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We present in this paper, SOR Homotopy perturbation method, a new decomposition
method by introducing a parameter w to extend a classical homotopy perturbation method
for solving integro-differential equations of various kinds. Using SOR homotopy perturba-
tion method and its iterative scheme we can give the exact solution or a closed approximate
to the solution of the problem. The convergence of the proposed method has been elab-
orated and some illustrative examples are presented with applications to Fredholm and
Volterra integral equations.
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1. Introduction

A variety of problems in physics, chemistry and biology have their mathematical setting as differ-
ential, integral or integro-differential equations [1]. In recent years, there has been a clear interest in
integro-differential equations as a combination of differential and Volterra—Fredholm integral equations.
Integro-differential equations play an important role in many branches of linear or nonlinear functional
analysis and their applications. The mentioned integro-differential equations are usually difficult to
solve analytically, so approximation strategies are required to obtain the solution of the linear and
nonlinear integro-differential equations [2].

The Homotopy perturbation method (HPM) was first proposed by He J. Huan in 1999, where the
solution of this method is considered as the sum of an infinite series which is very rapidly converge
to the accurate solution [3]. The method deforms the difficult problem under study into a simple and
easy to solve problem. He J. used the Homotopy perturbation method for solving nonlinear ordinary
differential equations of the first and the second orders [3], nonlinear ordinary differential equations
with n-th order [4], the oscillators equation with discontinuities [5], and one dimensional nonlinear
wave equation [6]. In [7], the authors use the Homotopy perturbation method to solve the electrostatic
potential differential equation.

There are many applications of Homotopy perturbation method to solve the reaction-diffusion
equation [8], Gas dynamics equation [9], Schrodinger equation [10], delay differential equations [11],
linear /nonlinear Volttera and Fredohlm equations [12,13].

Our contribution here can be summarized in the following points:

— introducing a parameter w to define a SOR Homotopy perturbation method;
— the convergence of the proposed method is discussed;

— some Volterra and Fredholm examples are given as numerical illustration;

— special case for comparing our proposed with the classical HPM method.
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SOR Homotopy perturbation method to solve integro-differential equations 955

2. SOR Homotopy perturbation method

2.1. Homotopy perturbation method
To illustrate the basic concept of Homotopy perturbation method, consider the following non-linear
functional equation

A(u) = f(r) =0, req, (1)
with boundary conditions;
B(u,@> =0, refl,
on

where A is a general functional operator, B is a boundary operator, f(r) is a known analytic function,
and I' is the boundary of the domain ). Generally speaking the operator A can be divided into two
parts L and N, where L is a linear, while N is a nonlinear operator. Therefore, (1) can be rewritten
as follows

L(u) + N(u) = f(r) = 0.
We construct a homotopy v(r,p): Q x [0,1] — R which satisfies

H(v,p) = (1 =p) [L(v) = L(uo)] + p[N(v) = f(r)] =0, (2)
or

H(v,p) = L(v) — L(uo) + pL(uo) + p[N(v) — f(r)] =0, 3)
where p € [0, 1] is an embedding parameter, and wug is an initial approximation for the solution of (1),

which satisfies the boundary conditions. According to HPM, we can first use the embedding parameter
p as a small parameter, and assume that the solution of (3) can be written as a power series in p:

vzvo+v1p+v2p2+...zzvmi- (4)
Considering p = 1, the approximation solution of (1) will be obtained as follow
u=limv=vy+v+va+.... (5)
p—1

The series (5) is convergent for most cases, however, the convergent rate depends upon the nonlinear
operator A(v) [3].

2.2. SOR Homotopy perturbation method

Let us rewrite (3) in the following
L(v) = L(uo) = p[f(r) = L(uo) = N(v)] . (6)
Substituting (4) into (6) leads to

L(ivmi> — L(ugp) = p [f(r) — L(ug) — N(ivmi>] .
=0 =0

So,

S L(w)p' — L(ug) = p [fm ~ Liuo) = N (Y vipi)] . (7)
i=0 =0

According to Maclaurin expansion of N ( Yoo vipi) with respect to p, we have

N(So) =3 [ (So)| o
i= =0
From [14], we get ’

s (S| - [ (S o)

=0 p:O
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Then

M) =5 e ()| o

p=0

1 on - ,
Hn(U07U17"'7vn): [Ha—pnN<Zvlpl>] ) 7’L:0,1,2,...,
: - p=0

We set

where H,,’s are the so-called He’s polynomials [14]. Then

N(gvmi) = gHipi. (8)

Substituting (8) into (7), we drive

ZLUZP— (uo) = p[f ZHJ)]

By equating the terms W1th the identical powers in p:
P’ L(vo) — L(ug) = 0,
p': L(vi) = f(r) — L(ug) — Ho,
p2: L( ) = —Hl,
pn—l—l: L(Un—i-l) = _Hna

So, we derive,

vy = U,
vy = L7 f(r)] — uo — L™ (Ho),
V2 = _L_l(Hl)v

Vpy1 = —L7Y(H,).

