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One-dimensional model of a nanostructured thermoelectric material is considered in case,
when the modeled by a potential well nanograin and grain boundaries are represented by
potential barriers. The well and barriers are modeled by Gaussian-type potentials. There is
developed a software product to calculate the transmission coefficient through the quantum
structure “barrier—well-barrier” using the Thomas algorithm. Numerical calculations of
the specific conductivity and the Seebeck coefficient for the proposed model are carried
out. The calculation results validate the experimental data.
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1. Introduction

Role of the tunneling mechanism in thermoelectric phenomena became understood as a result of [1-5].
Several studies studied the influence of “energy filtering” of carriers [6] on the thermoelectric coefficient.
Developed theory of quantum tunneling mechanism of thermoelectric phenomena for several quantum
systems is based on super-lattices with quantum wells, quantum dots, and other thermo-tunneling
objects.

On the other hand, there exists a technology based on refining the initial thermoelectric material
to sizes of 10 + 20nm followed by its hot pressing (see, for example, [7]). Taking into account these
dimensions, nanograins can be treated as quantum wells and together with intergranular barriers and
quantum structures containing barrier-well-barrier configurations can be considered. Thus, carrier
tunneling through the barriers between nanoparticles and the quantum well becomes possible in such
materials. Moreover, this model can account for possible resonant processes during the passage of a
quantum nano-sized well and additional scattering of phonons at the boundaries of nanocrystals.

2. Model of quantum transport in nanostructured thermoelectric materials

Quantum transport in nanostructured thermoelectric materials, where the size of the nanograins is
ranged of 10 = 20 nm, can be determined by two factors:

— the presence of an electric field with a potential difference Ay, the magnitude of which for a
nanograin under experimental conditions is Ay = (1079 =-1074) V;

— the temperature gradient AT within the nanograin, where AT ~ 1073 K.

Both of these factors can be interpreted as the presence of a certain potential field eAp + kgAT, where
e is the electron charge and kg is the Boltzmann constant. For such a model, according to the Landauer
quantum transport theory [8,9], the tunneling current density through a nanograin, in the case where
an external electric field Agp and a temperature gradient AT are applied, is given by the expression:

m*e

j: m /OOO T(Ex) [(E:c)dExa (1)
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where
I(Ey) = /Eoo [fo(E) = fo(E — eAp — koAT)| dE

Let us note, that for the characteristic sample temperatures in the experiment, T' ~ 400 K, the param-
eters

eAyp eAFE _5
aq k?(] T 0.0 s a9 0
are small, and therefore, when calculating I(E,) one can use the linearized approximation, with
> dfo E—
1(E,) = eAp+ ——— | dE| 2
(E) L oF (29 Tr @
In this approximation, the heat flux density has the following form
‘ mre [ > fo E - u
=—— dE, (B, E— A ——AT ) dE;. 3
o= g [ dBer () (B - 5P (edpr ZEAT) ary Q

The formulas (1), (2), (3) allow us to obtain the well-known expressions for specific electrical conduc-

tivity [10],
0 = UO/O T(Em) Jo (E]{?(]T > dEyg, (4)

and the thermoelectric force coefficient
S T | et fo (Bet) +1n (1 -+ exp (= 7)) | dE,
E.—
fo T(Ex)fo( koTu)dEx
me2aFy

where 0¢g = “=7;5* and is approximately 2000 Om~'m~"' and Sy = %0 and is approximately 100 uV /K.
The expressions (4) for o and (5) for S can be subjected to numerical analysis in the case of a
known transmission coefficient 7(Ey).

