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In networks characterized by imbalanced traffic, detecting malicious cyber-attacks poses
a significant challenge due to their ability to blend seamlessly with regular data volumes.
This creates a formidable hurdle for Network Intrusion Detection Systems (NIDS) striving
for accurate and timely identification. The imbalance in normal and attack data, coupled
with the diversity among attack categories, complicates intrusion detection. This research
proposes a novel approach to address this issue by combining Extreme Gradient Boosting
with variational autoencoder (XIDINTV). The methodology focuses on rectifying class
imbalance by generating diverse rare-class attack data while maintaining similarities with
the original samples. This enhances the classifier’s ability to discern differences during
training, improving classification performance. Evaluations on NSL-KDD and CSE-CIC-
IDS2018 datasets demonstrate the effectiveness of XIDINTV, particularly when compared
to SMOTE sampling technique and traditional classification models, with Xtreme Gradient
Boosting excelling in detecting rare instances of attack traffic.
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1. Introduction

The global proliferation of internet usage has precipitated a substantial increase in the transmission
of vital, sensitive, and confidential personal and business data across networks. In response to this
surge, threat actors have made concerted efforts to exploit vulnerabilities in network security measures,
seeking unauthorized access to sensitive data, thereby potentially disrupting system functionality and
compromising the confidentiality and availability of data [1]. Consequently, the field of cybersecurity
has risen to paramount importance, offering essential mechanisms to combat cyberattacks and miti-
gate their associated costs and damages [2]. In this con-text, the Intrusion Detection System (IDS)
has emerged as a fundamental component of network security architecture, serving as a tool for the
detection of diverse forms of intrusions. IDS operates by scrutinizing network traffic, identifying sus-
picious and malicious activities, as well as violations of security policies. This functionality empowers
network administrators to maintain vigilant surveillance over contemporary threats [3, 4].

Notably, IDS can be categorized into host-based and network-based variants, contingent on their
deployment environment and placement [5, 6]. Host-based IDS is installed on individual hosts or de-
vices, where it exclusively inspects data packets for signs of suspicious actions and security policy
breaches. However, this approach is encumbered by the requisite installation of an IDS on each host to
be protected, potentially resulting in heightened processing demands for each host, ultimately impact-
ing performance negatively. In contrast, Network-based IDS is deployed across the entire computer
network, functioning to monitor, capture, and analyze network traffic with the goal of detecting ma-
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licious activities. IDSs employ two primary approaches for attack detection, namely anomaly-based
and signature-based methods [7, 8]. In signature-based IDS, also known as “misuse intrusion detec-
tion” or “knowledge-based intrusion detection”, the system operates reactively by seeking patterns and
signatures corresponding to known attacks, which are maintained in a database. These patterns are
subsequently compared with network data, and any matching activity is flagged as malicious. This
approach exhibits ease of development and is adept at identifying known attacks with minimal false
positives. However, it lacks the capability to detect novel or zero-day attacks since it relies exclusive-ly
on its existing database of known attacks [9]. Furthermore, the signature-based approach consumes
significant resources due to the maintenance, updates, and constant comparison of an extensive signa-
ture database with incoming data packets for potential attacks. In contrast, anomaly-based intrusion
detection systems, often referred to as “behavior-based IDS”, model normal system behavior, subse-
quently identifying attacks by detecting deviations from this established normal pattern [10]. The
strength of this approach lies in its capacity to detect new, previously unknown attacks. However, it
frequently results in a higher rate of false positives, limiting its practical application.

In the real world of cybersecurity, typical activities make up the majority, resulting in a prevalence
of normal traffic data, while malicious cyberattacks represent only a small portion, leading to a signif-
icant category imbalance. This severe imbalance, coupled with redundant network traffic data, places
immense pressure on intrusion detection. Malicious cyberattacks have the capacity to effectively blend
into the extensive volume of regular network traffic, posing a significant challenge for machine learning
algorithms in comprehending the distribution of minority categories and increasing the likelihood of
misclassification. This issue of data imbalance directly impacts the performance of intrusion detection
classifiers. For example, in the NSL-KDD dataset, which consists of 125 973 training data points,
67 343 are categorized as normal data, while 58 630 are categorized as attack data. This attack data
can be further subdivided into four primary categories, with the R2L and U2R attack making the rarest
category, occurring only 52 times. Cyberattacks with R2L (Remote-to-Local) and U2R (User-to-Root)
characteristics are frequently linked to computer security and network systems. In a remote-to-local
(R2L) attack, an unauthorized person tries to access a local system or network, while an attacker trying
to gain local access to a system tries to escalate their privileges in order to obtain root or administrative
access in a U2R attack. Typically, rare-class attack data constitutes a minuscule fraction compared
to normal data. When employing a single ma-chine learning algorithm for classification, the classi-
fier tends to favor the majority class, leading to misclassification of rare-class attack data as normal.
To mitigate this challenge, common solutions involve the utilization of oversampling techniques such
as Synthetic Minority Over-sampling Technique (SMOTE), Borderline-SMOTE, Adaptive Synthetic
Sampling (ADASYN), Generative Adversarial Net-works (GAN), among others. These techniques aim
to generate additional instances of rare-class attack data. However, traditional oversampling methods,
while partial-ly addressing the imbalance issue, tend to produce attack samples that lack diversity and
often result in the generation of low-quality data.

