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Timoshenko’s problem is not a recent problem and many articles exist concerning his
study. New physical problems appear and require a good mathematical understanding of
the behavior of this phenomenon. Our contribution will consist in studying the numeri-
cal stability of a Timoshenko system with second sound. We introduce a finite element
approximation and prove that the associated discrete energy decreases and we establish a
priori error estimates. Finally, some numerical simulations are obtained.
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1. Introduction

Timoshenko [1], was one who initially unveiled the form-based
pwy — k(wz + )z =0, (z,t) € (0,L) x R,
{ I, A\t — (EI)X;)y + k(wzy +A) =0, (z,t) € (0,L) x RT,
where w is the transverse displacement of the beam, ) is the rotation angle of the filament of the beam.
The constants p, I,, E, I and k reflect the density (the mass per unit length), the polar moment of

inertia of a cross section, Young’s modulus of elasticity, the moment of inertia of a cross section, and the
shear modulus, respectively. In this system the coefficients £ = k1 GA, where G and ki are respectively

(1)

the modulus of rigidity and the transverse factor. There are several publications related to the study
of Timoshenko systems [2-4]. The stability of these systems has attracted considerable attention in
recent years, and a number of deductions relating uniform and asymptotic energy decay have been
developed [1,5,6].

Fernandez and Rake [7] studied the following related of two Timoshenko type wave equations with
heat conduction

P1Wt — k(w:c + )\)x = 07
p2)\tt - b)\:c:c + k(wx + )‘) + 719:(: = 07
P39t + @z + Y Aut = 0,

Tq + g+ U, =0,
and proved that, in the absence of additional frictional damping, coupling via Cattaneo’s law results
in the loss of the exponential decay typically achieved through coupling by Fourier’s law [§].
Santos et al. [9] considered Timoshenko’s beam model with the second sound and introduced a

stability number p defined by:
p=(r ) (2 _
kps b k bkps

This work was supported by grant Hassan II University, FSAC, FAM Laboratory, Casablanca, Morocco.

(2)

(© 2024 Lviv Polytechnic National University 911



912 Smouk A., Radid A.

which characterizes exponential decay. Santos et al. showed that the corresponding semigroup asso-
ciated with the system (2) is exponentially stable if and only if x = 0 and a polynomial decay for
p# 0.
In this paper, our focus is to the Timoshenko system:

P1Wt — k(wx + )\)x = 0,

P2/\tt — b/\xx + k‘(wm + )\) + ’719;B + O'(t)f(/\t) =

P39 + Gz + At = 0,

TG + Bq+ 9, =0,
here t is the time, x is the position coordinate along the beam, the functions w, A, ¥, ¢ indicate
respectively the transverse displacement of a curved beam, the rotation angle of the filament of the
beam, the temperature and the heat flux, (x,t) € (0, L) x (0, 00) with L represents the distance between
the ends of the center line of the beam and p1, po, p3, b, k, v, 8 are positive coefficients. Also, o and
f verify the assumptions:

(3)

(i) o: Ry — Ry is a decreasing differentiable function.
(ii) f: R — R is a locally Lipschitz function satisfying f(0) =
(iii) f: R — R is a continuous non-decreasing function with f(0) = 0 and there exists a continuous
strictly increasing odd function fy € C([0,+00)), continuously differentiable in a neighborhood
of 0, satisfying f,(0) = 0 and such that

{()\If( ) < fol(z),  forall |z|
|

bg\z] for all |z|

&,

< <
< Z

bilz[ < [f(2) ,
b1 and by are positive.
Additionally, we construct a function F' by

Fe) = Va fo (Va).

In light of assumption (iii), F is of class C'! and is strictly convex on (0, 0?], where ¢ > 0 is a sufficiently
small number.
With (3), we associate the boundary conditions given by

wz(0,t) = wye(1,8) = N0,t) = A(1,t) = q(0,t) = ¢q(1,t) =0, Vt=D0, (4)
and the following initial conditions
w(z,0) =wo(x), wi(z,0)=wi(x), Vze(0,1),
Az, 0) = )\0( ),  At(x,0) = A (z), Vze(0,1), (5)
Iz, 0) =do(x), q(x,0) =qo(z), Ve (0,1)
)

Remark 1. Hypothesis (iii) was introduced by Lasiecka and Tataru [10] implies that z f(z) > 0, for
all z # 0.

