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One-dimensional model of a nanostructured thermoelectric material is considered in case,
when the modeled by a potential well nanograin and grain boundaries are represented by
potential barriers. The well and barriers are modeled by Gaussian-type potentials. There is
developed a software product to calculate the transmission coefficient through the quantum
structure “barrier–well–barrier” using the Thomas algorithm. Numerical calculations of
the specific conductivity and the Seebeck coefficient for the proposed model are carried
out. The calculation results validate the experimental data.
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1. Introduction

Role of the tunneling mechanism in thermoelectric phenomena became understood as a result of [1–5].
Several studies studied the influence of “energy filtering” of carriers [6] on the thermoelectric coefficient.
Developed theory of quantum tunneling mechanism of thermoelectric phenomena for several quantum
systems is based on super-lattices with quantum wells, quantum dots, and other thermo-tunneling
objects.

On the other hand, there exists a technology based on refining the initial thermoelectric material
to sizes of 10 ÷ 20nm followed by its hot pressing (see, for example, [7]). Taking into account these
dimensions, nanograins can be treated as quantum wells and together with intergranular barriers and
quantum structures containing barrier-well-barrier configurations can be considered. Thus, carrier
tunneling through the barriers between nanoparticles and the quantum well becomes possible in such
materials. Moreover, this model can account for possible resonant processes during the passage of a
quantum nano-sized well and additional scattering of phonons at the boundaries of nanocrystals.

2. Model of quantum transport in nanostructured thermoelectric materials

Quantum transport in nanostructured thermoelectric materials, where the size of the nanograins is
ranged of 10÷ 20nm, can be determined by two factors:

— the presence of an electric field with a potential difference ∆ϕ, the magnitude of which for a
nanograin under experimental conditions is ∆ϕ = (10−6 ÷ 10−4)V;

— the temperature gradient ∆T within the nanograin, where ∆T ∼ 10−3 K.

Both of these factors can be interpreted as the presence of a certain potential field e∆ϕ+k0∆T , where
e is the electron charge and k0 is the Boltzmann constant. For such a model, according to the Landauer
quantum transport theory [8,9], the tunneling current density through a nanograin, in the case where
an external electric field ∆ϕ and a temperature gradient ∆T are applied, is given by the expression:

j =
m∗e

2π2~3

∫ ∞

0
τ(Ex) I(Ex) dEx, (1)
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where

I(Ex) =

∫ ∞

Ex

[f0(E)− f0(E − e∆ϕ− k0∆T )] dE.

Let us note, that for the characteristic sample temperatures in the experiment, T ∼ 400K, the param-
eters

α1 =
e∆ϕ

k0T
≈ 0.01, α2 =

e∆E

T
≈ 10−5

are small, and therefore, when calculating I(Ex) one can use the linearized approximation, with

I(Ex) =

∫ ∞

Ex

∂f0
∂E

(

e∆ϕ+
E − µ

k0T

)

dE⊥. (2)

In this approximation, the heat flux density has the following form

jq =
m∗e

2π2~3

∫ ∞

0
dEx τ(Ex)

∫ ∞

Ex

(E − µ)
∂f0
∂E

(

e∆ϕ+
E − µ

T
∆T

)

dE⊥. (3)

The formulas (1), (2), (3) allow us to obtain the well-known expressions for specific electrical conduc-
tivity [10],

σ = σ0

∫ ∞

0
τ(Ex) f0

(

Ex − µ

k0T

)

dEx, (4)

and the thermoelectric force coefficient

S = S0

∫∞

0 τ(Ex)
[

Ex−µ
k0T

f0
(

Ex−µ
k0T

)

+ ln
(

1 + exp
(

− (Ex−µ)
k0T

)

)]

dEx

∫∞

0 τ(Ex) f0
(

Ex−µ
k0T

)

dEx

, (5)

where σ0 =
me2aE0

4π2~3
and is approximately 2000Om−1m−1 and S0 =

k0
e

and is approximately 100µV/K.
The expressions (4) for σ and (5) for S can be subjected to numerical analysis in the case of a

known transmission coefficient τ(Ex).