Numerous endeavors have been made by researchers to devise effective Intrusion Detection System
(IDS) techniques for the efficient detection of cyberattacks. However, despite the extensive body of
research in the field of IDS, the prevailing IDS methods continue to exhibit notable shortcomings,
including a pronounced issue of high false alerts [11–15], limited detection rates [15–18] particularly
concerning minority attack classes, and the persistent challenge of imbalanced data classes [13,15,19–
21]. It therefore becomes imperative to have an approach that can provide promising security for Zero-
day/novel types of attacks, and also mitigate the aforementioned limitations of the existing approaches,
as well as serve as a good candidate to be implemented as a product. Therefore, this manuscript seeks
to introduce machine learning algorithms based on Intrusion Detection Systems (IDS) for the efficient
identification of minority network attacks. The primary contributions of this study can be summarized
as follows:

1. We have devised the Minimum-Maximum (Min-Max) normalization meth-od to guarantee uniform
scaling of all feature values.
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2. We have designed a variational auto-encoder to counteract the issue of class imbalance in the
NSL-KDD and the more recent CSE-CIC-IDS2018 datasets by augmenting the underrepresented
minority samples. This approach ad-dresses the class imbalance challenge in intrusion detection,
facilitating improved learning of distinctions during classifier training. Subsequently, we conducted
a performance comparison of these sampling techniques.

3. We use the classification model Extreme Gradient Boosting comparing with other methods which
include Support Vector Machine (SVM), Logistic Regression, KNN, Decision Tree, Random For-
est(RF).

4. We conducted a comparison of the suggested model with SMOTE and other methods, evaluating
it through metrics including accuracy, precision, f-measure, recall, false alarm rate, and execution
time.

The structure of this paper is as follows: Section 2 delves into the relevant literature; Section 3 out-
lines the proposed methodology; Section 4 provides an account of the results and subsequent discussion.
Lastly, Section 5 brings the paper to a conclusion.

2. Literature review

Within the domain of machine learning, addressing the issue of class imbalance has consistently pre-
sented a significant challenge. Consequently, intrusion detection confronts substantial difficulties when
dealing with highly imbalanced categories in network traffic. As a result, numerous researchers have em-
barked on investigations to enhance the accuracy of intrusion detection for imbalanced network traffic
data. Notably, an Information Entropy Deep Belief Networks (IE-DBN) model was introduced [22] for
network Intrusion Detection Systems (IDS), employing the KDDCup99 dataset. The study employed
Information gain (IG) for dimensionality reduction by eliminating redundant features. Information
entropy (IE) was used to determine the DBN network’s depth and hidden neuron count. Furthermore,
in addressing the issue of uneven class distribution, we utilized the Synthetic Minority Oversampling
Technique (SMOTE) algorithm. This approach yielded a 0.76 percent false positive rate and an impres-
sive 98.76 percent detection accuracy, as evidenced by the obtained results. However, class imbalance
within the data remains a concern, since the study showed a reduction in detection efficiency for assaults
on minority classes, particularly when dealing with huge datasets, even when employing SMOTE. Fur-
thermore, the researchers did not explore putting their model to the test with con-temporary forms of
attack or using evaluation measures beyond false positive and accuracy. Piyasak introduced a method
aimed at enhancing the accuracy of minority classification [23]. This method addresses imbalanced
data classification challenges by combining the Complementary Neural Network (CMTNN) with the
Synthetic Minority Over-sampling Technique (SMOTE). Tests carried out on the UCI dataset show
that this combination method successfully reduces issues with class imbalance.

Yan proposed an enhanced local adaptive composite minority sampling algorithm (LA-SMOTE) to
handle the issue of network traffic imbalance and incorporated a deep learning GRU neural network
to identify network traffic anomalies [24]. In another study [25] the researchers addressed imbalanced
dataset CIDDS001 through data Upsampling and Downsampling methods. To assess the datasets, they
used Random Forest, Deep Neural Networks, Voting, Variational Autoencoder, and Stacking Machine
Learning classifiers. Their approach resulted in an accuracy rate of up to 99.99 percent.

Recently, a study [26] involved training a deep autoencoder to establish a data generation model
for generating balanced datasets. This approach was shown to alleviate overfitting issues caused by
imbalanced data and prevent misjudgment of new data types not present in the training dataset. In
a different approach [27] introduced a novel Intrusion Detection System (IDS) based on the Siamese
Neural Net-work (Siamese-NN). The suggested Siam-IDS could identify R2L and U2R assaults with-
out using conventional class balancing methods like random under- and over-sampling. Siam-IDS
outperformed comparable products in terms of recall values for both R2L and U2R attack categories.

