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This paper embarks on a detailed examination of the inherent security challenges faced
by blockchain networks, including fraudulent transactions, double-spending, and 51% at-
tacks, among others. Using recent advancements in ML, it presents a novel methodology
for real-time anomaly detection, predictive threat modeling, and adaptive security proto-
cols that leverage data-driven insights to fortify the blockchain against both known and
emerging threats. By analyzing case studies and empirical data, this study illustrates the
effectiveness of ML techniques in enhancing the resilience and integrity of blockchain sys-
tems. Furthermore, it explores the implications of these innovations for future blockchain
applications, proposing a framework for the integration of ML into blockchain security
strategies. This article aims to serve as a cornerstone for researchers, technologists, and
cybersecurity professionals, offering insights into the future of secure blockchain ecosys-
tems powered by the intelligent capabilities of machine learning.
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1. Introduction

The primary issue addressed by this article is the increasing complexity and sophistication of security
threats targeted at blockchain networks. Despite inherent security features of blockchain such as
decentralization and cryptographic hashing, there still exist vulnerabilities that malicious actors can
exploit. These vulnerabilities include fraudulent and anomalous transactions, double-spending threats,
“51%” attacks, exploitation of smart contracts, and privacy breaches. The article aims to address the
problem of proactively detecting, predicting, and mitigating these threats in real-time to support the
integrity, reliability, and resilience of blockchain systems. It explores how machine learning algorithms
can be used to enhance blockchain security by analyzing patterns, detecting anomalies, and adapting
to new threats more effectively than traditional security measures. The ultimate goal is to develop a
framework that integrates machine learning into blockchain security strategies, thereby reducing the
risk of attacks and ensuring the long-term resilience of blockchain infrastructure.

Peer-to-Peer

. ~_4I Blockchain

~Nodet*. Security

BlockT Block2 BlockN
...........
Node2 NodeN Consensus

Fig. 1. Architecture of a decentralized blockchain network.

Blockchain technology represents a paradigm shift in how information is exchanged, verified, and
recorded in decentralized networks. Originally developed to support the digital currency Bitcoin,
blockchain has extended beyond its financial origins to impact various sectors including healthcare,
supply chain management, and digital identity verification. Fundamentally, blockchain is a distributed
ledger technology (DLT) that maintains a continuously growing list of records, called blocks, securely
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linked together using cryptography. This architecture (Figure 1) ensures the integrity, transparency,
and immutability of the data stored within the blockchain, making it resistant to modification and
fraud.

The essence of blockchain lies in its ability to facilitate peer-to-peer transactions without the need
for a central authority. This decentralization is achieved through consensus mechanisms such as Proof
of Work (PoW) [1] and Proof of Stake (PoS) [2|, which allow network participants to agree on the
validity of transactions. As a result, blockchain creates an environment of trust among users, who can
conduct transactions directly with one another, ensuring the security and continuity of their exchanges.

2. Analysis of recent research and publications

Among the most critical security threats to blockchain [3] is the potential for a 51% attack [4], where
a single entity or coalition acquires more than half of the network’s mining power, thereby gaining the
ability to manipulate transaction verification and block creation. Such dominance over the network
can facilitate dishonest actions, such as double-spending threats, where identical digital tokens are
fraudulently obtained multiple times [5]. Examples include Ethereum Classic, which suffered several
51% attacks in 2020, leading to double expenditures of ETC worth millions of dollars.

One of the most notorious cryptocurrency thefts occurred with the hack of the Mt. Gox exchange in
2014 [6], where approximately 744 408 bitcoins were lost. This incident had significant repercussions for
the global cryptocurrency community and has been the subject of numerous studies |7] in information
security.

Research has shown that the initial vulnerabilities of the Mt. Gox system can be traced back to
2011, when the exchange’s private key remained unencrypted and was likely compromised through
insider actions or as a result of a hacking attack. Such conditions allowed perpetrators to covertly
withdraw funds, which the system mistakenly interpreted as legitimate transactions or transfers to
secure addresses.