3. Calculation of τ (E)

The transmission coefficient τ of a carrier through a nanodot can be calculated when the wave function
ψ in the nanodot is known. We will model the nanodot with a quantum structure of the “barrier–well–
barrier” type with potentials

V (x) = V1(x) + V2(x) + V3(x), (6)

where the components V1, V2, V3 are Gaussian-type potentials

V1 = V
(1)
0 exp

(

−(x− x1)
2

2w2
1

)

, V2 = V
(2)
0 exp

(

−(x− x2)
2

2w2
2

)

, V3 = V
(3)
0 exp

(

−(x− x3)
2

2w2
3

)

. (7)

The wave function ψ is the solution of the Schrödinger equation

− ~
2

2m∗

d2ψ

dx2
+ V (x)ψ = Eψ, (8)

where V (x) is given by expression (6). For convenience, we model the potential energy V (x) within

the boundaries of the nanoisland by choosing the units for the parameters V
(i)
0 , (i = 1, 2, 3) and wi,

(i = 1÷ 3) as a0 = 1nm, E0 =
~
2

2m∗a2
0

. Thus,

V
(1)
0 = V

(3)
0 = E0, w1 = w3 = 1/3a0, V

(2)
0 = E0, w2 = a0,

x1 = a0, x2 = 5a0, x3 = 9a0, ς =
w

a0
,

V (x) = E0 exp
(

− 9a0(x− 1)2
)

− E0 exp
(

− a0(x− 5)2
)

+ E0 exp
(

− 9a0(x− 9)2
)

.

Figure 1 schematically presents the potential V (x)/E0 within a nanoisland of size 10 a0 along the
0X-axis.
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Fig. 1. The potential energy diagram of the
nanograin for the Gaussian function param-
eters is as follows: V0 = 1, the half-width of
the barriers is ς = 1/3, the half-width of the
well is ς = 1, and the depth of the well is

equal to one relative unit.

For the model (7) of the potential V (x) the Schrödinger
equation allows a numerical solution only. We reformulate
equation (8), using finite differences for a uniform grid on
the interval [0, 10]. If ∆ is the discretisation step and
n = 1 ÷N − 1, is the grid node index, then equation (8)
is the following form

ψn−1 − 2ψn + ψn+1

∆2
+

2m

~2
(E − Vn)ψn = 0,

n = 1, 2, . . . , N − 1.

Alternatively, in dimensionless form the Schrödinger equa-
tion is presented as

ψn−1 + unψn + ψn+1 = 0, n = 1, 2, . . . , N − 1, (9)

where un = ε − vn − 2, vn = Vn/E0, ε = E/E0, n =
1 ÷ N − 1. To solve the finite difference equations (9)
we will apply the Thomas algorithm [11] along with the
boundary conditions

ψ1 + (0.5u0 + i k∆)ψ0 = 2i k∆,

ψN−1 + (0.5un + i k∆)ψN = 0.

The solution to equation (9) will be found in the form of

ψn+1 = Rnψn

and we obtain the recurrence relation for Rn,

Rn−1 = − 1

Rn + un
. (10)

From the boundary condition at the right end of the interval, One can find

RN−1 = − 1

0.5un + ik∆
, (11)

where the dimensionless wave number k is given by k =
√

E/E0. If starting from the determined by
the relation (11) RN−1, using the recurrence relation (10), RN−2 can be found and so on, moving from
the (N − 1)th node to the node 0. By sequentially calculating RN−2, RN−3, . . . , R1, R0 we will find
all N values of Rn, (n = 0, 1, . . . , N). Now, moving in the reverse direction from the node 0 to the
(N − 1)th node using (9), we will sequentially find the wave function at all internal nodes of the grid
ψ1, ψ2, . . . , ψN . Knowing the wave function N -th node, we can calculate the transmission coefficient

τ(Ex) = |ψN |2.
Table 1. The dependence of the transmission coefficient of a particle through a barrier structure

‘barrier–well–barrier’ on its energy, calculated using the method Thomas algorithm.