The researchers [12] introduced an Intrusion Detection System (IDS) model, utilizing the adaptive
synthetic (ADASYN) oversampling technique in conjunction with the LightGBM ensemble. The ap-
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plication of ADASYN was employed to address the challenge of imbalanced data. Additionally, the
classifier employed the ensemble method LightGBM to lessen computational complexity related to
model training and speed up intrusion detection. UNSW-NB15, NSL-KDD, and CICIDS2017 were the
three datasets utilized to evaluate the model’s performance. The experimental findings showed that
LightGBM had accuracy values of 83.98 percent, 89.79 percent, and 99.86 percent for the corresponding
datasets. Additionally, the identification rate for minority classes was improved after using ADASYN
oversampling, resulting in 85.89 percent, 92.57 percent, and 99.91 percent overall detection accuracy for
the same datasets. But because the false positive rate is somewhat large, the model can be enhanced
to deal with this issue. In order to distinguish between different forms of network attacks, researchers
in a study [28] investigated five different machine learning techniques using the UNSW-NB15 dataset.
These techniques included random forest, decision tree, logistic regression, K-Nearest Neighbors, and
artificial neural networks. With an accuracy of 89.29 percent, the random forest classifier performed
the best out of all the classifiers. Furthermore, significant gains in classification model accuracy were
noted once the class imbalance problem was resolved by applying the synthetic minority oversampling
technique (SMOTE). Surprisingly, the random forest classifier, which used 24 specific features from the
principal component analysis approach achieved the best accuracy, hitting 95.1 percent. It is crucial
to mention that the LR and ANN classifiers did not benefit from class balance; in fact, it led to a
reduction in their accuracy, especially in managing the minority classes.

The uneven distribution of attacks poses a significant research challenge in the fields of intrusion
detection and IoT security. To address this problem, researchers [29] used Borderline-SMOTE to
oversample the minority class of rare-class attack traffic in the Internet of Things. This improved
the detection accuracy of IoT attacks, particularly in situations where there is a class imbalance.
Another study [30] used Generative Adversarial Networks (GAN) to learn the distribution of rare-class
attack traffic and generate synthetic rare-class attack data in order to address the low detection rates
of conventional classifiers for rare-class attack traffic in IoT settings. The detection effectiveness of
intrusion detection models built on convolutional neural networks (CNNs) was somewhat improved
by this method. Furthermore, researchers [31] generated artificial rare-class attack samples using a
Wasserstein Conditional Generative Adversarial Network (WCGAN). After that, they used a balanced
dataset to train an XGBoost classifier. The training data oversampled by WCGAN demonstrated
improved classifier training and increased the recognition rate of intrusion detection models in testing
on publicly accessible IoT datasets, particularly for rare-class intrusions.

In their study, [32] offer a unique method that uses an optimized kernel density estimation algo-
rithm: a geometric synthetic minority oversampling technique. By learning the distribution of rare-
class attack data, this method may generate a large variety of such data while maintaining closeness
with the original sample features. The NSL-KDD and N-BaIoT datasets were used to evaluate the
system’s performance, and the results demonstrated a multi-classification accuracy of 86.39 percent
and 99.94 percent, respectively.

Reference [33] addresses the issue of class imbalance by introducing a novel technique known as the
Difficult Set Sampling Technique (DSSTE). Initially, the imbalanced training set is divided into two
sets by the algorithm: an easy set and a challenging set, using the Edited Nearest Neighbor (ENN)
approach. It then reduces the majority samples in the challenging set using the KMeans technique,
hence decreasing their representation. The method also modifies the minority samples’ continuous
features in the challenging set to produce new samples that enhance the minority class. Lastly, a new
training set is created by combining the augmentation samples from the easy set, the minority set
in the difficult set, and the compressed majority set inside the difficult set. Through targeted data
augmentation for the minority class and effective mitigation of the original training set’s imbalance,
this approach improves the classifier’s capacity to identify distinctions during the training phase and
ultimately leads to improved classification performance. The NSL-KDD dataset yielded an accuracy of
80.69 percent and an F-score of 79.34 for the DSSTE method, whereas the CSE-CIC-IDS2018 dataset
yielded an accuracy and precision of 96.29 percent, according to experimental results.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 930–945 (2024)



934 Abdulganiyu O. H., Ait Tchaoucht T., Ezziyyani M., Benslimane M.

Many researchers have balanced the training set and produced better experimental results by us-
ing interpolation, oversampling, encoder-generated data, and other data augmentation techniques.
SMOTE [34, 35], Borderline-SMOTE, ADASYN, and various other algorithms [12, 36] represent tra-
ditional oversampling techniques. However, they share a common approach of generating synthetic
samples along the line segments that connect instances of the minority class. This method presents
challenges when attempting to enhance the minority class sample distribution. G-SMOTE [37], on the
other hand, is a synthetic minority oversampling method designed to deal with the problem of imbal-
anced data. It is an improved variant based on the SMOTE algorithm. G-SMOTE differs from the
previously stat-ed SMOTE-based algorithms in that it does not rely solely on the creation of artificial
samples along line segments that link instances of minority classes. Rather, G-SMOTE introduces geo-
metric modifications into the feature space, hence expanding the capabilities of the linear interpolation
process. This novel method mimics the distribution of rare-class samples more accurately. Although
these techniques provide data that is nearly identical to real data and successfully increase the mi-
nority class, problems may arise if test data distributions differ from the trained range. The classifier
may struggle to accurately predict these distributions. To address this, we propose the Variational
Autoencoder algorithm, which identifies challenging samples within the imbalanced training set, and
adjusts the continuous attributes of the minority class. This method effectively reduces imbalance and
generates data that aligns with the true distribution.

