNet50 continues to show superiority with an accuracy of 0.97,
surpassing CNN’s accuracy of 0.95. The deeper and more sophisticated architecture of ResNet50
enables it to learn intricate patterns and nuances in the data, contributing to its enhanced performance.

Both models exhibit exceptional accuracy of 1.00 in the “Fresh” and “Grenning” classes. In these
cases, both CNN and ResNet50 successfully classify instances with perfect accuracy, indicating their
proficiency in recognizing distinct features of these classes.

The overall superior performance of ResNetb0 over

Table 7. Comparative accuracy of models. CNN can be attributed to its ability to mitigate the van-

Class CNN | ResNet50 ishing gradient problem through the use of residual con-
Blackspot | 0.76 0.92 nections. These connections facilitate the flow of gradients
Canker 0.95 0.97 during backpropagation, enabling the model to learn more
Fresh 1.00 1.00 efficiently, especially in the case of deep networks. Conse-
Grenning | 1.00 1.00 quently, ResNet50 demonstrates a higher accuracy across

multiple classes, making it a more effective choice for the
given task compared to the standalone CNN model.

The results also highlight a significant difference between the CNN and ResNet50 models in terms of
training time. The CNN model converged more quickly, with a training time of 53.3754 seconds, while
the ResNetb0 model required 1139.9025 seconds for training. Despite this time difference, ResNet50
showed superior performance compared to CNN. This observation underscores ResNetb0’s ability to
achieve higher accuracy, even though it required a longer training time.

5. Conclusion

In summary, this article sheds light on the critical challenges facing agriculture due to environmental
crises and dwindling water resources, focusing specifically on the importance and vulnerability of or-
anges. It introduces an innovative approach that combines deep learning techniques like Convolutional
Neural Networks (CNNs) with transfer learning (TL) and the use of combined L; and Lo regular-
ization to enhance the accuracy of disease classification in orange crops, even when data is limited.
This fusion of methodologies offers a robust tool for effectively managing diseases in water-scarce re-
gions, potentially revolutionizing disease detection and contributing to sustainable citrus cultivation
practices.

The practical implications and future directions in Agricultural Informatics are poised to reshape
the agriculture sector. The adoption of informatics solutions is yielding tangible benefits such as
optimized operations, reduced resource wastage, and improved crop yields. Precision agriculture,
combined with advanced regularization techniques, enhances both productivity and environmental
sustainability. Early disease detection and data-driven management curb crop losses and minimize
reliance on chemicals. Digitized market access and data-driven decision-making empower farmers and
reduce intermediary costs. Looking ahead, advanced AlI, machine learning, IoT, and blockchain will
drive further innovation, fostering resilient, sustainable, and globally connected agriculture.
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KepoBaHe gaHumm noegHaHHSA rAnMOOKOro HaBY4aHHA Ta TpaHcdepHoro
HaB4YaHHS ans knacudpikauii noMmapaH4eBol XBOpoou

Crip A1, Biani M.!, Enp Xammpi K123

YTabopamopia LMSA, xagedpa mamemamury, Garxyivmem npupooHuMus Hayx,
Vwisepcumem Myzammeda V y Pabami, Mapoxxo
2 [IIxona wmywHozo inmesexmy i danux das 6idnecy ma cycniavemea Atisancimi, Dparyis
3 Darysvmem meduyurnu ma gapmayii Yrisepcumemy Moxammeda V y Pabami,
Jabopamopia meduuroi Giomexnonoezii (MedBiotech)

VYV CiIbCbKOMY TOCHOIAPCTBI PAHHE BUSBJIEHHSI XBOPOO ClIbCHKOTOCIIOIAPCHKUX KYJIBTYD
€ 0DOB’SI3KOBUM JIJIsl CTAJIOTO PO3BUTKY Ta MakcuMmizariil BpoxkaitHocti. Harn innoBamiii-
Huit migxin, sacHoBanwmit Ha Agriculture 4.0, moenHye monepesHbO TiATOTOBJEHI MOJIEI
sroprkoBux HelpoHHuX Mepexk (CNN) i3 po3s’s3kamMm Ha OCHOBI JAQHUWX JJIsl BUPINIEHHSI
rmobaabHUX MpobJseM, OB s3anuX i3 aedirmuroM Boau. [HTErpyoYn KOMOIHOBaHY TEXHIKY
perymspizanii L1/Ly 00 mapis Hamol Mojesi, HOKPAILyeMO IXHIO IHYYKICTb, 3MEHINYO-
qu pu3uK epeKTy MMepeHaBYaHHs MOoesi. ¥ HabOpi moMapaHYeBUX JAHUX, sIKA BUKOPH-
CTOBYBaBCsI B HAIMX eKcllepuMeHTax, MaemMo 1790 300pakeHb MOMapaHIeBOrO KOJIBOPY,
BKJIFOYAIOYM KJIAC CBIXKUX IIOMapaH4 1 TpW KaTeropil 3aXBOPIOBaHb. 3aCTOCOBYIOUH IIeii
Habip JaHuX /T Kaacudikarliil, Hala MoJIe/ b JIEMOHCTPY€E TOMITHY e(peKTUBHICTh, a came
92.17% i CNN Tta 97.28% nya mozesi ResNet-50. O1inroroun Taki MOKa3HUKH, IK TOY-
HICTB, JJOCTOBIpHICTh, TIOBHOTA, MTOKAa3HUK F'1, MaTpuIlsd HEBiANMOBITHOCTEHN Ta IepexpecHa,
3aTBEp/XKEHHSI, HAIII ITiJIXi/T IePEBEPINYE TPAIUIiiHI KaacudiKaTopu, CyTTEBO CIPUSIIOUN
CTIIKOCTI 1HTEJIEKTYAIbHOTO CLIBCHKOTO IOCIOAAPCTBA Ta TVIODAIBHOI ITPOIOBOJIBIOL IIPO-
MHUCJIOBOCTi B yMOBAX 3POCTAIOYOr0 TUCKY J1eilUTy BOIU.

Kntouosi cnosa: 6azamoxaacosa kaacudirayis; nomapanuesa xeopoba; degiyum eodu;
Agriculture 4.0; xeposanudl danumu; 2aub0Ke HABUAHHA; 320PMK0ST HEUPOHHI MEPEHC;
mpancpepre nasuarnns; ResNet-50.
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