Fraudulent anomalous transactions in blockchain are any attempts to deceive or manipulate trans-
actions to gain unauthorized benefits. These transactions exploit the trust and decentralized nature
of blockchain networks to conduct illegal activities, including, but not limited to, theft, transaction
manipulation, or unauthorized access to assets. The anonymity and irreversibility of blockchain trans-
actions, while being strengths in terms of privacy and security, also pose challenges in combating
fraud.

Double spending occurs when an entity spends the same digital currency more than once. This can
happen if a malefactor manipulates the network in a way that allows them to reverse a transaction
after spending the cryptocurrency, effectively enabling them to retain both the spent currency and the
acquired goods or services.

Transaction malleability is a vulnerability that allows changing the unique transaction identifier
(or hash) before the transaction is confirmed. This can lead to confusion over whether a transaction
has been executed, potentially allowing fraudsters to claim that the transaction never occurred, and
then making a double claim.

Furthermore, the Sybil attack presents a significant risk, characterized by a malefactor controlling
multiple nodes in the network using numerous pseudonyms. This disproportionate influence aims to
undermine the network’s operation and consensus mechanisms, threatening the fundamental basis of
equal participation in the blockchain [5].

Phishing attacks further exacerbate the security situation by deceitfully inducing individuals to
disclose confidential information, such as personal keys or authentication credentials. These attacks
exploit the human factor, using forged communications that masquerade as legitimate organizations
to execute their schemes. Blockchain’s reliance on the broader Internet infrastructure creates vul-
nerabilities through routing attacks. These attacks exploit weaknesses in Internet routing protocols,
such as BGP, to intercept or alter data transmitted between network nodes without compromising the
cryptographic protocols that protect the data [4].
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The advent of smart contracts as self-executing contractual agreements encoded on the blockchain
opens a new vector for potential security flaws. Vulnerabilities in the logic or implementation of smart
contracts can be manipulated to alter expected outcomes or siphon funds, underscoring the critical
need for thorough code audits and security methodologies [8].

Furthermore, the security of blockchain assets is fundamentally linked to the protection of private
keys. Unauthorized acquisition of a user’s private key equates to direct control over the user’s assets
on the blockchain, representing a direct and serious threat to asset security [9].

Finally, the integrity and functionality of blockchain systems largely depend on the reliability of
their consensus mechanisms. Flaws or inefficiencies in these mechanisms can lead to vulnerabilities,
including unintentional forks, security breaches, and potential centralization pressures, which challenge
the decentralized nature of blockchain technology [10].

Based on the analyzed data, a summary table of vulnerabilities in key consensus mechanisms has
been constructed.

Table 1. Consensus mechanisms and their vulnerability to major attacks.

Consensus 51% Sybil | Phishing | Routing | Smart contract | Private
mechanism attack attack attack vulnerability key theft
Proof of Work High Low N/A Medium N/A N/A
Proof of Stake Medium | Medium N/A Medium N/A N/A
Delegated PoS Medium High N/A Medium N/A N/A
Practical byzantine Low Low N/A High N/A N/A
fault tolerance
Directed acyclic Low Medium N/A Medium N/A N/A
graphs
Hybrid Mechanisms | Varies Varies N/A Varies N/A N/A

The notation “N/A” signifies that the security threat is not directly influenced by the consensus
mechanism itself, but rather by other factors associated with blockchain technology and user prac-
tices. “Varies” for hybrid mechanisms reflects the diverse nature of these systems, which may combine
elements of different consensus types and, thereby, inherit a mixture of their vulnerabilities.

The vulnerability level of each consensus mechanism to specific threats can vary depending on ad-
ditional factors, such as network size, implementation details, and external security measures. Ongoing
research and development efforts are directed towards mitigating these vulnerabilities and enhancing
the resilience of blockchain systems against new security threats.

To improve the security of blockchain technologies and mitigate identified vulnerabilities, several
methods implemented in the field have been reviewed. A comprehensive analysis of these methods,
along with relevant references, provides valuable information about current efforts to protect blockchain
systems from potential threats.

One approach to reducing the risk of 51% attacks involves using more decentralized and scalable
consensus mechanisms that do not rely solely on proof-of-work (PoW). The implementation of hybrid
consensus models that combine PoW with proof-of-stake (PoS) mechanisms can reduce the feasibility
of these attacks by increasing the cost and complexity of gaining majority control [11]. Additionally,
deploying checkpoint mechanisms, where trusted block hashes are hard coded into the software at
specific intervals, can also prevent deep chain reorganizations [12].