S =25

, (5)

3. Calculation of 7(F)

The transmission coefficient 7 of a carrier through a nanodot can be calculated when the wave function
1 in the nanodot is known. We will model the nanodot with a quantum structure of the “barrier—well—
barrier” type with potentials

V(z) = Vi(a) + Va(x) + Vs(2), (6)
where the components Vi, V5, V3 are Gaussian-type potentials
2 2 2
The wave function ¢ is the solution of the Schrédinger equation
n? d*y
5 gm TV(@) Y =Ey, (8)
where V' (z) is given by expression (6). For convenience, we model the potential energy V(z) within

the boundaries of the nanoisland by choosing the units for the parameters VO(Z), (1 = 1,2,3) and wj,

(i=1+3)asayg=1nm, Fy= 2m 2 . Thus,
Vi) =V = By, wi=ws=1/3a0, V\» =Eo, ws=ap,
w
T1 =ap, x2=05ag, x3=9ay, <¢=—,
ap

V(z) = Egexp ( — 9ag(z — 1)?) — Eyexp (— ag(z — 5)*) + Egexp ( — 9ag(z — 9)?).
Figure 1 schematically presents the potential V(x)/Ey within a nanoisland of size 10 along the
0.X-axis.
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For the model (7) of the potential V' (x) the Schrodinger
equation allows a numerical solution only. We reformulate
equation (8), using finite differences for a uniform grid on
Vo 051 the interval [0,10]. If A is the discretisation step and
n =1+ N — 1, is the grid node index, then equation (8)
is the following form

0 1 VYn—1 = 29n + ¢Yny1 | 2m
10 - A2n — ﬁ(E = Vo)t =0,
n=12,...,N—1.
-0.51 Alternatively, in dimensionless form the Schrédinger equa-

tion is presented as
U1+ Up¥p +UVpy1 =0, n=12...,N—1, (9)

Fig. 1. The potential energy diagram of the where u, = € — v, — 2, vp - Vn./EOv €= E/E.b’ n =
nanograin for the Gaussian function param- 1 + IV — 1. To solve the finite difference equations (9)

eters is as follows: Vy = 1, the half-width of ~ we will apply the Thomas algorithm [11]| along with the
the barriers is ¢ = 1/3, the half-width of the = boundary conditions

well is ¢ = 1, and the depth of the well is . 5
equal to one relative unit. U1+ (0.5u0 + ik A)gy = 2ik A,
Yn_1+ (0.5u, +ik A)py = 0.
The solution to equation (9) will be found in the form of

1/1n+1 = Rrﬂ/}n

and we obtain the recurrence relation for R,

1
Ry 1=———. 10
TR oo (10)
From the boundary condition at the right end of the interval, One can find
1
Ry 1=———— 11
N 0 Buy, + kA (11)

where the dimensionless wave number k is given by k = \/E/Ey. If starting from the determined by
the relation (11) Ry_1, using the recurrence relation (10), Ry—_o can be found and so on, moving from
the (N — 1)th node to the node 0. By sequentially calculating Ry_o, Ry_3, ..., Ry, Ry we will find
all N values of R, (n =0,1,...,N). Now, moving in the reverse direction from the node 0 to the
(N — 1)th node using (9), we will sequentially find the wave function at all internal nodes of the grid
Y1, Ya, ..., Y. Knowing the wave function N-th node, we can calculate the transmission coefficient

T(Ey) = WNP-

Table 1. The dependence of the transmission coefficient of a particle through a barrier structure
‘barrier—well-barrier’ on its energy, calculated using the method Thomas algorithm.

€ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
() | 0.0 | 0.001 | 0.005 | 0.022 | 0.128 | 0.457 | 0.570 | 0.365 | 0.362 | 0.457
€ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(e) | 0.646 | 0.881 | 0.999 | 0.939 | 0.825 | 0.741 | 0.701 | 0.699 | 0.726 | 0.775
€ 2.0 2.1 2.2 2.3 24 2.5 2.6 2.7 2.8 2.9
) | 0.837 | 0.899 | 0.952 | 0.985 | 0.999 | 0.997 | 0.986 | 0.972 | 0.961 | 0.952
€ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
T(e) | 0.951 | 0.956 | 0.963 | 0.971 | 0.979 | 0.987 | 0.992 | 0.997 | 0.999 | 1.0

3

9
™

Table 1 presents the results of calculations 7(FE,,) for different incident particle energies in the range
from zero energy to four relative units. Outside this range, 7(FE,) takes values equal to one relative
unit.
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4. The results of numerical modeling of the electrical conductivity o and the Seebeck
coefficient S

The obtained array for 7(E,) makes possible the numerical calculation of the electrical conductivity o
and the Seebeck coefficient S, using expressions (4) and (5). A study was conducted on the temperature
dependencies of the electrical conductivity o, the Seebeck coefficient S, and the power factor o - S?
based on the height of intergranular barriers, their width, and the distance between them, i.e., the size
of the nanograins.