3. Methodology

Confronting the challenge of imbalanced network traffic, we introduce the variational autoencoder to
equalize the number of minority samples with that of the majority samples, effectively reducing the
imbalance in the training set. This adjustment enhances the classification accuracy attainable by the
intrusion detection system. We employ the Extreme Gradient Boosting technique for classification,
and its performance is compared with that of other classifiers such as Logistic Regression, K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), and Decision Tree classifiers in our classification
models. Figure 1 illustrates the architecture of the proposed model. In our intrusion detection sys-
tem, we initially perform data pre-processing, which includes tasks such as duplicate removal, outlier
handling, and managing missing values. Following this, we partition the dataset into a test set and
a training set. The training set undergoes Min-Max normalization to standardize the data, ensur-
ing that all values fall within the same range, thus expediting the convergence process. Additionally,
the preprocessed data is subjected to our proposed variational autoencoder algorithm to address data
balancing. Subsequently, the processed training set is used to train the classification model, and the
model’s performance is assessed using the test set.

3.1. Proposed methods

The CSE-CIC-IDS2018 dataset has a major class imbalance, with around 83 percent of the data being
benign network traffic [38]. Furthermore, in the NSL-KDD dataset, network traffic is skewed toward
the majority class. To guarantee equitable class distribution, the SMOTE and VAE oversampling
technique was applied and compared to see which produces the best results.

3.2. Dataset description

CSE-CIC-IDS2018 and NSL-KDD dataset are the two datasets employed for the study. There are
125 973 records in the NSL-KDD dataset, which are split up into 22 544 records for the training and
testing sets. Each record in this dataset is com-posed of 41 attributes, which encompass 3 nominal,
6 binary, and 32 numeric attributes. The dataset encompasses instances of both normal network
activity and different attack types. There are twenty-two distinct attack types in the training dataset
and seventeen distinct attack types in the test dataset, for a total of 39 assault types. These attack
types fall under four categories: Denial of Service (DoS), Probe, User to Root (U2R), and Remote to
Local (R2L). The CSE-CIC-IDS2018 dataset was created in 2018 by the Canadian Institute of Cyber
Security (CIC) and the Communications Security Establishment (CSE). It stands as the most recent
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Fig. 1. Architecture of the Proposed Model.

and comprehensive publicly available dataset for intrusion detection. CSE-CIC-IDS2018 is designed
for simulating real attack scenarios and represents an enhancement over its predecessor, the CSE-CIC-
IDS2017 dataset. This dataset adheres to established standards for attack datasets and encompasses
a variety of well-known attack types. Specifically, it includes a detailed breakdown of seven distinct
assault scenarios, including brute force, online attacks, denial of service (DoS), distributed denial of
service (DDoS), infiltration, and heartleech, which is a kind of DoS attack. CSE-CIC-IDS2018 dataset
has a total of 83 samples, each of which has a unique collection of attributes. The network traffic
distribution is shown in Table 1.

Table 1. Distribution of NSL-KDD and CSE-CIC-IDS2018 Dataset.

NSLKDD CSE-CIC-IDS2018
Classes Train Data Test Data Attack Type Total Traffic Type Count

DoS 45927 7458 apache2, mailbomb, pro-
cesstable, up-dstorm, land,
neptune, smurf, pod, back,
teardrop,

11 Benign 83.07

Probe 11656 2421 mscan, saint, portsweep, ip-
sweep, satan, nmap

6 DDoS 7.786

R2L 995 2754 Warezclient, guess-passwd,
ftp-write, waresmaster, imap,
named, snmpgetattack, sn-
mpguess, xlock, xsnoop,
multihop, spy, and phf

15 DoS 4.031

U2R 52 200 rootkit, ps, sqlattack, load-
module, perl, buffer-overflow,
and xterm

7 Brute Force 2.347

Normal 67343 9711 Botnet 1.763
Infiltration 0.997
Web Attack 0.006

Total 125973 22544 39 100
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3.3. Dataset preprocessing

We performed data preprocessing in this section to address various issues such as duplicate values,
noisy data, missing data, infinity values, and the presence of categorical data requiring transforma-
tion. Specifically, in the case of the CSE-CIC-IDS2018 dataset, certain features like “Timestamp”,
“Destination Address”, “Source Address”, and “Source Port” were removed. Additionally, if the features
“Init Bwd Win Byts” and “Init Fwd Win Byts” contained a −1 value, we introduced two binary check
dimensions. A value of −1 was marked as 1, while any other value was marked as 0.

3.4. One hot encoding

We utilized the One Hot Encoding technique to transform the categorical feature data (as seen in
NSLKDD, protocol type, service, and flag, for instance) into numerical data. As seen in equation (1).
This process involved creating a novel binary feature for each potential category and attributing a
value of 1 to the feature of each sample that corresponds to its original category,

ei = 1A(x) =

{

1, if x ∈ A,
0, if x /∈ A.