Under the hypothesis (i), (ii) and (iii) Ayadi et al. [11] established specific and common results for
a large class of relaxating functions whose stability number p is dependent. The system’s energy (3)
is determined by:

L
B0 = 5 [ (002 b s 7 e
0

—:—5/ ¢*dx — a(t) /Atht

Our contribution consists of introducing a FE (finite element) approximation and we prove that the
associated discrete energy decreases over time with different values of u. In addition, we also get a
priori error estimates. Finally, we show that the numerical results are consistent with our theoretical
results [11].

satisfies
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Numerical studies of a Timoshenko system with the second sound 913

2. Numerical analysis

We provide in this part a FE approximation to system (3) with the boundary conditions (4) and
the initial conditions (5). Also, we present and study an implicit Euler type scheme based on finite
differences in time and FE en space. We prove that the discrete energy decays.

2.1. Stability of the scheme
We consider the following functions w = w;, A = A¢ and the system (3) is rewritten as follows:
plgt - k(wx + )\):c = 07 "
P2 = bAgy + k(wg + A) + 905 + o (t) f(A) =0,
p319t + gz + '7/\32 =0,
Tqt + Bq+ Uz = 0.
To get the weak form associated to system (6), we multiply the equations by test functions (, x, 7,
a € H(0,1) and integrating by parts,
P1 (Qta C) +k (wl‘ + )‘7 CSL‘) = 07
p2(Aes X) + b (Aay Xa) + K (e + A x) +7 (0, X) + () (f(N), x) =0, 7)
p3 (96,1) + (¢z,m) +7(Aayn) =0,
7 (g, @) + B (g, ) + (s, ) = 0.
For our purposes, referred to J as a nonnegative integer and h = % a subdivision of the interval (0, 1)
given byOza:o <z <...<zj-1 <wy=1,suchthat z; = jh, Vj=0,...,J and
={u e H'(0, 1)|u € C([0,1]), ul (s,

(6)

is a linear polynomial, with j =0,...,J — 1} (8)

WTj41)
and
Sh = {ue S |u(0) =0}.

Given a certain final time 7" and a positive integer IV, have At = T/N be the time step and t,, = nAt,
n=0,...,N.

The FE method for (7) with Dirichlet homogeneous boundary conditions using the backward Euler
scheme is to find W} € Sh, Ay, U and qp € 56‘ such that, for n = 1,..., N and for all {, xn, 7,
ap € Sh

A

WZ—W;L 7Ch)+k whx—i_)‘h)(hx): 5

p_l
At
22 (X — XY ) 02 Xhe) + k(WP + AR xR) (97, xm) + o (FO), xn) =0, ©
Z_g (192 Q9n 1777h) + (qhxvnh +/7(Ax777h) = 07
AL(qZ_qh ,Oéh)+5 qhvah +(Q9hm7ah):07
where
n n—1 n n—1
~n _ Wp T Wy n_ A=A
Whp = At ) Ah - At (10)

are approximate representations of wy(t,), A¢(t,) respectively. N
For the initial conditions wy, w1, Ag, A1, ¥g, go are given by wg, @2, )\2, )\2, 192 and qg respectively.
A discrete expression for the energy decay property met by the solution of system (3) is the next
outcome.

Theorem 1. The discrete energy can be:

&?Z%(PlH@f’?H2+P2HAZH2+’f||wf%+A2H2+bHA P osORI + 7l - (11)
Then, the decay property as follow
M <0 (12)
At ~X Y

holds forn =1,2,...,N, where || - || is the norm of L?(0,1).
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914 Smouk A., Radid A.

Proof. The next inequality is utilized frequently:
1
(ur = w9, ) = 5 (lur = wall* + ual* = fJual|?) - (13)

Taking ¢, = W}, xn = XZ, nn, =93 and oy, = g in (9).
Recalling (10) and (13), we deduce that

% (e — @117 + e ® — ez )+k (Whs + AR Bh) = 0, (14)
(5= 3 12 IR0 — 15 + g (I = M2+ R — 1)
(Wl A+ AL AR+ (95, AR) + o (FO), NF) =0, (15)
L (o5 = 5P+ R 1* = 193 1) = (@i 9he) = (R 9) =0, (16)
o (llag = a7 I+ llail* = g 17) + Bllai |* + (s ai) = 0. (17)
Using again (10) and (13),

un_un—l
n ~ny __ n
(U y U )_<u ) At >7

1
= 57 (" =7 P P = [l )