1.21
2.74

1.01

0.84

(o]
o
N
\\
w2
N4 o
W N
1 1

0.4
021 2.4 —o—s—s—o
300 400 500 600 700 800 300 400 500 600 700 800
T T

Fig. 2. The temperature dependence of the electrical  Fig.3. The temperature dependence of the Seebeck
conductivity as a function of the barrier height Vj:  coefficient on the barrier height Vy: “o” — for V) =1,
“o" — for Vy = 1, “007 — for Vp = 1.5, “¢” — for “00" — for Vp = 1.5, “0” — for Vp = 2.
Vo=2.
As seen from the graphs in Figure 2, with an increase in barrier height, the electrical conduc-
tivity significantly decreases. Specifically, when the barrier height doubles, the decrease in electrical
conductivity is also close to a factor of two.

-500
300 K

27 -400

SEEBECK COEFFICIENT (uV/K)

2.61 -300
S
-200
2.5
e BULK PbTe
100} © EPIPbTe
o ~40§ PbTe QWs
241 o—o0—o—o0—0 = ~20A PbTe QWs
300 400 500 600 700 800 0 sl L
T 10" 10" 10" 10%°

Fig.4. The temperature dependence of the Seebeck  Fig.5. Experimental results for the Seebeck coef-
coefficient on the barrier width: “o” — for half weight  ficient for the material with quantum wells are pre-
¢ =1/3,“” — for half weight ¢ = 0.5, “¢” — for half sented in [4].

weight ¢ = 1/+/2.

A similar behaviour is observed in the dependence of electrical conductivity on the barrier width.
From the graphs presented in Figures 3 and 4 it is evident, that when the height of the barrier is
doubled, and by approximately the same half-width i.e. from about ~ 0.3 to ~ 0.7 the Seebeck
coefficient increases by approximately 20 percents.
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It is interesting to note, as seen in Figure 5, that with an increase in barrier height, the power
factor slightly increases. Specifically, when the barrier height triples, its increase does not exceed 40
percents.

For comparison, we present a graph of experimentally

7 obtained results for the PbTe/PbEuTe material with

o quantum wells. Figure 6 displays the Seebeck coefficient

at a temperature of 300 K as a function of carrier concen-

5 tration. It is noteworthy, that the measurements reflected

b the contribution to the thermoelectric effect from the tun-

H neling mechanism and the contribution from the crystal

lattice. However, the magnitude and the nature of the

3 dependency of the studied parameter are consistent with
N the results obtained in our research.

At the same time, changes in the distance between bar-

300 400 500 600 700 800 riers, i.e., the quth of the We.ll,.have a minor influence on
T the thermoelectric characteristics of the proposed quan-
Fig. 6. The power factor, defined in relative ~ tum structure. This means, that the presence of resonant

Units as P = ;_S;z, is presented as a function ~ tunneling minimally affects as the Seebeck coefficient and
of temperatureovx;)ith a barrier distance of b—  the power factor of the nanostructured material as well.
6. The following symbols represent different It should be noted, that the obtained values of the
barrier heights Vy: “o” for Vy = 3, “[0” for  thermoelectric characteristics and their behaviour with
Vo =2, and “O” for Vp = 1. changes in temperature and quantum structure parame-

ters are consistent with the results, obtained by other authors, including [5,10,12,13].

5. Conclusions

A one-dimensional model of a nanostructured thermoelectric material is studied, where the nanograin
is modeled as a potential well, and the intergrain boundaries are represented by potential barriers. The
well and barriers are modeled, using a Gaussian potential with te various parameters.

The modeling process was implemented as a program developed on the Maple computational math-
ematics platform. Using this program, the temperature dependencies of the electrical conductivity o,
the Seebeck coefficient S, and the power factor 05? were calculated and graphically illustrated.