ε 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
τ(ε) 0.0 0.001 0.005 0.022 0.128 0.457 0.570 0.365 0.362 0.457
ε 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

τ(ε) 0.646 0.881 0.999 0.939 0.825 0.741 0.701 0.699 0.726 0.775
ε 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

τ(ε) 0.837 0.899 0.952 0.985 0.999 0.997 0.986 0.972 0.961 0.952
ε 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

τ(ε) 0.951 0.956 0.963 0.971 0.979 0.987 0.992 0.997 0.999 1.0

Table 1 presents the results of calculations τ(Ex) for different incident particle energies in the range
from zero energy to four relative units. Outside this range, τ(Ex) takes values equal to one relative
unit.
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4. The results of numerical modeling of the electrical conductivity σ and the Seebeck
coefficient S

The obtained array for τ(Ex) makes possible the numerical calculation of the electrical conductivity σ
and the Seebeck coefficient S, using expressions (4) and (5). A study was conducted on the temperature
dependencies of the electrical conductivity σ, the Seebeck coefficient S, and the power factor σ · S2

based on the height of intergranular barriers, their width, and the distance between them, i.e., the size
of the nanograins.

Fig. 2. The temperature dependence of the electrical
conductivity as a function of the barrier height V0:
“◦” — for V0 = 1, “�” — for V0 = 1.5, “♦” — for

V0 = 2.

Fig. 3. The temperature dependence of the Seebeck
coefficient on the barrier height V0: “◦” — for V0 = 1,

“�” — for V0 = 1.5, “♦” — for V0 = 2.

As seen from the graphs in Figure 2, with an increase in barrier height, the electrical conduc-
tivity significantly decreases. Specifically, when the barrier height doubles, the decrease in electrical
conductivity is also close to a factor of two.
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Fig. 4. The temperature dependence of the Seebeck
coefficient on the barrier width: “◦” — for half weight
ς = 1/3, “�” — for half weight ς = 0.5, “♦” — for half

weight ς = 1/
√
2.

Fig. 5. Experimental results for the Seebeck coef-
ficient for the material with quantum wells are pre-

sented in [4].

A similar behaviour is observed in the dependence of electrical conductivity on the barrier width.
From the graphs presented in Figures 3 and 4 it is evident, that when the height of the barrier is
doubled, and by approximately the same half-width i.e. from about ∼ 0.3 to ∼ 0.7 the Seebeck
coefficient increases by approximately 20 percents.
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It is interesting to note, as seen in Figure 5, that with an increase in barrier height, the power
factor slightly increases. Specifically, when the barrier height triples, its increase does not exceed 40
percents.

Fig. 6. The power factor, defined in relative

units as P = σS
2

σ0S
2

0

, is presented as a function

of temperature with a barrier distance of b =
6. The following symbols represent different
barrier heights V0: “◦” for V0 = 3, “�” for

V0 = 2, and “♦” for V0 = 1.

For comparison, we present a graph of experimentally
obtained results for the PbTe/PbEuTe material with
quantum wells. Figure 6 displays the Seebeck coefficient
at a temperature of 300K as a function of carrier concen-
tration. It is noteworthy, that the measurements reflected
the contribution to the thermoelectric effect from the tun-
neling mechanism and the contribution from the crystal
lattice. However, the magnitude and the nature of the
dependency of the studied parameter are consistent with
the results obtained in our research.

At the same time, changes in the distance between bar-
riers, i.e., the width of the well, have a minor influence on
the thermoelectric characteristics of the proposed quan-
tum structure. This means, that the presence of resonant
tunneling minimally affects as the Seebeck coefficient and
the power factor of the nanostructured material as well.