To counter Sybil attacks, networks can implement more stringent node verification processes, such
as requiring nodes to deposit a certain amount of native cryptocurrency as collateral (proof of stake) or
using reputation systems that assess the reliability of nodes based on their activity [4]. These measures
make it costly and challenging for malicious actors to gain significant influence over the network.

Educating users on the risks of phishing and the use of multi-factor authentication (MFA) can
significantly reduce the success rate of phishing attacks. Blockchain wallets and services can integrate
hardware security keys as part of the authentication process, providing an additional layer of protection
against phishing [13].
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Enhancing the security of the underlying internet infrastructure on which blockchain networks
operate is crucial. Implementing secure routing protocols, such as BGPsec and RPKI, can reduce the
risk of routing attacks. Additionally, the use of Transport Layer Security (TLS) for data transmitted
between nodes ensures that even if data is intercepted, it remains encrypted and unintelligible to the
attacker.

Research into alternative consensus mechanisms that offer improved security, scalability, and de-
centralization continues. Proof-of-stake (PoS) and its variations (Delegated PoS, Liquid PoS) provide
mechanisms where the probability of verifying transactions and creating new blocks is proportional to
the stake in the network, reducing the potential for centralization and attacks [14].

The analysis indicates that machine learning methods have been scarcely utilized for identifying
anomalous and fraudulent transactions. This highlights an area for potential development in enhancing
blockchain security through advanced analytical techniques.

3. Methodology for using machine learning to identify anomalous transactions

The integration of Machine Learning (ML) into the security domain, particularly within innovative
technologies like blockchain, provides a robust toolkit for enhancing protection, predicting vulnera-
bilities, and optimizing security protocols. To understand how ML contributes to these aspects, it is
crucial to comprehend the fundamentals of ML models and their applicability to security challenges.

Machine learning, a subset of artificial intelligence (AI), enables systems to learn from data, identify
patterns, and make decisions with minimal human intervention. ML models are trained on large
datasets, which allows them to improve their accuracy over time by processing more information.

Integrating ML into security strategies offers several benefits. By automating the detection of
anomalies and potential vulnerabilities, ML models can significantly reduce the time required to identify
and respond to security threats. This rapid response capability is crucial for limiting the damage caused
by cyber-attacks.

ML models are also capable of processing the vast volumes of data generated by modern networks
and systems, sifting through logs and real-time traffic to detect signs of fraud that human analysts
might miss. Furthermore, as cyber threats evolve, ML models can adapt to new types of attacks,
providing a dynamic defense mechanism that evolves alongside the increasing threat landscape.

However, the effectiveness of ML in security also depends on the quality of the data used for
training, the specificity of the models for security tasks, and continuous updating of the models to
adapt to new threats. Additionally, there is a challenge in securing the ML models themselves and
preventing malicious actors from manipulating them to bypass security measures.

Figure 2 illustrates the process and methodology for using machine learning to identify anomalous
transactions.

The first step involves collecting a large amount of transactional data. This data must include
both normal and anomalous transactions. It is also crucial to ensure that the data is cleaned of errors,
duplicates are removed, and missing values are processed.

During the feature engineering stage, those parameters of the input data are selected which will
best assist the machine learning algorithm in performing the assigned task. For the task of detecting
anomalous transactions, such parameters might include:

e Transaction amount: large sums may indicate potential fraud.

e Transaction time: transactions occurring at unusual times, for example, during the night.

e Transaction frequency: if transactions occur too frequently or involve too large sums over a short
period.

e Geographical location: transactions taking place in regions with high levels of fraud or in unusual
locations for the user.

Often, existing data can be transformed or combined to create new features that provide a deeper
understanding of user behavior. For example, changes in frequency or volume of transactions compared
to the average for a given user may indicate fraudulent transactions.
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Fig. 2. ML training process.

After feature development, it is necessary to evaluate their effectiveness on a validation dataset to

ensure that they indeed enhance the model. This process is often iterative, where the analyst may
return to the feature creation step to refine or replace them.