Let introduce a parameter w, and define the sequence v,, as follow

Vo = uo,
o1 = w (L7f(r)] —uo — L™ (Ho)) ,
Ty =w (—L7Y(Hy)) + (1 — w)oy, (9)

ey

Bor1 = w (—L-(Hp)) + (1 — w)on,

then
V1 +U2+ ..+ Uyl =W (L_l[f(r)] — Ug — L_l(H(])) +w (—L_I(Hl)) + (1 — w)m
o Fw(=LYH) 4+ (1 - w),
=wvy + (1 —w)vy +wve + ...+ (1 —w)v, + wopt1
=v1+vy+ ...+ wWups1
n+1 n
i=1 i=1
So,

n+1 n+1

n
Zﬁi :wZvi +(1 —w)Zvi.
i=0 =0 =0

oo — oo oo o0
Asn — oo, we get D2 T =wy  Zovi+ (1 —w)d Zov =Y 200
If the series > ;2 v; is convergent then the series Y ;2 T; is also convergent.

Remark 1. If w =1 then the proposed method is the Homotopy perturbation method.
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Theorem 1. Homotopy perturbation method used the solution of (1) is equivalent to determining
the following sequence

Sp =01+ ...+ Up,

S0 = 07
where
Snt1 = —L_an(sn +vg) —ug + L_l(f(r))7
and
Nn<Zv,~> =Y H, n=012....
i=0 i=0
Proof. See [15]. [

Let define the following sequence
STp =01+ ...+ Uy,
srg =0,
where
SThal = W (—L_lN(srn +79) —up + L7Hf(r))) + (1 — w)sy, (10)
and

n n
N(Zm): H, n=01,2,....
i=0 =0

Theorem 2. Let B be Banach space,
1. 772, obtained by (9), converges to s € B, if

FH0< <), st (Vu,veB,|

2
L7'N(u) = L7'N(v)|| < pllu— d0<w< ——.
(u) @) < allu = vl) and 0 <w <
2. sr =) 2 Un, satisfies in

st = —L 7 N(sr 4+ wvy) — ug + L71(f(r)).

Is7ns1 = srall = [|[w(=L7 N(sra +T0) = uo + L™H(f(1))) + (1 = w)sry,
—w(=L'N(srp_1 +T0) —uo + L7 (f(r)) + (1 — w)sTp—1||

< Hw(—L‘lN(srn +T0) + LN (srp_1 +T0)) + (1 — w)(sr, — sTn—1)||
< wH( — L7'N(srp, +Ty) + L™ N(srp_y -I-ﬁo)) H +]1— w|”s7‘n - srn_lH
< w,uHsrn — S’r’n_1H + 11— w|”srn — srn_lH

N

(wp + |1 = wl)||srn — sra_1]|-
Let p = wp + |1 — w|, then

-
d

[s7n41 —sral < p
<p ‘Srn—l - 3Tn—2|’
< pP||srn—2 — srn_s||
< p"HSﬁ — S’r'()H.

fO<w<1l,thenp=wp+1l-w=1—-w(l—p) <1
fw>1,then p=wp+w—-1=w(l+p) —1. So,w<ﬁimpliesp<1.
For any n, m € N, n > m, we derive
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|srr — 87| < ||870 — STn—1 4+ STn—1 — 8Tn—2+ ... + STmq1 — ST ||

|
|
p"||sry — srol| 4 p" T ||sry — srol| 4 ... 4 P ||sr — st
(0" 4" p ) (s — s

P o) ||lsr — st

M o ") s — sl
m~+1

|srn, — srp_1|| + ||s7n-1 — sTn—2|| + ... + [|$Tm+1 — $Tm]]