(1)

For each vector ei in the standard base, where ei represents a vector with 1 in the ith position and 0s
elsewhere, we have a set A. If x is an element within A, the function returns 1; otherwise, it returns 0.
Consequently, A represents the set of instances where a 1 is assigned to the encoding vector. Essentially,
one-hot encoding is a vectorized version of this indicator function, applied component-wise. Consider
three protocol types in the NSLKDD data: “TCP”, “UDP”, and “ICMP”. Before one-hot encoding, they
were functions of these three categories. However, after one-hot encoding, they are transformed into
binary vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. The protocol type function for the NSLKDD
data was split into three groups, while the flag function included 11 categories, and the service function
contained 70 categories. Therefore, after applying one-hot encoding, the initial 41-dimensional feature
vector expands to 122 dimensions.

3.5. Min-Max normalization

We used Min-Max normalization to rescale the input data within the range of (0, 1) as a technique for
feature scaling. The features in the dataset have different value ranges, so feature scaling was used
to normalize these characteristics and make sure they all fall inside the same range. This approach
prevents the model we constructed from favoring specific features solely because they have larger values.
We performed feature scaling through the Min-Max technique, as described in equation (2):

x =
(xi − xmin)

xmax − xmin
. (2)

In this context, xi represents the numerical feature value of the ith sample, while xmin and xmax

indicate, respectively, the lowest and highest values for each numerical attribute. This technique is
employed to enhance the convergence of gradient descent and to achieve an improved regularization
effect.

3.6. Extreme gradient boosting

XGBoost is an iterative ensemble learning technique designed to combine the results of several decision
trees in order to increase prediction accuracy. It continuously creates trees and optimizes their char-
acteristics to minimize a cost function. This cost function is composed of the regularization terms and
separate loss functions that help control the complexity of the model. The algorithm’s strength is in its
ability to identify complex correlations in the data without causing overfitting through regularization.
XGBoost has been widely used in machine learning competitions and practical applications because
to its efficiency and speed. In actual use, it is really effective. It has a good predictive power and
can handle both regression and classification problems. With n samples and m features, our labeled
dataset D (NSL-KDD and CSE-CIC-IDS2018) is shown as

D = (xi, yi) (3)
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for i in the interval [1, n], where the target value is denoted by yi and the feature vector of the ith
sample is represented by xi. A weighted sum of each sample’s unique loss functions plus regularization
terms makes up the objective function in XGBoost:

L(Θ) =

n
∑

i=1

[

L(yi, ŷi) + Ω(fi)
]

, (4)

where L(Θ) is the individual loss function that measures the difference between the true target and the
predicted target ŷi for the ith sample. Ω(fi) is the regularization term for each tree fi in the ensemble,
which helps control model complexity. Θ represents the entire set of model parameters, including
the parameters of individual trees and the weights. An ensemble of decision trees is constructed via
XGBoost. The weighted sum of the predictions made by each individual tree determines the expected
goal for a particular sample:

ŷi =

K
∑

k=1

fk(xi), (5)

where K is the total number of individual trees, fk(xi) represents the prediction of the k-th tree for the
i-th sample. Two different kinds of regularization terms are added to the goal function by XGBoost.
L1 Regularization: by including the absolute values of the tree node weights, this promotes sparsity in
the feature selection,

Ω(fi) = γ
L
∑

j=1

|θj |, (6)

where L is the total number of leaves in the tree, θj represents the weight of the j-th leaf, γ is the
regularization parameter. L2 Regularization: adds the squares of the weights to control the complexity
of the tree,

Ω(fi) = γ
L
∑

j=1

|θ2j |, (7)

where L is the total number of leaves in the tree, θj represents the weight of the j-th leaf, γ is
the regularization parameter. By adding a single tree at a time, XGBoost optimizes the objective
function. It accomplishes this by employing strategies like gradient boosting to minimize the goal
function iteratively. A fresh tree is trained to roughly match the loss function’s gradient in each
iteration, making the tree well-trained. XGBoost integrates the forecasts of each individual tree in the
ensemble, taking into account their weighted contributions, to provide predictions for future samples.

3.7. Variational autoencoder

The CSE-CIC-IDS2018 dataset has a major class imbalance, with around 83 percent of the data being
benign network traffic [38]. Furthermore, in NSL-KDD, there is an imbalance in the distribution of
network traffic, with a bias toward the majority class. To ensure a fair distribution among classes,
the Variational AutoEncoder (VAE) was used to generate synthetic observations. The objective is to
approximate the true distribution of the minority class, denoted as, x ∼ Pθ(x), and then randomly
sample from this approximated distribution to create new synthetic observations, represented as, x̃.
Finally, a classification model is trained on the updated dataset, which now has a more balanced class
distribution, including the synthetic minority class observations. In this process, the input data x and
the latent variables z are introduced, and consideration is given to the joint distribution of x and z
which is influenced by the parameter θ. This parameter is optimized during the training phase:

Pθ(x, z). (8)

The latent variables, denoted as z, can be regarded as a representation of the most essential information
from x, as they exclude any additional information. Given the goal of approximating, a practical
approach would involve integrating the joint distribution with respect to z,

Pθ(x) =

∫

Pθ(x|z)Pθ(x) dz. (9)
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Nonetheless, it is worth noting that Pθ(x|z) is challenging to compute [8]. This is where the encoder,
denoted as Qφ(x|z) with parameter φ comes into play. The reason for approximating the encoder is
twofold: it enables the estimation of Pθ(x|z) and ensures that the process remains computationally
feasible,