> o (el = ) (18)
Results as:
B+ N+ 3) > o (ot + M — i + 2. (19)
and
" (FOR)AR) 20
summing equations (14)—(17),
= L (g - o) + 2 (IR - 1)
2 (IR 11 + = (el — g °)
b (Il - s )+ wu N

1A% [95 — oI

+Eth—qh ik +2At |y +2At|
+5HqZH +k(whx+AZ,@Zx+Ah) o (FO), AR

w 3 (1~ F) - 5 (P - ) + 55 (Il - 1)
2 (11 = 1) + o (NI — 1)
k n n n— n—
b e+ 0P~ s+ )
gr—gnt
=" A (20)
gn_gn-l
As a result, we have -2—— < 0. ]

As an outcome, the next stability estimations are obtained.

Remark 2. The solution of (9) can be found by solving a square linear system of algebraic equations.
According to the above demonstration, when all data are zero, the solution {G},’:, AL, 97, qﬁ} is zero.
Following which, the solution uniqueness of (9).

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 911-922 (2024)
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2.2. Error estimate

In the present part, we derive a priori error estimates on the numerical approximation of the Timo-
shenko system with the second sound (3) in the case of o(¢) =1 and f(z) = z, in which we obtain the
convergence of the error (see Figures 9 and 10).

Theorem 2. There is C > 0, independent of the parameters h and At such that
V{G X s 0k} g € S"

o G RS 42 D =~
G 2 9t — Pi-1? 2

At At

2 ) i—1
—q
+ q; At

i z 1
i 4

+ A — + ||0% —

g +me—<hxu +uXi—xzu2+uXa—xsz%\wz—nzxuﬂuq;—azx\hW—nzwf
C X (~i i~ i i i (Y i
et —eb 5 2 (Hw’—cz— @ G P X~ xh— (=)
I 0 e e IE) 0 (et 3+
0 - P +\w°—ﬁhu = a4 - @2+ ) (o)

Proof. Step 1: For a continuous function g(t), let g" = g(t,). Subtracting equation (7); at time t,
for ¢ = ¢, € S and the discrete variational equation (9);, we obtain

_ &v)_wnl
plGﬁ——LZf;n@ (Wl 4 A") = (Wl + AL, Cha) = 0. (22)

Thus, for all ¢ € S”,

» on —ont - - ~
P1 <Wf - hTth,w” — w;?) + k‘(wg + A" — (wy, + AR, @l — wﬁx)

~ (w? S <h> (A = (fy  AD,T— Ga). (23)
Similarly, from equations (7)2—(7)4 and (9)2—(9)4 we deduce, for all x4, &n, np, o, € S
p2 (X? - M‘Tjhli - XZ) DA = A XE = M)
R+ N = (s DN = AR) = (97 = 93T = AR) (V= AL AT = A7)
— (X? EEVR i O xh> BN = N X = ) + B+ X (i DA )
— (0" = I AL = Xha) + (A" = A A" —xa), (24)

o — ot %
p3 <19? - %ﬁ” - 192) + (af = @i 9" = 93) + 7 (A = Apa, 9" — 97)

o —opt %
= p3 <19? - hTth,ﬂ" —m) + (g — qres 9" — ) + Y (AL = A 9" — 1), (25)

1
a —q,
T (q? - Tt",q" —QZ> +8(¢" —ap.q" —ap) + (97 — 9@ — ai))
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916 Smouk A., Radid A.

=7 (q? - q_TiZl,q” - ah) +B(q" —qn,q" — an) + (05 —97,,q" —an). (26)
Step 2: Using that (13), the first term in equation (23) becomes
(- B o) = (- B2 ) o2 s
_ <ag _ W_Tiﬂ_l,a}" - a;;) + i!\&" —ap - @ t-ah |
4o (18" = BRI ~ o - 3 ). (27)
Then
(a? B el L wg) > <ay B ag) L Ule =& —QE’H -5

(28)
In the same way, for (24)-(26) we find

n 1 N yn—1 In _3n||2 _ ||[3n—1 _ Yn—1}2

At At 2At ’
(29)