It should be noted, that the obtained values of the
thermoelectric characteristics and their behaviour with
changes in temperature and quantum structure parame-

ters are consistent with the results, obtained by other authors, including [5, 10, 12, 13].

5. Conclusions

A one-dimensional model of a nanostructured thermoelectric material is studied, where the nanograin
is modeled as a potential well, and the intergrain boundaries are represented by potential barriers. The
well and barriers are modeled, using a Gaussian potential with te various parameters.

The modeling process was implemented as a program developed on the Maple computational math-
ematics platform. Using this program, the temperature dependencies of the electrical conductivity σ,
the Seebeck coefficient S, and the power factor σS2 were calculated and graphically illustrated.

It was shown, that as the height and width of the barriers increase, the conductivity of the quantum
structure decreases, while the Seebeck coefficient increases. At the same time, the power factor σS2

decreases with increasing barrier height, and changes in the distance between the barriers, i.e., the
width of the well, have minor effect on the thermoelectric characteristics of the proposed quantum
structure.

Appendix. Derivation of the expression for specific conductivity

Using the expression for the density of the tunneling current

j =
m∗e

2π2~3

∫ ∞

0
dEx τ(Ex)

∫ ∞

Ex

[

f0(E)− f0(E − e∆ϕ− k0∆T )
]

dE,

and considering that

f0

(

E − (µ + e∆V )

k0T

)

≈ f0(E) − ∂f0(E)

∂E
e∆V +

∂f0(E)

∂T
∆T.

We arrive at the following expression for the current density

j =
me

2π2~3

∫ ∞

0
dEx τ(Ex)

∫ ∞

Ex

∂f0(E)

∂E

(

e∆V +
E − µ

T
∆T

)

dE.

Here, Ex is the kinetic energy of the carrier along the axis 0x, while E = Ex + E⊥ is the energy
corresponding to all three degrees of motion.
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Now, let us assume that there is no temperature gradient in the system. Then

j =
me2

2π2~3

∫ ∞

0
dEx τ(Ex)

∫ ∞

Ex

∂f0(E)

∂E
∆V dE.

Considering that
∫ ∞

Ex

∂f0(E − µ)

∂E
dE = −f0(Ex − µ),

we obtain the expression for the current density

j =
me2

2π2~3

∫ ∞

0
f0(Ex − µ) τ(Ex) dEx ∆V.

Since the electric field intensity of the external field is defined as ∆V
a

, the expression for the specific
electrical conductivity will be

σ =
me2a

2π2~3

∫

τ(Ex) f0(Ex − µ) dEx = σ0

∫

τ(Ex) f0(Ex − µ) dEx,

where

σ0 =
me2aE0

2π2~3
≃ 2000Om−1m−1.

In the latter expression, it is taken into account that in the integrand, quantities with energy dimensions
are expressed in relative units, i.e. E/E0.
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Моделювання термоелектричних характеристик
наноструктурованого матерiалу
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Розглянуто одновимiрну модель наноструктурованого термоелектричного матерiалу,
в якiй нанозерно моделюється потенцiальною ямою, а мiжзереннi межi — потенцiаль-
ними бар’єрами. Яма i бар’єри моделюється потенцiалами гауссiвського типу. Розроб-
лено програмний продукт для розрахунку коефiцiєнту проходження через квантову
структуру “бар’єр–яма–бар’єр”, в основi якого закладено алгоритм Томаса. Проведенi
числовi розрахунки питомої провiдностi та коефiцiєнту термоерес для запропонованої
моделi. Результати розрахункiв добре узгоджуються iз експериментальними даними.

Ключовi слова: квантово-тунельний механiзм термоелектричних явищ; модель

наноструктурованого матерiалу; коефiцiєнт Зеебека; фактор потужностi.
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