Qφ(z|x) ≈ Pθ(z|x). (10)

Furthermore, it is assumed that the encoder’s distribution follows a multivariate normal distribu-
tion, where the mean and standard deviation are determined based on the input variables x,

Qφ(z|x) ∼ N(µ(x),diag(σ(x))) (11)

As previously mentioned, the decoder is responsible for the reconstruction aspect of the VAE model,
utilizing z as input to recreate x. The decoder can be determined by assessing the disparity between
the encoder, denoted as Qφ(z|x) and Pθ(z|x). To estimate Pθ(z|x) using the encoder, the Kullback–
Liebler (KL) divergence is introduced. The KL-divergence serves to quantify the difference between
the encoder and the distribution, Pθ(z|x), that it aims to estimate,

DKL(Qφ(z|x)||Pθ(z|x)) = Ez∼Qφ
(log(Qφ(z|x))− log(Pθ(z|x))). (12)

The loss function of the VAE model comprises two elements: the KL Loss and the reconstruction
loss. In terms of parameter optimization, the decoder component indicates that maximizing the decoder
results in minimizing the reconstruction loss. Meanwhile, the KL loss component reveals that as the
encoder improves its ability to encode z, the loss between the encoded z and its prior z decreases.
During the optimization of the VAE model, gradients of the loss function with respect to its parameters
are calculated. To reiterate, the loss function of the VAE model is composed of two elements: the KL
loss and reconstruction loss,

Lrecon(x, φ, θ) = −EQφ(z|x)[log(Pθ(z|x))], (13)

LKL(x, θ) =
1

2

∑

1 + Zlogvar − Z2
mean, (14)

LVAE(x, φ, θ) = Lrecon(x, φ, θ) + β · LKL(x, θ). (15)

3.8. Synthetic Minority Oversampling Technique (SMOTE)

The SMOTE [39] over-sampling technique works on the following principle: Consider Z as the size of
a relatively small class, consisting of samples denoted as i, each with its associated feature vector xi,
where i ranges from 1 to Z

1. Locate k neighbors for the sample xi from among all Z samples within this relatively small class
(for instance, by employing the Euclidean Distance), and designate them as xi(near), where near
spans from 1 to k.

2. From the k neighbors, a sample denoted as xi(nn) will be chosen randomly. Subsequently, a random
number ζ1, ranging from 0 to 1, is generated to create a new sample xi1 using the following equation:
xi1 = xi + ζ1 · (xi(nn)− (xi));

3. Repeat the process described in step b N times to generate N new samples: xi new, where new
ranges from 1 to N .

3.9. Machine learning algorithm

When evaluating our classifier’s architecture against other models, we employed Logistic Regression,
K-Nearest Neighbor, Random Forest, SVM, and Decision Tree for the training and testing processes,
as elaborated in the subsequent section.

K-Nearest Neighbor (KNN). For identifying data samples, the K-nearest neighbor (k-NN)
method is a basic and simple nonparametric technique. Using this method, an unlabeled data point is
assigned to the class represented by its K-nearest neighbors after approximating the distances between
different data points in input vectors. The parameter ‘k’ must be carefully chosen when building a
k-NN classifier because different values of ‘k’ can result in differing classification performance. Longer
classification durations and perhaps lower prediction accuracy can arise from using a high number of
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neighbors in the prediction process if ‘k’ is sufficiently large. K-nearest neighbor sets itself apart from
inductive learning techniques by being classified as an instance-based learning technique. In contrast
to inductive techniques, k-NN does not have a separate model training phase; instead, it classifies new
cases by only looking for examples that are comparable inside input vectors. Amazingly, K-nearest
neighbor functions without any settings and usually uses the Euclidean distance metric to measure
how different neighbors are from one another.

Support Vector Machines (SVM). The idea behind the mathematical description of SVM is to
identify a hyperplane that minimizes classification errors while maximizing the margin between classes.
This strategy has solid theoretical underpinnings and is supported by science. SVM aims to produce a
strong decision boundary that performs well when applied to unknown data by optimizing the margin.
Finding the hyperplane that optimally divides data into distinct classes while maximizing the margin
between the two classes is the fundamental notion of SVM. A support vector machine (SVM) is used
in the context of an intrusion detection system (IDS) to classify network traffic and identify possible
intrusions or cyberattacks. SVMs are used by IDS to categorize network traffic data into categories
such as legitimate and possibly harmful activity. They build a model that is able to discriminate
between suspicious or malicious activity and typical network behavior by using information taken from
network packets or logs. SVMs are trained using labeled datasets of historical network traffic data,
where anomalies are identified as known intrusion instances. In order to distinguish between typical
and abnormal network behavior, the SVM algorithm looks for a hyperplane. Real-time classification
of incoming network traffic is possible with the SVM model once it has been trained. Because SVMs
are well-known for handling high-dimensional data, they can be used to analyze a variety of network
properties and identify intricate infiltration.