. gn — gn-l . . N 9" — gn—1 . . ngn _ 79n”2 . ”79n—1 . 75171—1”2
(ﬂt_hTthaﬁ _ﬂh)><79t_Tﬂ9 —19h>+( h SAL h ), (30)

1 1 2 n—1 n—12
ar —qy " —q" lg" —aqpll* —lla" = —q |l
(q? 7Ath ,q"—QZ> > <q?—7m 4" —qy +( . SAL L ), (31)

using again (18) for u™ = A} — A}, wil + A" — (wp, + A}) and adding (23)—(26) we obtain

p ~n -~ ~n— ~n— n_n n— Nn—
oz (e =@l = & =@ 1" + oy (I3 = ) = 1= = %)

g (I =M e = 2 P)
k . n nel | yne -
+2At(|yw F AT — (Wi AP = [Jwn AT = (w4 Ay 1H)
L (o = g =) + o (= ah ]~ " — a7
~ &V)n_wn—l 2 &}n_&;n_l_ &}n_w 7&} _gh ~n ~n ~n
<o - =]+ ELEET20) 4o -l + -
2 2 |k, A=Al . 2 e vel2
82— Guall? 4+ e+ X = (e + AR + 3 = 2|+ Rl + 3 R
n n n Xn_Xn—l_ Xn_Xn—l 7Xn_Xh 9" — gt 2
A = el g & SASEV D RIS ) Y P
gn — gn—1 _ 19”—19n_1 ’an_n " " n n
o R S L) B R e
n_  n—112 n_ . n—l1 . n—1 n __
o - EL P T BT ) e o g - o

(32)

Step 3. By summing over n and multiplying the last inequality by At we have, Y{(x, Xn, M, ah}f\io €
Sh,
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& — @ ||* + [ = X5 + A = A+ [l + A" = (i A0+ [ = 0]+ lle™ — ai])?

S (R R e

~i  ~i—1]|2 ~i_ ~i—1 ~i _ ~i—1\ ~i i Ti Yi-1]]?
i |2 ||~ W T W' - = (W), —wy, ), @ = ¢ ~ A=A
e[ B BB B
(Xi_Xi—l_(XZ_X2—1)7X2'_X2) . 9 — 9i—1 2 . ¢ — g1 2
* At TV A | T T A
(Qgi_,ﬂi—l_(,ﬂi _191'—1),192'_77@') (qi_qi—l_(qi _qi—l),qi_ z) - 02 i ;2
¥ A e N 2l G+ 5% —

IR =l IR = a7 4 1195 = i+ e = e+ (107 = i1 + [l aﬁé!f)
FO ([l = @RI INT = RPN = NPl M = (@4 X P49 = 35+ 1" — 21

Considering that (with an analogous outcome for comparable expressions) [12]

WE

@ —@ = @ @)@ = G) = @Y -G EY - ) + (@ - E - G)

=1
3 1H@?L—@ivﬁi—Ci—(ﬁ”l—Ci“)H<C(H5f = | | = |+ 12— <) + et = )
- L e N e
+0At; | =i +E; &' = ¢, = @ =G 633)
as well as utilizing a discrete form of Gronwall’s inequality [13], the result follows. =

The numerical method’s convergence is stated in the following consequence.
Corollary 1. If we assume that the continuous problem’s solution is sufficiently regular, that means:
w, A € H?(0,T;L*(0,L)) nW"> (0,75 H'(0,L)) N H* (0,T; H'(0,L)) , (34)
and,
¥,q € H* (0,73 L*(0,L)) N L> (0,T; H*(0,L)) N H' (0,75 H'(0,L)) . (35)
Then, there exists a positive constant C, independent of the discretization parameters h and At,
such that:
~n ~nl12 In Inll2 In In |12 n n n ny |12 n nl12 n nll2
o = P I = N I = Nl 2 = G NI+ 0" = 0+~
< CO(h* + At?). (36)

Proof. The result i 1s a consequence of following estimates as in [14] and [15]:
2 s |[@m = G = @ = G || < CRA 1@ T2 0.0 0,2 .

2.3. Numerical simulation

We implement several numerical experiments in this part to demonstrate the theoretical findings in
Theorems 1 and Corollary 1. To accomplish this, we discretize Timoshenko system with the second
sound using a finite element method (FEM) for space and using the backward Euler scheme for time
for domain [0, 1] x [0,7] to find solution of (37) and (38).