YA/ A/ AN/ ANSV/ANR/AN
ha) ~~

N
A

T, ||sr1 — srol| -
So,

lim ||sr, — srm|| =0.
m—ro0

)

Then {sr,} is the Cauchy sequence in a Banach space and so it is convergent, i.e.,

o

dsr € B, s.t nh—>H<;lo STy = Zﬁj = sr.
j=1

2. From (10), we have

lim srpy 1 = —L7% lim N(sr, +T9) — uo + L71(f(r))

n—oo n—o0

— ! JLIEON(ZTL:@) —ug + L7'(f(r)),
§=0

sr=—L71 nli_)noloZHj — g+ L7Y(f(r))
5=0

=—L7'Y Hj—uo+ L (f(r)).
=0
But by (8) for p =1, we drive

o0

Hj = N(iﬁj>
=0 =0
So,

oo

sr=—L'N(D075) o+ LU ()),

=0
st =—L I N(sr4vg) —ug + L7Hf(r)).

3. lllustration examples

Example 1. Consider the first order nonlinear ordinary differential equation:

u(x) +uP(z) =1, |z] <1

(11)

Here, A(u) = v/ +u? and f(x) = 0. The operator A can be divided into two parts L and N, where

L(u) = v’ and N(u) = u?.

In this case, equation (2) becomes:

V(@) = up(x) + pug(e) +p[v*(@)] =0, pe(0,1].

Assume the solution of the above equation can be written as given in equation (4). By substituting

this solution into the above equation one can have:
o0 o0
i/ / / % 2
> p'vi@) - up(@) + pup(a) +p( D (@) = 0.
i=0 1=0
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By equating the terms with identical powers of p one can have:

P v —uf =0,

pte o +uh+vd(z) =0,

P2 v+ 200(z)in(x) =0,

p3: vl + 2vg(z)ve(z) + v3(x) = 0,

For simplicity, let vg(z) = up(x) = 1 the initial approximation of the differential equation (11), then
vi(z) +1 = 0 and this implies that: vi(z) = —x, also v(z) — 22 = 0 which implies vo(z) = z2.
Continuing in this manner, one can have:
vp(x) = (=1)"z", n=0,1,2,....
Now, let 19 = vg = ug and forn =1,2,3, ...
Up(x) = wop(x) + (1 — w)vy—1(x)

= (-1)" (wz" — (1 —w)z" ).

Then . .
Up(z) = Z(—l)” (ww” - (1- w)x”_l)
n=1 n=1
=w) (-D)"2" + (1-w) ) (-1 2!
n=1 n=1
So,
=Y Tp()=w () 2"+ (1 -w)> (-1)"z"
n=0 n=0 n=0
> 1
= 14+

which is the exact solution of the ordinary differential equation (11).

3.1. Fredholm integral equation of the second kind
Now we consider the Fredholm integral equation of the second kind in general case,

b
u(@) = F(z) + A / K.ty u(t) dt, (12)
where k(z,t) is the kernel of the integral equation. In view of (
(1= ) ule) ~ £+ p [ ulo) - 1 A/’ (@utya] <o,
or
b
u(z) = f(x) —I—p/\/ k(x,t)u(t) dt. (13)
Substituting (4) into (13), and equating the terms with identical powers of p, we have
P’ ug = f(x)

b

ploug :/\/ k(x,t)(ug) dt
ab

p*: ug :/\/ k(x,t)(uy)dt

b
p3r ug :/\/ k(x,t)(usg) dt
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therefore, we obtain iteration formula for (12) as follow:

uo(@) = f(@),
U (x) = )\/ k(x,t)um—1(t)dt, m > 0.

Then
{ Uo(x) = f(:E)’ (14)

U () = WU (2) + (1 — w)upm—1(z), m >0.

According to (14) we define partial sum as follow

in view of (14)—(15) we have

Theorem 3. Consider the iteration scheme
sro(x) = f(x), .
srp+1(z) =w (f(a:) + )\/ k(x,t) sry(t) dt> + (1 —w)sr,

for n = 0,1,2,... to construct a sequence of successive iterations sry(x) to the solution of (12). In
addition, let

b b
//k2(:n,t)d:ndt:B2<oo,

and assume that f(z) € L%(a,b). Then, if p = |A\|B < 1 and 0 < w < ﬁ, the above iteration

converges in the norm of L?(a,b) to the solution of (12).