Each machine learning model has a set of parameters that are not learned directly from the data

but are defined before training the model. These parameters are called hyperparameters, and their
proper tuning can significantly improve model performance.

The training process (Figure 2) includes the following steps:

1.
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After selecting and configuring the hyperparameters, the model is trained on the training dataset.

Data splitting: the data are divided into training, validation, and test sets. The validation set is
used to evaluate the model during training, while the test set is used for the final assessment of
performance.

Model training: the model learns to adjust its parameters (e.g., weights in a neural network)
according to the training data, minimizing the prediction error.
Cross-validation: applying cross-validation techniques to ensure that the model performs effectively
across different data subsets. This helps to avoid overfitting and ensure overall reliability.

Model evaluation: using metrics such as accuracy, recall, precision, Fl-score, and AUC-ROC to
assess the performance of the model.
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After initial training, further iterations may be possible to enhance performance by adjusting hy-
perparameters, adding or removing features, or using different models. This cyclical process helps to
adapt the model to changing conditions and new types of data [15].

ML models, especially those specialized in anomaly detection, can identify unusual transaction
patterns that deviate from the norm, indicating potential fraud. Common methods used for this
purpose include clustering (e.g., K-means) and neural networks (e.g., autoencoders).

Pattern recognition: supervised learning models such as decision trees, support vector machines,
and neural networks can be trained on historical transaction data labeled as fraudulent or legitimate.
These models learn to recognize patterns associated with fraud, enabling them to accurately classify
new transactions [16].

Sequential analysis: some ML models specialize in analyzing sequences of transactions to detect
fraudulent patterns over time. Techniques such as recurrent neural networks and long short-term
memory networks are well-suited for processing time-series data, making them effective for identifying
complex fraud schemes that occur over extended periods.

4. Choosing a machine learning model

The experimental workflow consists of several stages, including data preprocessing, feature devel-
opment, model selection, training, evaluation, and validation. The dataset is divided into training
and testing sets using stratified splitting to ensure a balanced distribution of anomalous and normal
transactions. Models are trained on the training data and evaluated on the test data using selected
performance metrics. Hyperparameter tuning is conducted using methods such as grid search or ran-
domized search to optimize model performance. Finally, based on the evaluation results, the best
model is selected and deployed for real-world use.

Various tools and frameworks can be used to facilitate the implementation, training, evaluation,
and visualization of a machine learning (ML) model aimed at enhancing blockchain security. Below
are key tools and frameworks used in the development process:

e Python programming language: the simplicity, versatility, and extensive libraries of Python
make it well-suited for developing and experimenting with ML models.

e Pandas and NumPy: these Python libraries are used for data manipulation, preprocessing, and
feature development. Pandas provides data structures like DataFrames, essential for processing
and analyzing structured data, while NumPy offers support for numerical operations and array
processing.

e Scikit-learn (sklearn): this is a popular Python machine learning library that provides a wide
range of tools and algorithms for ML tasks such as classification, regression, clustering, and dimen-
sionality reduction.

e Matplotlib and Seaborn: these Python libraries are used for data visualization. Matplotlib
offers a broad range of plotting functions and customization options, while Seaborn provides high-
level interfaces for creating informative and visually attractive statistical graphics. These libraries
are utilized for visualizing data distributions, model performance metrics, and decision boundaries.

The random forest model has been employed to build a model for detecting fraudulent transactions
due to its significant advantages for this class of tasks. This model’s robustness and versatility in
handling various complexities associated with transaction data make it particularly suitable for iden-
tifying discrepancies indicative of fraud. Advantages of using the random forest model for detecting
fraudulent transactions:

1. High accuracy: the random forest method often demonstrates high accuracy in various classification
tasks through the use of multiple decision trees to make a final prediction. The ensemble method
of voting for classification or averaging for regression ensures a balanced decision, reducing the
likelihood of overfitting on a single tree.

2. Handling large data sets: random forest can efficiently process datasets with a large number of
records and features, making it ideal for complex tasks where other models may struggle.
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3. Capability to handle missing data: the model can effectively manage cases with missing data.
During the construction of decision trees, it can use the average values of variables to substitute
for missing data, thus avoiding the loss of important information.