Assumlng that w; ™ ! )\” ! NV ! . qn L are known and let wy’ 0 = =wy -1 @ZO = @Z‘l A0 = \n-t
/\ /\" ! LUy 0 =4, 1, qh =q 1 , we will solve the following system:
1 /~ ~p— 1
L(W—%%@wwwm+ngm_o
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Z_t()‘nh] Xz_lu Xh) + b( Z;ga Xhm) + k(w}r;,g + )‘Zda Xh) ’Y(7927j_17 th) + (XZJa Xh) = 07
Z—i(ﬁZ’] =) + (g m) + v (N ) =0, (37)
pa

At(qh - QZ 17 h) + ﬁ(qzdvah) + (ﬁz’xjvah) = 07
where, for j =1,2,...,J
N N D B e RN (e (38)
The time interval (0,7) is splitted into N subintervals with a time step At = %, whereas the spatial
interval (0, 1) is divided into J subintervals.
We show the energy decay for both cases p # 0 and g = 0 presented in Example 1 and Example 2
and we perform the numerical convergence in Example 3.
For three numerical evaluations, we take the functions o and h defined by: o(t) =1 and f(z) =

Example 1 (The case p # 0). We consider first the following parameters of the model
pr=2, p2=2, pz=1, b:27 k:27 T=1 ~v=1, /8:1 (39)
The discretization parameters are
1 1
At=—, h=-—
50’ J

Along with the following initial conditions

. J=200, T=6. (40)

u.)()( ) = ( ) (1 - £)2 = wt(x,O) (LZ'), Vo e (07 1)7
Xo(z) = os(wx) 3(1 — )3 = M(2,0) = M (2), Vo€ (0,1), (41)
Jo(a) = 9(2,0) = exp(—20z) a*(1 — z)*, vz € (0,1),
qo(z) = q(w,O) =21 —a)*, vz € (0,1).

We observe that a polynomial decay of the energy is showed in Figures 1, 2 for the case of u # 0 that
goes with theoretical results.

14 X10 -3Behavior the discrete energy 4o __ Behavior the discrete energy
12
_ 10 ~
L w
3 8 8.
o )
Q -
wol 5
4 L
2 1 1 1 1 1
0 1 2 3 4 5 6
timet time t
Fig. 1. Numerical energy of the system in the case of Fig. 2. In(E™) in the case of u # 0.

7 0.
Example 2 (The case p = 0). We consider the following parameters of the model
p1=10"2 ppy=10"2, p3=10"%, k=02, b=1, fB=1, ~y=+3992, 7=10"2 (42)
with the same discretization parameters (40) and initial conditions (41).

We found an exponential decay of the Timoshenko system’s energy in Figure 3, 4 for the case of
1 = 0 then the theoretical results are verified.

From the numerical solution in three dimensions of the diplacement w and the filament A obtained
from Figure 5, 6. This proves again the energy decay of the system.
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%1073 Behavior the discrete energy

1.6

1.4

1.2

Energy E "
o o
o ) -

I
~

o
[N}
T

N
o b
(=2}

0 1 2 3
time t
n

Fig. 3. Numerical energy of the system in the case of

w=0.
0.04
0.04 0.03
— 0.02 0.02
=
% 0 0.01
-0.02 .
1 -0.01
-0.02

X 0 o t

Fig. 5. The evolution in time and space of w.

Behavior the discrete energy

Energy log(E ")

time t n

Fig. 4. In(E™) in the case of u = 0.

%107

5

Fig. 6. The evolution in time and space of .

In Figure 7 the rotation angle of filament A is shown at several time instants. Moreover, in Figure 8
the evolution in time of the rotation angle of filament A at several space points. As expected, the
rotation angle \ is generated initially but it converges to zero.

x10°°

t=2.2

A(X,t)

X

Fig.7. The evolution in space of A for t = 1.8, t =2
and t = 2.2.

-3
6 x10
x=0.7
x=0.5
5+ x=0.3 |1
4
3
Z
<
2
1
0 |-
1 . . . . .
0 1 2 3 4 5 6

t

Fig. 8. The evolution in time of A forx = 0.3,z = 0.5
and z = 0.7.
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Example 3 (Order of convergence). The main objective of this example is to demonstrate the
numerical convergence of the numerical scheme. The next system is addressed in this context. Following
that, we perform a simulation to numerically test the error estimate. We have the modified problem
(P).