Proof. By Theorem 2, we have

|70 11(2) — srn(@)|| = H w (f(a:) + A/abk(x,t) s7n(t) dt> + (1 — w)sra(z)
- [w (f(x) + )\/abk(x,t) stn_1(t) dt) +(1- w)srn_l(g;)} H

< H ) /ab k(z,t) (st (t) — srn_1(t))dt + (1 — w) (s (2) — s7p_1(2)) H

b
< wl| ‘ / k(x,t) dt‘ |srn () = srn—1(2)]| + [1 — w|||srn(z) — srn_1(2)]|
b
< (w A / k(2 1) dtH . w|> 57 (@) — sra1(2)].
Let u = || Hfab k(x,t)dt||, then w|\| fab k(z,t) dtH +1-w<if0<w< ﬁ and the series {sr,}
is convergent and it converges to the solution of (12). |
Example 2. Consider the integral equation
1
u(z) = Vo + )\/ xtu(t)dt, (16)
0
its iterations formula, by our methods, reads
1
srpy1(z) = w <\/§ + )\/ (xt) srp(t) dt> + (1 — w)srp(x), (17)
0
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and
up(z) = Vz,

and in view of (13), we obtained

u(z) = \/_—i-p)\/ xtu(t)dt,

Substituting (2) into (16), we have the following results

P uo(a) = v,
1

pt: ul(:n):)\/ xt\/fdtzz)\?x,
0

1 2
P2 us(z) = )\/ xt2—)\tdt 2)\1',

5 15
2)\? 2X3
3 = Lot
P )\/ T dt = 5 —x,

and

() = Vz,

) (z) = wuy (z)

ui(z) =wur(x)+ (1 —w)u, 1=2,3,....
Continuing this way ad infinitum, we obtain

srp(x) = w

2
2y A"
[5 300 5 31 T D
+(1-w)(Vz+ L W
5307 " 5.3l 5.3n2

:w<ﬁ+§;<%>ix> +(1-w) <f+ jz;l@)%)

The above sequence is convergent if |A| < 3.
Note that by Theorem 1 we have

b b 1 1 1
//kz(ac,t)dxdt:/ / (xt)2dxdt=§=32.
a Ja 0 0

Then if |A\| < 3 (17) is convergent.

3.2. Volterra integral equations of the second kind

We consider the Volterra integral equations of the second kind in the form

(@) = f(z)+ A / " (@, ) ult) dt,

where K (x,t) is the kernel of the integral equation. As in the case of the Fredholm integral equation,
we can use SOR Homotopy perturbation method to solve Volterra integral equations of the second
kind.

However, there is one important difference: if K(z,t) and f(x) are real and continuous, then the
series converges for all values of A (see [16]).

Example 3. Consider the integral equation
u(z) =z + )\/ (x —t)u(t)dt,
0

its iteration formula reads

Sp+1(z) =z + )\/Ox(ac —t) sp(t) dt,
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and

’LL(](ZE) =z,

:E):x+p/\/()x(:n—t)u(t)dt

Substituting (2) into (18), we have the following results

in view of (12), we obtained

P’ g
pls /\/ (x —t)tdt = A
2. N T2
P u2(x)—)\/0 (x —t) 3')\dt 5')\
1
3. _ 2 3
P ug(az)—/\/o (az—t)a)\ dt = ?/\
and
ﬂo(l’ =
ﬂl(x)z 1()
ui(x) = wul()+(1—w)u, 1=2,3,....

Continuing this way ad infinitum, we obtain
= M\ (1- A
””>“Qﬂ arem) 09 (S )
The above sequence is convergent for all A.

Example 4. Consider the following integro-differential equation
u'(z) = -1+ )\/ (x —t)u(t) dt,
0

which is equivalent to

2 A [* 3
u(:n):1—§+g/0 (z — 13u(t) dt,

by SOR Homotopy perturbation method its iteration formula reads

Srpy1(z) = <1 -5t % x(x —1)35,(t) dt) + (1 —w)sry(x),

in view of (13), we obtained

—1_7* ! 3
u(z) =1- o7 + gp/o (x —t)7u(t) dt,
and )
x
uo(z) =1~ 7.
Substituting (2) into (19), we have the following results
2
x

P’ ug(z) =1— o0

A [T t2 zt 23
1. — 3 —
ph: ul(x)—3!/0(ac—t) <1_2|>dt_<4!_6!>)"

A T IIJ‘4 ZL'3 IIJ‘S ZL'lO
2. — _ LT —[Z_ 2 )2
P uz(x)_i/o (@ t)<4! 6!>dt_<8! 10!>A’

1 8 410 p12
3. _ 2. 5
) =A [0 (g Iy ) = (- 1) *
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and

= wuy(x),
Ui(z) = wui(z) + (1 —w)u, i=2,3,....