Decision Trees. A Decision Tree is an essential tool for categorization tasks in Intrusion Detection
Systems (IDS). Using a sequence of interconnected judgments, each of which affects the next, Decision
Trees classify network traffic or data samples. The visual representation of this decision-making process
takes the shape of a tree structure, where the root node serves as the first classification point. In
intrusion detection systems (IDS), decision trees are frequently used to evaluate network data and
determine if it indicates potentially malicious or benign activities. A trained Decision Tree identifies
pertinent characteristics from the network data to classify a specific data point which may represent
a benign occurrence or an intrusion by selecting pertinent attributes. The objective in the context
of IDS is to construct an ideal Decision Tree that contains the most amount of information while
maintaining the shortest tree structure. The optimum tree effectively distinguishes between typical
and non-normal network behavior. The optimal root node for the tree is deter-mined using a variety of
measures, including the Gini index and Information Gain. This effectively divides the training dataset
into several categories, such as normal and incursion. This procedure aids in locating any dangers and
security holes inside a network. To put it briefly, decision trees are employed in intrusion detection
systems to categorize network data by building a hierarchical tree of decisions depending on the data’s
characteristics. This makes it easier to identify abnormalities and cyberthreats.

Random Forest (RF). Among the supervised machine learning methods is Random Forest (RF).
It is made by combining many Decision Trees (DTs) in order to improve the precision and robustness of
categorization predictions. Each of these distinct Decision Trees is built at random and trained using a
majority vote system to generate categorization results. Although they are parts of the Random Forest,
Decision Trees are two different categorization algorithms. The primary distinction is that Random
Forest builds a rule-subset using all of the Decision Trees that are members, as opposed to Decision
Trees, which create a rule-set during training for the purpose of later classifying fresh samples. This
novel method produces outputs that are more accurate and resilient to overfitting, requiring less input
and doing away with the requirement for a separate feature selection procedure. Numerous research
indicate that Random Forest is a good fit for applications related to anomaly and intrusion detection
in network security.
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Logistic Regression (LR). For jobs involving binary classification, statistical and machine learn-
ing techniques like logistic regression are employed. It estimates the likelihood that the outcome belongs
to a specific class in order to represent the link between one or more independent variables (features)
and a binary dependent variable (outcome). A linear combination of input data is transformed into
a value between 0 and 1, which represents the likelihood of the positive class, by the logistic function
(sigmoid function) in the logistic regression model. Simplicity, interpretability, and the capacity to
generate probabilistic predictions are among the main features of logistic regression. When it comes to
generating predictions and decisions, logistic regression is an effective technique for figuring out how
input features relate to the possibility that an event will occur.

4. Result and discussion

Initially, we studied the classifier’s performance. While Random Forest obtained the highest precision
and Fscore of 87.23 and 81.37%, respectively, in the experimental results for the NSL-KDD dataset,
XGBoost achieved the highest accuracy of 86.76% and the highest recall of 84.07%. However, XGBoost
required more computational time to execute than Decision Tree. Random Forest obtained the maxi-
mum precision and F1 rate of 90.12% and 91.37%, whereas XGBoost achieved the highest accuracy and
recall rate of 99.40% and 94.07% following oversampling with SMOTE. After oversampling with Vari-
ational Autoencoder, XGBoost achieved the highest accuracy rate of 99.79%, Decision Tree achieved
the highest precision and recall rate of 99.63% and 89.07%, while Random Forest achieved the highest
f1-score of 94.04%, XGBoost had the longest execution time while DT had the least execution time.
For the CSE-CIC-IDS2018 dataset, Random Forest achieved the highest accuracy, precision, and f1-
score of 96.66%, 89.11%, and 83.17% while XGBoost achieved the highest recall of 89.71% respectively,
however SVM expended more computational time while Decision Tree has the least execution time.
After oversampling with SMOTE, XGBoost achieved the highest accuracy and recall rate of 99.87%
and 94.18%, and Random Forest achieved the highest precision and F1 rate of 90.23% and 91.48%,
SVM had the longest execution time while DT had the least execution time. After oversampling
with Variational Autoencoder, XGBoost achieved the highest accuracy rate of 99.89%, Decision Tree
achieved the highest precision and recall rate of 99.74% and 90.08%, while Random Forest achieved the
highest f1-score of 94.15%, XGBoost had the longest execution time while DT had the least execution
time.

Table 2. Comparison of the Proposed Model with other related work.

Model
NSLKDD CSE-CIC-IDS2018

Acc Pre Rec F1 Time Acc Pre Rec F1 Time
LR 83.2 61.4 79.2 59.4 23.6 93.1 62.1 87.1 61.1 23.4
KNN 86.3 79.8 79.0 71.6 319 96.2 80.5 87.1 73.3 338
SVM 84.4 69.8 79.5 61.1 617 94.4 70.6 88.7 62.4 639
DT 86.5 83.1 77.0 75.2 6.44 96.5 84.0 83.1 79.1 8.35
RF 86.6 87.2 79.0 81.3 12.4 96.6 89.1 81.5 83.1 14.2
XGB 86.7 81.3 84.0 69.8 432 96.3 82.0 89.7 71.7 459
SMOTE+LR 96.2 68.3 89.2 64.4 26.8 96.4 68.4 89.3 64.5 24.7
SMOTE+KNN 99.3 84.6 89.0 81.6 449 99.5 84.8 89.1 81.7 449
SMOTE+SVM 97.5 70.7 89.5 66.0 839 97.6 70.8 89.6 67.0 839
SMOTE+DT 99.6 86.0 87.0 85.1 9.53 99.7 86.1 87.1 85.3 6.44
SMOTE+RF 99.7 90.1 89.0 91.3 18.6 99.8 90.2 89.1 91.4 15.4
SMOTE+XGB 99.4 84.1 94.0 79.8 559 99.8 84.3 94.1 79.9 549
VAE+LR 98.7 82.8 80.8 86.0 9.34 98.8 82.9 80.9 86.1 7.34
VAE+KNN 99.3 98.1 84.1 89.7 287 99.4 98.2 84.2 89.8 277
VAE+SVM 99.2 98.2 84.3 89.3 821 99.3 98.3 84.4 89.4 823
VAE+DT 99.7 99.6 89.0 89.3 11.6 99.8 99.7 90.0 89.4 9.66
VAE+RF 99.7 99.5 87.3 94.0 26.2 99.8 99.6 87.4 94.1 16.2