Find, w: [0,1] x [0,7] = R, A: [0,1] x [0,7] — R, ¥: [0,1] x [0,7] - R and ¢: [0,1] x [0,T] = R
such that

prwy — k(wg + ANz = f1 in (0,1) x (0,7,
(py ] PP DA k(o £ ) Fde + A= fo i (0,1) % (0,7),
p319t +qz + ’Y)‘xt = f3 in (07 1) X (07T)7
T(Jt‘i'ﬁq_“ﬂm:f4 in (071) X (O’T)v

where f1, fo, f3, f4, and the initial data are derived from the exact solution:
for all (z,t) € (0,1) x (0,T")
w(z,t) = ela?(x — 1)2, Az, t) = ela?(z — 1)%,
Iz, t) = ez’ (x — 1), q(z,t) = ela?(z — 1)
For computed errors we have adopted the values of parameters in (43),
pp=1, pa=10, p3=10% k=102 b=10", B=13-10° ~=2-10"% r=10%" (43)
Table 1 displays the computed errors at time 7' = 1, where the Error is supplied by

Brror= max { 6"~ | [ A3 *+{| 3R |+ X" = (ot M) [P0 R+ 0"~k |}

Table 1. Errors computed for 7' = 1.

J At Error
20 2x 1072 2.3410 x 1073
40 1072 70305 x 102

80 5 x 1073 2.1621 x 1072
160 2.5 x 1073  7.4839 x 10~°
320 1.25 x 1073 3.2442 x 10~°

The errors generated for different discretization parameters J (with h = %) and At in Table 1. We
can also see the numerical convergence in Corollary 1 is achieved according to Figures 9, 10.

«10-3 Asymptotic behaviour Asymptotic behaviour

Error
-9

In(Error)

-10 +

3 RETR o o s 7
-1 11 -1 - - 7 } 5
h2+ At? x10° In(h 2+ At?)
Fig.9. The evolution of Error. Fig.10. The evolution of In(Error).

The numerical schemes were implemented using MATLAB on a Intel Core i5-6006U CPU @ 2.00 GHz.
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3. Conclusion

The numerical analysis of the Timoshenko system with the second sound was done in this paper.
In order to approach discrete energy, we first devised a numerical scheme based on finite element
discretization in the space variable and the finite difference scheme in time. Additionally, we showed
the energy decay propriety. The semi-discrete and completely discrete schemes a priori error estimates
are then proved. At the end, several numerical tests were performed for this system, and the results
show that the convergence matches what is predicted by the theories.
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HucenbHi pgocnig>xeHHst cuctemun TumolleHka 3 ApyrumMm 3BYKOM

Cmyxk A., Pamin A.

Dakxyavmem mamemamuru ma tnpopmamury Ynieepcumemy Xacana I,
FSAC, Jlabopamopisa gyndamernmanvroi ma npuraadnoi mamemamuxu, Kacabaanxa, Mapoxxko

CJIJKEHHTO. 3’ sIBJIAIOTbCsI HOBI (bi3M4HI 3a/a4i, SIKi BUMAraloTh XOPOIIOr0 MaTeMaTHIHO-
ro pO3yMIiHHA TMOBEJIIHKH IHOTO sBUIA. Halll BHECOK MOraTuMe y BUBYEHHI UHCETHHOL
crifikocti cucremu Tumorernka 3 1pyrum 3ByKoM. BBogmmo HaOIMKeHHS CKIHIEHHUX €JIe-
MEHTIB 1 JJOBOAMMO, IO BiINOBiIHA TUCKPETHA €HEeprisl 3MEHIIYETbCd, 1 BCTAHOBIIIOEMO
ampiopHi oninku nmoxubok. Hakinerp, oTpuMyeMo JIeKiIbKa IMCETbHUX CUMYJISITI.

Kntouosi cnosa: sadaua Tumowenka; wucesvna cmitixicms; mMemod CKINYEHHUT eAe-
MEHMIB; YUCEALHE MOJEAOBAHMA.

Mathematical Modeling and Computing, Vol.11, No. 4, pp.911-922 (2024)