4. Minimization of overfitting: compared to individual decision trees, random forest generally does a
better job of avoiding overfitting on the training dataset. Since the final decision is made based on
a large number of trees, the effect of overfitting is minimized, making the model more generalizable.

5. Feature importance: random forest can provide an assessment of the importance of features used
for classification, allowing a deeper understanding of which factors influence the predicted outcome.
This is particularly useful for model interpretation and identifying key features in the data.

6. Flexibility: the model can be used for both classification and regression tasks, making it a versatile
tool for various types of data and applications.

7. Fase of use: thanks to high-quality implementations available in popular machine learning libraries
like scikit-learn, the random forest model is easy to integrate and use in projects.

8. These attributes make Random Forest an excellent choice for developing a robust model for de-
tecting fraudulent transactions, enhancing the security of blockchain systems, and other similar
applications requiring reliable and interpretable results.

At its core, random forest utilizes multiple decision trees. A decision tree is a flowchart-like structure
in which each internal node represents a “test” on an attribute (e.g., whether a coin toss results in heads
or tails), each branch represents the outcome of the test, and each leaf node represents a class label (the
decision made after computing all attributes). Paths from the root to the leaves represent classification
rules.

The fundamental principle underlying Random Forest involves combining several decision trees
to form a more reliable and accurate predictive model. Ensemble predictions are more accurate and
stable than any single decision tree, thanks to the averaging process which reduces both variance and
bias. This methodology enhances the overall decision-making capability by leveraging the strengths of
multiple trees to offset the weaknesses of individual components.

5. Random forest algorithm for predictive modeling

Consider a dataset D consisting of n independent observations D = {(X1,Y7), (X2,Y2),...,(Xn,Yn)},
where X; represents the feature vector of the i-th observation, and Y; represents its target output. For
each of k trees, a sample Dy, is selected from the dataset D with replacement, adding an additional
level of randomness to the training of each tree.

Each tree T}, is constructed using the dataset Dj. At each node, a subset of m features is randomly
selected from the complete set of features. The best split based on these m features is used to divide
the node. The criteria for the “best” split can vary [17]. The process continues until the maximum
depth of the tree is reached.

After training, the model is used for classification and prediction. For an input vector X, each tree
T}, provides a prediction Y;(X). The final prediction is the mode of the predictions obtained from all
the trees for classification tasks:

Y(X) = mode{Y1(X),Y2(X),...,Yi(X)}.

For regression tasks, the final prediction is the arithmetic mean of all values obtained from each

tree,

k
Y(X) = 1 S Vi),
i=1

Random forest also provides insights into the importance of each feature in prediction. This is often
calculated by measuring how much each feature decreases the weighted impurity in the tree, averaged
across all trees. The mathematical elegance of the random forest method lies in its simplicity and the
powerful concept of creating a “forest” of random decision trees to achieve a highly efficient model. The
randomness introduced through bootstrapping and feature selection ensures that the ensemble model
is more robust and less prone to overfitting compared to a single decision tree.
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Ultimately, the selection of random forest for building a model for classifying fraudulent transactions
is justified by its versatility, high accuracy, and ability to efficiently handle complex datasets while
minimizing the risk of overfitting.

Feature selection is a critical step in model development. For this experiment, the transaction
amount and the transaction type were considered as primary features for detecting fraud. The trans-
action type is encoded distinctly to represent categorical variables in digital form. Additional feature
engineering methods can be applied to derive new features or improve model performance.

The effectiveness of ML models is evaluated using various metrics adapted to fraud detection tasks.
These metrics include accuracy, precision, recall, F1 score, the receiver operating characteristic (ROC)
curve, and the area under the ROC curve (AUC) [18]. The choice of evaluation metrics depends on
the specific requirements and objectives of the fraud detection system.

6. Construction and analysis of the software model

The program, written in Python, utilizes the pandas library for data loading and processing, sklearn
for constructing and evaluating the machine learning model, and matplotlib for visualizing the results.
It is designed to analyze transactions within a blockchain to identify anomalous transactions that may
indicate fraudulent activities or vulnerabilities in security. This comprehensive approach integrates
data manipulation, predictive modeling, and result visualization to enhance the detection capabilities
within blockchain transaction networks.