VAE+XGB 99.7 99.1 84.4 79.0 1412 99.8 99.1 84.5 80.0 1400
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Fig. 2. Comparison of methods without Sampling Technique.

Fig. 3. Comparison of methods combined with Smote Sampling Technique.

As seen in Table 3, the accuracy outcome of our study effort exhibits greater performance when
compared to other pertinent related work, however it exhibits high resource and time complexity.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 930–945 (2024)



942 Abdulganiyu O. H., Ait Tchaoucht T., Ezziyyani M., Benslimane M.

Fig. 4. Comparison of methods combined with Variational Autoencoder Sampling Technique.

Table 3. Comparison of the Proposed Model with other related work.

Research Papers Accuracy Precision Recall F-Score Execution Time (sec)
Ref. [40] 98.1 99.1 N/A N/A 0.18
Ref. [21] 99.4 N/A N/A N/A N/A
Ref. [22] 98.8 N/A N/A N/A 52.64
Ref. [18] 76.6 96.0 61.6 75.0 1220
Ref. [41] 87.0 87.0 83.0 83.2 N/A
Ref. [42] 96.1 N/A N/A N/A N/A

Proposed 99.7 99.1 84.4 79.0 1400

5. Conclusion

The burden on network intrusion detection is growing as network intrusion continues to change. Cy-
berspace security is particularly vulnerable because of issues with unbalanced network traffic, which
make it harder for intrusion detection systems to anticipate the dispersion of harmful attacks. In
order to increase the learning of imbalanced network data by the classification model, this research
suggested a variational autoencoder. In order to improve classification accuracy, a deliberate increase
in the number of minority samples that must be learned might lessen network traffic imbalance and
reinforce minority learning under difficult samples. In order to compare XGBoost with five traditional
machine learning and deep learning classification algorithms, we paired it with SMOTE and variational
autoencoder sampling methods. Tests demonstrate that our approach can more successfully detect at-
tacks and precisely identify the samples in the unbalanced network traffic that require expansion.
The study’s findings were able to show how important it is to handle class imbalance by employing
the oversampling technique, as well as how this affects the overall effectiveness of intrusion detection.
After sampling the imbalanced training set samples with the variational autoencoder algorithm, we
discovered in the experiment that XGBoost performs more accurately than other machine learning
methods, despite having a higher computational complexity than other methods. Consequently, we
want to apply feature selection approaches in the following stage to shorten the execution time while
enhancing the model’s overall performance.
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XIDINTV: виявлення вторгнень в незбалансований мережевий
трафiк на основi XGBoost за допомогою варiацiйного автокодера
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У мережах, якi характеризуються незбалансованим трафiком, виявлення зловмис-
них кiбератак становить значну проблему через їх здатнiсть плавно поєднуватися зi
звичайними обсягами даних. Це створює серйозну перешкоду для систем виявлення
вторгнень у мережу (NIDS), якi прагнуть до точної та своєчасної iдентифiкацiї. Дис-
баланс у звичайних i атакуючих даних в поєднаннi з рiзноманiтнiстю категорiй атак
ускладнює виявлення вторгнень. Це дослiдження пропонує новий пiдхiд до вирiшен-
ня цiєї проблеми шляхом поєднання екстремального градiєнтного посилення з варiа-
цiйним автокодером (XIDINTV). Методологiя зосереджена на виправленнi класового
дисбалансу шляхом генерацiї рiзноманiтних даних атаки рiдкiсного класу, зберiгаючи
при цьому схожiсть з оригiнальними зразками. Це покращує здатнiсть класифiкатора
розпiзнавати вiдмiнностi пiд час навчання, покращуючи ефективнiсть класифiкацiї.
Оцiнки на основi наборiв даних NSL-KDD i CSE-CIC-IDS2018 демонструють ефек-
тивнiсть XIDINTV, особливо в порiвняннi з технiкою вибiрки SMOTE i традицiй-
ними моделями класифiкацiї, при цьому Xtreme Gradient Boosting вiдмiнно виявляє
рiдкiснi випадки атак трафiку.

Ключовi слова: система виявлення вторгнень; дисбаланс мережевого трафiку;

екстремальне градiєнтне посилення; варiацiйний автокодувальник; виявлення ано-

малiї; доповнення даних.
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