Continuing this way ad infinitum, we obtain
n 4i n 4142 n—1 4i n 4i+2
= Al— Ale—— 1— A— ANl——.
$Tal@) = <§ @) +ZZ:; (4¢+2)!> +{1-w) (; @) +; (4i+2)!>

The above sequence is convergent for all \. Note, for A = 1 and w = 1 the above sequence converges
to cos x which is the exact solution for

u'(z) = -1+ )\/Ox(a: —t)u(t) dt.

3.3. Special case
In the previous sections, we have shown that under some hypothesis the Homotopy perturbation method
converges. Also, under the same assumptions plus conditions on the parameter w, the proposed method
converges. Here, we will see cases where the HPM method diverges but under certain conditions our
method converges.

To do this, let consider the following Example.

Example 5. Consider the following linear Fredholm integral equation of the second kind:

4 1
u(a:):e?’x—geg:n—gzn—él/ xtu(t)dt, 0<x<1 (20)
0
Here a =0, b=1, A\ = —4, f(z) = 3* — Segw— %w and k(z,t) = xt.
Therefore
b rb 1 1 1
//kz(a;,t)da:dt:/ / e tdrdt = = = B? < oo
a Ja 0 JoO 9
and
A=d4>—L_3
= 5 =3

So, if we use the Homotopy perturbation method to solve this example, then the solution that is
obtained by applying this method may be convergent to the exact solution or may not.
To do this, let

4
wlae) = f(a) = = (50 + 3 )
Hence
1 1 8 4
m@ﬂ:—4/:Mf@dﬂ:—4/:ﬁ<§k“£%——0dt
0 0 9 3
1 8 4 1
— 4 t3tt——3—/2t
:13</0 ed <9€ +3> Otd
:é<ge3—1>w
3\9
and

1 1 4 /2
us(x) :—4/0 :Etul(t)dt:—4/0 azt2§ <§es—1> dt
4 (2 !
=—4- (22 -1 2dt
3(96 )3:/0 t°d
N2,
=—(2) (23 -1)a

By continuing in this manner, one can have:
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ui(az):—él/olxtui_l()dt (— )Z+1<§> <§e3—1> T, i=1,2,....

Thus
)= ui(x)
i=0
:e?’x—<§e?’+4>x+z ZH( > (ge?’—l>x.
Since

i ()(3—1>=(—1)z a3

But Y22, (—1)¢! (%)Z is an alternating series, that is divergent since |r| = 3 > 1. Therefore Y22, u;(x)
is dlvergent
Now, if we use the SOR Homotopy perturbation method, then we have

sro(z) =up(z) = f(x).

Hence )
T (x) = —4uw / oL
0
4 (2
= _—w(=et -1
(5 1)
and ‘ -
- 4\" (2 (AN (2
Ui (z) = w(—1) <§> <§es 1) r+ (1 —w)(-1)" <§> <§es — 1) x
4 (4T 2
= <—§w +1-— w> (—1) <§> <§e?’ - 1) x
4 _ .
= <—§w—|—1—w> Ui—1(z), 1=2,....
Then
4
sri(x) — sri—1(z) = U (x) = (—gw +1-— w) ;1 ()
4 .
= <—§w +1-— w> (sri—1(w) — srio(x)), i=2,....
If w is chosen such that |——w +1-— w‘ < lie w< g, then the series is convergent to the exact

solution of the equation (20).

4. Conclusion

In this work, we present a SOR Homotopy perturbation method by introducing a parameter w in
order to extend the classical homotopy perturbation method. According to the values of w, we study
the convergence of the method under some assumptions. We take an integral equations and integro-
differential equations as example illustration of our proposed method. A particular case is given when
our method converges but the classical homotopy perturbation method fails.

Acknowledgements

The authors thanks the referees very much for their constructive suggestions, helpful comments and
fast response, which led to significant improvement of the original manuscript of this paper.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 954-965 (2024)



SOR Homotopy perturbation method to solve integro-differential equations 965

1
2]

3
4
51
6]
7
8]
9
i
11)
12)
13)
14
15]

[16]

Jerri A. J. Introduction to Integral Equations with Applications. Wiley—Interscience (1999).