BlockchainSecurityModel ] RandomForestClassifier

validate_transaction(amount, transaction_type) ‘:
1
1

_prepare_input_data(amount, transaction_type)

predict_proba(input_data)

Perform classification

' _ Return classification result

' _Result (anomalouse/normal)

BlockchainSecurityModel RandomForestClassifier ]

Fig. 3. Application diagram.

For training the model, a test dataset consisting of 100000 records was utilized, which includes the
following fields:
e transaction id: a unique identifier for each transaction.
amount: the transaction amount, generated from a gamma distribution.
transaction_ type: the type of transaction, randomly selected from three possible values.
timestamp: the time stamp of the transaction.
from__account and to_ account: identifiers for the sender’s and recipient’s accounts.
transaction_ fee: the fee associated with the transaction.
is_anomalous: a flag indicating whether the transaction is anomalous.

Data preparation involved selecting the appropriate features (columns) and the target variable.
One-Hot Encoding was used to convert the categorical variable transaction type into a numerical
format suitable for machine learning models.

The RandomForestClassifier was employed to train the model on the training set. This stage also
included evaluating the model’s performance on the test dataset and generating a classification report
and ROC-AUC score.

The output of the program includes a classification report (Figure 4) and a ROC curve (Receiver
Operating Characteristic curve) [19] — a graphical representation of the classification model’s perfor-
mance at all possible classification thresholds (Figure 5).
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Classification Report:
precision recall fl1-score support

0 0.98 0.97 0.97 18667
0 0.60 0.71 0.65 1333

accuracy 0.95 20000
macro avg 0.79 0.84 0.81 20000
weighted avg 0.95 0.95 095 20000

Fig. 4. Model classification report.
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Fig. 5. Receiver Operating Characteristic curve.

7. Classification results interpretation

The classification report (Figure 5) illustrates the model’s performance on a dataset comprising 20 000

transactions, of which 18 667 are normal (class 0) and 1333 are anomalous (class 1). Here is a detailed

analysis of the results:
Class 0 — Normal Transactions:

e Accuracy: the model demonstrates an overall accuracy of 95%, indicating a high capability to
correctly classify transactions as normal or anomalous.

e Precision: at 98%, this metric signifies that among the transactions classified as normal, 98% are
indeed normal.

e Recall: at 97%, this shows that the model successfully identified 97% of all normal transactions
within the dataset.

e F'1-Score: a balance between precision and recall for class 0 is 0.97, indicating excellent performance.

Class 1 — Anomalous Transactions:

e Precision: at 60%, this indicates that 60% of the transactions classified as anomalous are truly
anomalous. Although lower than for class 0, this is still a reasonable rate for anomaly detection.

e Recall: at 71%, this indicates that the model detected 71% of all anomalous transactions, suggesting
effective anomaly identification with room for improvement.

e F1-Score: the balance between precision and recall for class 1 is 0.65, which is quite good considering
the complexity of detecting anomalies.

Overall Metrics:

— Macro Avg: average values for precision, recall, and Fl-score are 0.79, 0.84, and 0.81, respec-
tively. These metrics consider results for both classes, providing a balanced assessment of model
performance.

— Weighted Avg: weighted averages for precision, recall, and F1-score, taking into account the support
(number of examples) for each class, are 0.95, confirming high overall model performance.

Mathematical Modeling and Computing, Vol. 11, No. 3, pp.893-903 (2024)



902 Solomka I. R., Liubinskyi B. B., Torshyn V. V.

The model demonstrates high effectiveness in classifying normal transactions and a reasonable
ability to detect anomalous transactions. Given the challenges associated with anomaly detection, the
results for class 1 are promising but indicate potential for further improvement, especially in enhancing
the precision of anomalous transactions.