It was shown, that as the height and width of the barriers increase, the conductivity of the quantum
structure decreases, while the Seebeck coefficient increases. At the same time, the power factor oS>
decreases with increasing barrier height, and changes in the distance between the barriers, i.e., the
width of the well, have minor effect on the thermoelectric characteristics of the proposed quantum
structure.

Appendix. Derivation of the expression for specific conductivity

Using the expression for the density of the tunneling current
m*e o o
| = ——= dE; 7(E, E)— fo(E —eAp — kgAT)| dFE,
= g [ aB () [ o)~ o(E — e~ koAT)]

and considering that

fo <E - (‘;O;QAV)> ~ fo(E) — L@EEE Jeav 4 200E) gC(FE ) ar.

We arrive at the following expression for the current density

j= 0 / dE, T(Ex)/ 0fo(B) (eAVJr#AT) dE.
0 x

~ 272hB OE
Here, E, is the kinetic energy of the carrier along the axis Ox, while £ = E, + F,| is the energy
corresponding to all three degrees of motion.
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Now, let us assume that there is no temperature gradient in the system. Then
me? [ > 0fo(E)
| = ——= dE, T(E ———AV dE.
I o3 /0 o T(Ex) /E OF
Considering that

/OO OE — 1) 4 — (B, - ),

OF
we obtain the expression for the current density

‘—m—GQ/OOf(E — ) T(E,)dE, AV.
j_27T2FL3 0 0 T % T T .

T

Since the electric field intensity of the external field is defined as %, the expression for the specific
electrical conductivity will be

2
mea
0= o [ T ol = ) B, = o0 [ T(B) o(EB, = ) dE,
where
me?aEy 11

In the latter expression, it is taken into account that in the integrand, quantities with energy dimensions
are expressed in relative units, i.e. E/FEjy.
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MopentoBaHHA TepMoOenekTpUYHUX XapakTepUCTuk
HaHOCTPYKTYpPOBAHOro martepiany

Bosusik O. M.', Kocrpo6iit I1. I1.2, ITossosuit B. €.2

! Tpuxapnamcvruti nayionarvruti yrisepcumem imeni Bacuas Cmegdarnuxa,
eya. Llesuenxa, 57, 76018, m. Isano-DPpanxkiecvr, Yrpaina
2 Haygonanvnuti ynisepcumem “JIvsiscora noaimerwira”,
eyn. C. Bandepu, 12, 79013, m. Jlveis, Vipaina

PosristryTo ogHOBUMIpHY MOIE/Ib HAHOCTPYKTYPOBAHOI'O TEPMOEJIEKTPAIHOTO MaTEPIiaLy,
B AKiil HAHO3EPHO MO/IEJIIOETHCS IOTEHIIAJIBHOIO IMOIO, & Mi2K3€PEHH] MeKi — IOTeHITiaJIb-
numu 6ap’epamu. flma i 6ap’epu MOJIETIOETHCST TTOTEHITIAIAMI raycciBebKoro Tuiry. Po3pob-
JIEHO TIPOI'PAMHUN IPOAYKT JJI PO3PAXYHKY KOediIieHTY IPOXOJIZKEHHS dYepe3 KBAHTOBY
CTPYKTYDPY “Oap’ep—sama—06ap’ep”’, B OCHOBI sIKOT0 3aK/aieHo ajroputm Tomaca. [Iposemeni
9UCJIOBI PO3PAXyHKH MATOMOI IIPOBITHOCTI Ta KOEMIIIEHTY TepMOEpeC I 3aIPOITOHOBAHOT
mozeni. PesyibraTun po3paxyHKiB 100pe y3romKyOThCS i3 €KCIIEPUMEHTAIbHIMY JAHUMHA.

Kn1o40Bi cnoBa: x6anmoso-myHeAbHUl MEXAHIZM MEPMOCACKMPUYHUT AGUW,; MOJeNb
HAHOCTNPYKMYDPOBAHO020 Mamepiary; Koepiuienm 3eebexa; Gaxmop nomysHcHocms.
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