Huesin J., Omar A., AL-shara S. Numerical solution of linear integro-differential equations. Journal of
Mathematics and Statistics. 4 (4), 250-254 (2008).

He J.-H. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering.
178 (3-4), 257-262 (1999).

He J.-H. Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and
Computation. 135 (1), 73-79 (2005).

He J.-H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied Math-
ematics and Computation. 151 (1), 287-292 (2004).

He J.-H. Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons &
Fractals. 26 (3), 695-700 (2005).

Zhang L.-N., He J.-H. Homotopy perturbation method for the solution of the electrostatic potential differ-
ential equation. Mathematical Problems in Engineering. 2006, 083878 (2006).

Wang Y .-Xi., Si H.-Y., Mo L.-F. Homotopy Perturbation Method for Solving Reaction-Diffusion Equations.
Mathematical Problems in Engineering. 2008, 795838 (2008).

Jafari H., Zabihi V., Saidy M. Application of Homotopy Perturbation Method for Solving Gas Dynamics
Equation. Applied Mathematical Sciences. 2 (48), 2393-2396 (2008).

Jazbi B., Moini M. Application of He’s homotopy perturbation method for solving Schrodinger equation.
Iranian Journal of Mathematical Sciences and Informatics. 3 (2), 13-19 (2008).

Shakeri F., Dehghan M. Solution of delay differential equations via a homotopy perturbation method.
Mathematical and Computer Modelling. 48 (3-4), 486-498 (2008).

Matinfar M., Saeidy M. The Homotopy Perturbation Method for Solving Fuzzy Integral Equations. Journal
of Mathematics and Computer Science. 1 (4), 377-385 (2010).

Saeed R. K. Homotopy perturbation method for solving system of nonlinear Fredholm integral equations
of the second kind. Journal of Applied Sciences Research. 4 (10), 1166-1173 (2008).

Ghorbani A. Beyond Adomian polynomials: He polynomials. Chaos, Solitons & Fractals. 39 (3), 1486—
1492 (2009).

Ayati Z., Biazar J. On the convergence of Homotopy perturbation method. Journal of the Egyptian Math-
ematical Society. 23 (2), 424-428 (2015).

Froberg C. E. Introduction to Numerical Analysis. Addison-Wesley Pub Company (1968).

MeTtop romoToniyHnx 36ypedib SOR gns poss’sisyBaHHS
iIHTerpo-audepeHuiaibHUX PiBHAHb

Podip K.', Pagix A.2, JTaapamk M.3

LLASTI-ENSA Xypi6ea, Ynisepcumem Cyamana Mynas Caimana, Mapoxko
2LMFA-FSAC Kacabaanka, Ynisepcumem Xacana II, Mapoxko
3ENSAM Kacabaanxa, Ynisepcumem Xacana II, Mapoxko

VY wiit craTTi npejcTaBiaeHo MeTo ] roMoTonidaux 30ypenb SOR, HOBHIT MeTO, TEKOMIIO3H-
1l IJISIXOM BBEJIEHHSI TTAPAMeTPa W JJIsd PO3IIUPEHHS KJIACHIHOT'O METOY TOMOTOIIIYHUX
30ypeHb i PO3B a3y BaHHS IHTETPO-TudePEHITaJIbHIX PIBHIHD Pi3HUX BUiB. BukopucTto-
BYIOYH MeTOJ1 roMoTomivHuX 30ypenb SOR Ta fioro itepariiiiiny cxemy, MOKHA JATH TOTHUN
PpO3B’s130K ab0 3aMKHEHe HAOIMKEHHS 10 Po3B’a3Ky 3aadi. Po3risHyTo 36iKHICTH 3a11po-
IIOHOBAHOT'O METOJIy Ta HABEJIEHO JEesKi 1JI0CTPATUBHI IPUKJIAM 13 3aCTOCYBAHHAMU JIO
inTerpajabaux piBHAHb Openrosbma Ta Bosbreppa.

Kntouosi cnosa: SOR memod zomomonivnux 36ypens; inmezpaavhe piehanmns Pped-
204bMa; THMezpasvhe pienanms Boavmeppa.

Mathematical Modeling and Computing, Vol.11, No. 4, pp.954-965 (2024)