Figure 5 displays the ROC curve for the Isolation Forest algorithm with an AUC (Area Under the
Curve) of 0.85. The ROC curve graphically represents the trade-off between sensitivity (True Positive
Rate) and specificity (1 — False Positive Rate) at various classification thresholds.

e True Positive Rate (TPR), or sensitivity, shows the proportion of anomalous transactions cor-
rectly identified by the model. The curve rises swiftly at low values of False Positive Rate (FPR),
indicating good performance.

e False Positive Rate (FPR) shows the proportion of normal transactions falsely identified as anoma-
lous. Ideally, a low FPR at a high TPR is desired, represented by a curve that rises towards the
upper left corner.

e Random Chance Line: the diagonal dashed line represents random choice. If the ROC curve of the
model is above this line, it indicates that the model performs better than random choice.

e AUC Value: an AUC of 0.85 suggests that the model has a fairly high ability to distinguish between
classes. AUC values range from 0 to 1, where 1 indicates a perfect ability of the model to correctly
classify all instances.

Based on the ROC curve, it can be concluded that the employed Isolation Forest algorithm performs
well in detecting anomalous transactions, significantly outperforming random selection and showing
substantial potential for further optimization to improve performance.

This program serves as a robust example of applying machine learning to address a specific is-
sue in blockchain transaction security, demonstrating the steps of data preparation, model training,
evaluation, and real-world application.

8. Conclusions

This article presents a theoretical justification, development process, and implementation strategies for
a machine learning model aimed at enhancing the security of blockchain technology. The starting point
of the research is the analysis of vulnerabilities in blockchain systems, based on which a comprehensive
methodological approach to using machine learning algorithms for detecting anomalies in blockchain
transactions that may indicate security threats has been developed.

The architectural scheme of the model meticulously illustrates the integration of selected tools and
technologies at each stage of the machine learning model lifecycle, including data collection, prepro-
cessing, model training, performance evaluation, and real-time monitoring.

The proposed machine learning model demonstrates significant potential for applying artificial intel-
ligence to strengthen the protection of blockchain technologies, considering both current and potential
future threats. The detailed description of the processes of development and implementation of secu-
rity systems based on machine learning for blockchain applications is provided through the analysis of
the components and procedures discussed in the article.

Overall, the article offers an in-depth analysis of the prospects for using machine learning in the
context of blockchain security, highlighting key methodological approaches, tools, and frameworks nec-
essary for creating effective solutions in this area. The machine learning model discussed not only
contributes to enhancing the security of blockchain networks but also plays a crucial role in form-
ing the foundation for integrating artificial intelligence technologies to address complex cybersecurity
challenges.
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3acTocyBaHHA anropuTMiB MalNHHONO HABYaHHS
AN NigBULLEHHs 6e3nekn mepexxi b/1oK4eiiH

Costomka 1. P., Jlrob6incekuit b. B., Toprmua B. B.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

VY cTaTTi MpOBEIEHO JeTaabHe JTOCTiIKEeHHs TpobIeM 6e3MeKn, 3 SKUMHU CTUKAIOTHCS Mepe-
K1 BJIOKUEHH, BKIIIOYAI09 aHOMAJIbHI TPAH3aKIIil, TOBTOPHI BUTPATH Ta atakn Ty “51%”.
Bomna posrisimae octaHHi JOCATHEHHSI B TaJIy3i MAIIMHHOTO HaBYAHHSI Ta MPOIIOHYE HOBY
METO/I0JIOTIIO [IJIT BUABJICHHST aHOMAJIN B PEXKUMI PeaIbHOTO Jacy, MIPOrHO3YBAHHSI 3arPO3
i aJanTUBHUX TPOTOKOJIIB OE3MeKN, IKi BUKOPUCTOBYIOTH JIaHi J/isT 3MilTHEHHsI OJIOKIeiiHa,
sIK BiJI BIZIOMUX, TaK i1 Biji HOBUX 3arpo3. AHaJIi3y04n JOC/Ii?KEHHsI BUITAIKIB Ta eMIIipUYHI
JaHi, CTATTS IeMOHCTPY€E ePeKTUBHICTH METO/IIB MAITMHHOIO HABYAHHS Y I IBUITEHH] CTili-
KOCTI Ta ITiCHOCTI cucTeM OJyIoK4eiiHa. B cTaTTi TaKoXK ITOCTIIZKEeHO BIIUB IIUX 1HHOBAITIi
Ha MaiOyTHI BUKOPUCTAHHS OJIOKYEHHA, MPOMOHYIOUYN PAMKHU I iHTerparil MallmHHOTO
HaBYaHHS B cTpaTerii 6e3mekn OJOKIeHA.
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